JPS59159047A - Fender testing apparatus - Google Patents

Fender testing apparatus

Info

Publication number
JPS59159047A
JPS59159047A JP3296983A JP3296983A JPS59159047A JP S59159047 A JPS59159047 A JP S59159047A JP 3296983 A JP3296983 A JP 3296983A JP 3296983 A JP3296983 A JP 3296983A JP S59159047 A JPS59159047 A JP S59159047A
Authority
JP
Japan
Prior art keywords
fender
ship
movement
vessel
reaction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3296983A
Other languages
Japanese (ja)
Other versions
JPH0464020B2 (en
Inventor
Satoshi Tagome
田籠 敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP3296983A priority Critical patent/JPS59159047A/en
Publication of JPS59159047A publication Critical patent/JPS59159047A/en
Publication of JPH0464020B2 publication Critical patent/JPH0464020B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To reproduce the state of a vessel coming along a berth with the effect of a collision being lessened by computing the movement of the vessel based on detected signals and driving a pressure member according to the results computed. CONSTITUTION:A computer is used to calculate the movement of a vessel immediately after the vessel has contacted a fender and the results computed are converted into displacement quantities xpm, ypm, psipm and then applied to a control apparatus. A testing apparatus is subjected to the force corresponding to the displacement quantities xpm, ypm, psipm and deformed, whereby it generates reaction force. The displacement quantities xs, ys, psis of an exciting stand, the reaction force of the fender and the moments of the reaction force Rx, Ry, Mfpsi are detected by a displacement detector and a load converter. The control apparatus applies the detected signals to the computer, which computes the movement of the vessel at the time of the detection to obtain the estimated movement of the vessel a minute time DELTAt thenceafter and compute the displacement quantities xpm, ypm, psipm of the fender based on the results computed. As the operation is repeated, the state of the vessel coming along the berth toward the fender can be reproduced.

Description

【発明の詳細な説明】 不発明は、船舶が防舷材へ接岸する現象を再現できろ防
舷材の試験装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fender testing device that can reproduce the phenomenon of a ship coming alongside the fender.

従来では、防舷材の受衝面にこれと直角方向または斜方
向へ圧縮力を加え、この状態におけろ圧縮方向変位と圧
縮反カビ計測するとともに防舷材の変形を調べ、防舷材
の吸収エネルギーや物理的特性を試験した。
Conventionally, compressive force is applied to the impact-receiving surface of the fender in a direction perpendicular or oblique to this, and in this state, the displacement in the compressive direction and compression mold are measured, and the deformation of the fender is examined. The absorbed energy and physical properties of the material were tested.

しかし船舶が防舷viに接触しその防蝕Hの弾性変形に
より緩衝される接岸現象は、静的なものでなく動的であ
り・時間の経過とともに防舷viの反力を受けて船舶の
変位および速度が変化して防舷材に働く力が変動し、し
かも防舷列の圧縮反力、剪断反力および鉛直軸回りの反
力モーメントがそれぞれ独立して船舶に働かずに相互に
関連して船舶に作用す7:)ため、従来の単純な試験装
置によれば、実際に防舷材に船舶が衝突する状態゛を再
現ずろことがてきなかった。
However, the berthing phenomenon in which a ship contacts the fender vi and is buffered by the elastic deformation of the corrosion protection H is not static but dynamic; over time, the ship's displacement due to the reaction force of the fender vi changes. The force acting on the fender fluctuates due to changes in speed and speed, and the compression reaction force, shear reaction force, and reaction moment around the vertical axis of the fender row do not act independently on the ship, but are interrelated. Therefore, conventional simple test equipment has not been able to reproduce the actual situation in which a ship collides with a fender.

不発明はこのような難点を克服した防舷列の試験装置の
改良VC係り、防舷材の受衝面に対し直角な圧縮方向と
同受衝面に沿った剪断方向と同剪断方向に対し直角な軸
回りの回転方向とに加圧部材を駆動する試験機と、同試
験機に内蔵された前記加圧部必におけろ前記各方向の変
位量と前記防舷材よりの回加圧部′ViVC働く前記各
方向の反力とを検出する変位検出器、荷重変換器と同検
出器の検高信号を基にし船舶が前記防舷材に緩衝されつ
つ接岸ずろ運動を演算しざらにこれより微少時間経過後
の前記船舶の運動を演算する計算機と、この演算結果に
従って前記加圧部材を駆動ぎせろように前記試験機を制
御ずろ制御装置とよりなることを特徴とするもので、そ
の目的とする処は、実際に船舶が衝突して緩衝されろ状
態暑再現することかでさる防舷判の試験装置ビ供する点
にある。
The invention is related to an improved VC test device for fender rows that overcomes these difficulties, and is capable of performing compression in the direction of compression perpendicular to the impact surface of the fender, in the shear direction along the impact surface, and in the same shear direction. A testing machine that drives a pressure member in the direction of rotation around a perpendicular axis, and a pressure unit built into the testing machine that measures the amount of displacement in each direction and the rotational pressure from the fender. A displacement detector and a load converter detect the reaction forces acting in each direction, and the height detection signal of the detector is used to calculate the berthing movement of the ship while being buffered by the fender. It is characterized by comprising a computer that calculates the movement of the ship after a minute time has elapsed from this, and a shift control device that controls the testing machine so as to drive the pressurizing member according to the calculation result, The purpose of this is to provide a test device for fenders that simulates the shock absorbing conditions of actual ship collisions.

本発明は前記したように構成されているため、試験をし
ようとする防舷材を前記試験機に取イ\」け、船舶が同
防舷材に接触する直前の船舶の位置、速度等の初期条件
ン前記計算機に与えて計算し・その結果の出力をもって
量制御装置Z動作ぎせれば、同制御装置からの制御信号
により前記試験機が動作され、前記船舶が前記防舷材に
接触すると同様な状態で前記加圧部材が前記防舷材に衝
突する。
Since the present invention is configured as described above, the fender to be tested is placed in the testing machine, and the position, speed, etc. of the ship immediately before it contacts the fender are measured. If the initial conditions are given to the computer and calculated, and the output of the result is used to operate the quantity control device Z, the test device is operated by a control signal from the control device, and when the ship comes into contact with the fender. The pressure member collides with the fender in a similar state.

すると防舷材は変形するとともに反力を発生し、rJi
J記加圧部■の変位量は変位検出器によりおよび同7J
I] fT、部間に働く反力は荷重変換器により検出さ
れて、前記制御装置にその検出信号が送信される。
Then, the fender deforms and generates a reaction force, causing rJi
The amount of displacement of the pressurizing part (J) is determined by the displacement detector and 7J.
I] fT, the reaction force acting between the parts is detected by a load converter, and its detection signal is transmitted to the control device.

同制御装置ではこの検出信号を増幅し、て計算機に出力
する。同計算機ではこの電圧信号と前記初期条件とを基
にして船舶の運動が演算され・ざらに微少時間経過後の
船舶の運□動も演算され、その演算結果に合致するよう
に前記制御装置に信号が送られ同制御装置から前記試験
機に制御信号が与えられ、同試験機は同制御信号に追従
ずろように動作されろ。
The control device amplifies this detection signal and outputs it to the computer. The computer calculates the movement of the ship based on this voltage signal and the initial conditions, and also roughly calculates the movement of the ship after a minute period of time has elapsed. A signal is sent, a control signal is given from the control device to the test machine, and the test machine is operated to follow the control signal.

このような船舶運動の演算と試験機の動作とが、前記防
舷材より前記加圧部材が離れるまで、反々して行なわれ
\かくして実際に防舷′viに船舶が衝突して緩衝され
る状態が再現されゐ。
These calculations of the ship's motion and the operation of the testing machine are repeated until the pressurizing member separates from the fender, and thus the ship actually collides with the fender'vi and is buffered. The situation is reproduced.

従って、成る時間毎の前記防舷材の変形形状乞ストロホ
゛写真等゛により知り、また成る時間毎の[11J記防
舷何の反力や前記加圧部材の変位を表示器で知ることが
でき、同防舷材の吸収工坏ルギーやその他の物理的特性
ビ実物に近い状態で試験することができろ。
Therefore, it is possible to know the deformed shape of the fender at each given time from a strobograph photograph, etc., and also to know the reaction force of the fender and the displacement of the pressure member at each given time from a display. The fender's absorbency and other physical properties can be tested under conditions close to the real thing.

以下図面に図示された本発明の一実施例について説明す
る。
An embodiment of the present invention illustrated in the drawings will be described below.

第1図、第2図において1は被試験体である短柱状の防
舷材で・同防舷材1の取付は面1aは試験機2の水平移
動台3に一体に取付けられるようになっている。
In Figures 1 and 2, 1 is a short column-shaped fender which is the object to be tested.The fender 1 is attached so that its surface 1a is integrally attached to the horizontal movable table 3 of the testing machine 2. ing.

また前記試験4m2の水平移動台3は、ガイドレール4
上に載はぎれ、前後油圧シリンダ5にて岸壁に沿った水
平方向Xへ駆動されろようになっているqなお水平方向
反力検出のための荷重変換器6が水平整動台3と前後油
圧シリンダ5とに介装ぎれている。
In addition, the horizontal movable table 3 of 4 m2 for the test has a guide rail 4
It is designed to be driven in the horizontal direction It is interposed between the cylinder 5 and the cylinder 5.

ざらに前記水平移動台3を跨りその上方に架台7が据付
けられ、同架台7の頂部水平部材7aに軸方向油圧シリ
ンダ8が上下方向へ指向して装着され、同油圧シリンダ
8のピストン下端に軸方向反力検出のための荷重変換器
9を介して軸方向移動台10が一体に取付けられており
、同軸万肉前圧ンリンダ8の動作で軸方向移動台1oは
防舷材1に援離自在に駆動されろようになっている。
A pedestal 7 is installed above the horizontal movable table 3, and an axial hydraulic cylinder 8 is attached to the top horizontal member 7a of the pedestal 7 so as to be oriented vertically. An axially movable table 10 is integrally attached via a load converter 9 for detecting axial reaction force, and the axially movable table 1o supports the fender 1 by the operation of the coaxial multi-thickening front pressure cylinder 8. It is designed to be driven freely.

ざらにまた同軸方向移動台10の左右両側にブラケット
11が下方へ指向して一体に突設ぎれ、同ブラケット1
1の下端に加圧板12が前記ガイド−レール4と直角な
水平方向へ指向したピン15ヲ中心に旋回自在に枢Nぎ
れ\同軸方向移動台1oおJ:び加圧板12の前後部間
にそれぞれ一対の旋回油圧ンIIンダ13および旋回反
力検出のための荷重変換器14が介装されており1回旋
回油圧ンリンダ13のいずれか一万の伸長と他方の短縮
とで加圧板12はビン]5を中心として旋回駆動されろ
ようVCなっている。
In addition, brackets 11 are integrally provided on both left and right sides of the coaxial moving table 10 and project downwardly.
1, a pressure plate 12 is pivoted freely around a pin 15 which is oriented in the horizontal direction perpendicular to the guide rail 4. A pressure plate 12 is mounted between the coaxial moving table 1o and the front and rear of the pressure plate 12. Each pair of swing hydraulic cylinders 13 and a load converter 14 for detecting swing reaction force are interposed, and when one of the swing hydraulic cylinders 13 is extended by 10,000 and the other is shortened, the pressure plate 12 changes. The VC is driven to rotate around Vin] 5.

また前記油圧シリンダ5.8.13には、同シリンダ5
.8.13の伸縮量?検出する変位検出器が内蔵されて
おり、水平移動台3の水平方向反力検出S−軸方向移動
台10の軸方向変位量7.sおよびビン15暑中心とし
た加圧板12の旋回変位量ysがそれぞれ検出されるよ
うになっている。
Further, the hydraulic cylinder 5.8.13 includes the cylinder 5.
.. 8.13 expansion/contraction amount? A displacement detector is built in to detect the horizontal reaction force of the horizontal moving table 3 - the amount of axial displacement of the axial moving table 107. s and the amount of rotational displacement ys of the pressure plate 12 about the center of the bottle 15 are detected.

なお油圧シリンダは制御装置からの動作電圧によりサー
ボ弁暑動作して制御する。
The hydraulic cylinder is controlled by operating a servo valve using an operating voltage from a control device.

ここで防舷材受衝面に平行な動きを船体の運動方向とは
相対的に防舷材受衝面を動かすことにしているのは試験
機の構造上最良の方法であるからである。
Here, the reason why the fender impact surface is moved parallel to the fender impact surface relative to the direction of movement of the ship is because it is the best method for the structure of the testing machine.

制御11ま試験機と計算機との相互の往復信号の間に介
在し、出力信号をコントロールするものである。すなわ
ぢ計算機からの出力電圧ン試験機の7J[]振振動作の
ための電圧に変換し・また試験機の荷重変換器および変
位検出器からの検出信号乞増幅して電圧信号として計算
機へ出力している。
The control 11 is interposed between the reciprocating signals between the testing machine and the computer, and controls the output signals. In other words, the output voltage from the computer is converted into a voltage for the vibration operation of the testing machine, and the detection signals from the load converter and displacement detector of the testing machine are amplified and sent to the computer as voltage signals. It is outputting.

計算機は種々の外部条件・および船の初期条件乞あらか
じめ入力して記憶しており、船の動きを計算し、tll
の動作に必要な電圧信号を出力する。このとき被試験体
の実際の変位および反力が計算機にフィードバックされ
て船の動きの計算に供せられている。
The computer stores various external conditions and ship's initial conditions, calculates the ship's movement, and calculates the ship's movement.
Outputs the voltage signal necessary for operation. At this time, the actual displacement and reaction force of the test object are fed back to the computer and used to calculate the ship's movement.

表示器は防舷材の反力および計算結果たる船の重心の軌
跡、速度等を表示するものである。
The display displays the reaction force of the fender, the calculated trajectory of the ship's center of gravity, speed, etc.

以上の被試験体、試験機、制御装置および計算機の間の
信号の動さZ第3図゛フロック図に従って順に追ってみ
ると、まず防舷材への接触直後の船の動き7計算機で計
算し、その動きを防舷材の1、z−/方向の変位量Zp
m−ypm−ypmに変換し、ざらにそれ7市用信号V
ix、 Viy、  Viψとして制御装置に出力する
。制御装置ではこの電圧信号Vix、Viy、  Vi
ψ乞試験機の加振台を動作どせろに必要な電圧信号Vi
x・ Viy・ ■1ψに変換して試験機に出力する。
If we follow the above signal movements among the test object, test machine, control device, and computer in order according to the block diagram in Figure 3, we can see that the movement of the ship immediately after contact with the fender 7 is calculated by the computer. , the movement is expressed as the displacement of the fender in the 1, z-/direction Zp
Convert to m-ypm-ypm, roughly it 7 city signal V
It is output to the control device as ix, Viy, and Viψ. The control device uses these voltage signals Vix, Viy, Vi
Voltage signal Vi required to stop the vibration table of the ψ test machine
x・Viy・■Convert to 1ψ and output to the test machine.

試験機では前記電圧信号により加振台が動作し、防舷材
Oま変位量差pm、7pm、ψpmに相当する力を受け
て変形し、その反力を発生ずる。
In the test machine, the vibration table is operated by the voltage signal, and the fender O receives forces corresponding to the displacement differences pm, 7pm, and ψpm, deforms, and generates a reaction force.

このときの加振台の変位量父s、 !ts、 Tsと防
舷材の反力および反力モーメン)Rx、 Ry、 Mf
(pは変位検出器および荷重変換器により検出され、こ
の検出信号V’x、y、■>、E’c、 E′y、E’
は制御装置に出力される。制御装置ではこの検出信号乞
増幅して電圧信号VX、Vy・■ψ、Ex、 Ey、 
Eψとして計算機に出力する。計算機はこの入力電圧信
号Vx、vy、vψ・F2X・EV、Eψを工学値″l
:Ls、、、@s、ψs、Rx、Ry、Mf9)に換算
して検出時刻におけろ船の動きを計算し・ま1:微少時
間Δを後の船の動きを予測演算してこれらσ)演算結果
をもとにして防舷Mの天、f、y方向の変位量Zpm、
 ′tpm、7pm’Y計算しざらに電圧信号Vix、
Viy〜Viψとして制御装置に出力する。この電圧信
号V i x−、V i V、■1ψにより再び同じ動
作が繰り返し行なわれる。この一連の閉じたループの動
作が繰り返し行なわれることによって船の動きが擬似さ
れ、船舶の防舷材への赫岸現象が再現される・この繰り
返し動作は船舶と防舷材が接触開始から離れるまでを行
なう。
The amount of displacement of the vibration table at this time is s, ! ts, Ts and reaction force and reaction moment of fender) Rx, Ry, Mf
(p is detected by a displacement detector and a load converter, and this detection signal V'x, y, ■>, E'c, E'y, E'
is output to the control device. The control device amplifies this detection signal to generate voltage signals VX, Vy・■ψ, Ex, Ey,
Output to the computer as Eψ. The computer converts the input voltage signals Vx, vy, vψ・F2X・EV, Eψ into engineering values ″l
:Ls,...@s, ψs, Rx, Ry, Mf9) to calculate the movement of the ship at the detection time. σ) Based on the calculation results, calculate the displacement Zpm of the fender M in the sky, f, and y directions,
'tpm, 7pm'Y calculation and voltage signal Vix,
It is output to the control device as Viy to Viψ. The same operation is repeated again using the voltage signals V i x-, V i V, 1ψ. By repeating this series of closed-loop operations, the movement of the ship is simulated, and the phenomenon of the ship berthing against the fender is reproduced. - This repeated action causes the ship and the fender to separate from the start of contact. Do the steps up to

次に船の動きを説明する。一般に船の運動6i船体重心
′¥通る船体の慣性主軸(前後、左右、上下)方向の並
進運動3種とその軸回りの回転運動3種の6自由度が考
えられるが接岸の場合は並進運動においては上下方向お
よび回転運動においては前後方向軸間つと左右方向軸回
りの運動は無視できるので結局前後、左右の並進運動と
上下方向軸回りの回転運動の3種の平面内の運動となる
。この3種の運動が結局防舷材に加える圧力方向に相当
することになる。
Next, I will explain the movement of the ship. In general, six degrees of freedom are considered: three types of translation in the directions of the principal axes of inertia (front and back, left and right, up and down) and three types of rotation around these axes, but in the case of berthing, translational movement In the vertical and rotational directions, the longitudinal and horizontal axes and the movements around the horizontal axes can be ignored, so in the end there are three types of in-plane movements: longitudinal and horizontal translational movements, and rotational movements around the vertical axes. These three types of motion ultimately correspond to the direction of pressure applied to the fender.

したがって前記3種の船の運動を第5図に示す3つの座
標系に基いて解析して説明する。
Therefore, the motions of the three types of ships will be analyzed and explained based on the three coordinate systems shown in FIG.

G−ξηψ糸:船体重心Gに固定した船体の慣性主軸ξ
・η方向と沿直軸回りψ o−xYy系 空間固定座標系 F−xy系 :防舷材の無負荷状態での受衝面中心FV
r−固定した座標系でここでは空間固定座標系と平行す
る。
G-ξηψ thread: main axis of inertia ξ of the ship fixed at the ship's center of gravity G
・η direction and around the vertical axis ψ o-xYy system Space-fixed coordinate system F-xy system: Center FV of the impact surface of the fender under no load
r - A fixed coordinate system, here parallel to the spatially fixed coordinate system.

接岸中の船のξ・ η・ψ方向の運転方程式は次式で与
えられる。
The operating equations of the ship in the ξ, η, and ψ directions while berthed are given by the following equations.

(1)式中において M’、Mξ、M、7は船の質量およびξ、η方向句加質
M(t0n□°e克) 工ψ、>Jψは船の慣性モーメントおよび付加慣性モー
メント (ton−sec−m) 1ユ、V\rはξ、η方向速度(Tle c )および
(1) In the equation, M', Mξ, M, 7 are the ship's mass and ξ, η direction clause addition M (t0n□°ekatsu), engineering ψ, > Jψ is the ship's moment of inertia and additional moment of inertia (ton -sec-m) 1 u, V\r is ξ, η direction velocity (Tle c ) and.

方向角速度(/5ea) ☆、÷、トはξ、η方向加速度< 72 >およびse
c ψ方向角加速度(rづ4゜。2) F(ξ、F oyy、M、9.は船に作用する相対流速
による外力のξ〜η方向成分(ton)とψ方向のモー
メン  ト  (t o n −m) P″Wξ、I’ W 77、Mwψは船VC作用する風
圧力のξ、η方向成分(ton、)とψ方向のモーメン
ト(ton−m)Fpay、M c tpc”i船に作
用する波浪による定常力のη方向成分(ton)とその
ψ方向モーメン)(ton−m)Rξ、Rη、M(pc
′i船に作用する防舷材の反力のξ、η方向成分(to
n)とその反力によるψ方向モーメント(ton・−m
) ここで潮流、風、および波による外力C:i比較的に短
かい接岸時間内では定常とみなしてより、一般的に次式
で求まる。
Directional angular velocity (/5ea) ☆, ÷, ξ, η direction acceleration <72> and se
c Angular acceleration in the ψ direction (rzu4°.2) F (ξ, Foyy, M, 9. is the ξ~η direction component (ton) of the external force due to the relative flow velocity acting on the ship and the moment in the ψ direction (t o n -m) P″Wξ, I' W 77, Mwψ are the ξ, η direction component (ton,) of the wind force acting on the ship VC and the moment (ton-m) in the ψ direction Fpay, M c tpc”i ship η-direction component (ton) of the steady force due to waves acting on the wave and its ψ-direction moment) (ton-m) Rξ, Rη, M (pc
'i component of the reaction force of the fender acting on the ship in the ξ and η directions (to
n) and its reaction force in the ψ direction moment (ton・-m
) Here, the external force C: i due to tidal currents, wind, and waves is generally determined by the following formula, assuming that it is stationary within a relatively short berthing time.

M p 9.−F D 7 、X c、      )
・ −−(′+)(2)、(3)、(4)式中において Woは7毎水の単位体積重量(//n13)VClV、
ξは潮流速と船体速度との相対速度とそのξ方rO]成
分(m/sea ) Cξ−〇77・Cψは流圧力係数および流圧カモーメン
ト係数 Sl 、S2は船体の浸水部表面積および側面投影面積
(m′) Lppは船体の垂線間長ご(m) M c ψは船体の旋回抵vL(ton−m)RWは風
圧力の合力 グWは合力RWの作用方向でξ叫(となす角(rad)
Xwは合力RWの作用位置と船体重心Gとの距離(m)
Waは空気の単位体積重量σ011に3)Cwは風力係
数 Vwは風速(m乙。。) S^、SBは船体の水面上正面15よび側面投影面積(
m2) θWは風の方向でξ軸となす角(rad)■(は波の振
@(m) グDは相対式斜角(rad) Ktは波による漂流力係数 XC,は重心Gと船体中心との距離(m)である。
Mp9. -F D 7 , X c, )
・--('+) (2), (3), (4) In the formulas, Wo is 7 per unit volume of water (//n13) VClV,
ξ is the relative velocity between the tidal current speed and the hull speed and its ξ direction rO] component (m/sea) Cξ-〇77・Cψ is the flow pressure coefficient and the flow pressure moment coefficient Sl, S2 is the surface area and side surface of the flooded part of the hull Projected area (m') Lpp is the vertical length of the hull (m) M c ψ is the turning resistance of the hull vL (ton-m) RW is the resultant force of wind force Angle (rad)
Xw is the distance (m) between the position of action of the resultant force RW and the ship's center of gravity G
Wa is the unit volume weight of air σ0113) Cw is the wind force coefficient Vw is the wind speed (m). S^, SB are the projected areas of the front 15 and side surfaces of the hull above the water surface (
m2) θW is the angle between the wind direction and the ξ axis (rad) (is the wave amplitude @ (m), D is the relative oblique angle (rad), Kt is the drifting force coefficient due to waves, XC, is the center of gravity G and the hull It is the distance (m) from the center.

′:J:′r−防舷宵からの反力のξ、η方向成分Rξ
、りおよびその反力にょろψ方向モーメン)Mψは防舷
材の反力のん・?−f方向威分Rx、 By、 Mfy
をξ・η・ψ方向に変換すればよく、次式で求めろこと
ができろ。
′:J:′r-ξ of the reaction force from the fender, η direction component Rξ
, and its reaction force (moment in the ψ direction) Mψ is the reaction force of the fender. −f direction strength Rx, By, Mfy
All you have to do is convert it in the ξ, η, and ψ directions, and you can find it using the following formula.

(5)式中において 16ま接触点Cと重心Gとの距離(m)鋺は直線0とξ
軸とのなす角(rad)である。
(5) In the formula, 16 is the distance (m) between the contact point C and the center of gravity G.
It is the angle (rad) formed with the axis.

以上が船の運動方程式(1)に必要な要素の解析および
計算式である。
The above are the analysis and calculation formulas for the elements necessary for the ship's equation of motion (1).

よって防舷材の反力RX’ Ry= ’ M f yが
与えられれば船体の初期速度U。、■。、r6により、
また船体の予測速度’ip % Vp、r、により\船
体の加速度も・÷・ンは式(2)、(3)、(4)、(
5)暑(1)式に代入して求めろことができる。
Therefore, if the reaction force of the fender RX' Ry = ' M f y is given, the initial speed of the ship is U. ,■. , r6,
Also, according to the predicted speed of the hull 'ip % Vp, r, the acceleration of the hull is also calculated by formulas (2), (3), (4), (
5) It can be found by substituting it into equation (1).

船体の速度U・■・riま今求めた船体用コ速度ら・÷
、丑を積分することにより求めろことができろ。
The speed of the hull U・■・ri The cospeed for the hull just found Era・÷
, can be found by integrating the ox.

u(t):=−八(t)at、   v(t、)−/’
:(t)dt=    r(t)−/、’r(t)dt
−16)この船体速度u(t)、v(t)、r(t)が
求まればy塵中のある時刻tにおけろ船体重心Gの軌跡
xCf(t)、Ye(t)、ψ(1)は次式より求めろ
ことができる。
u(t):=-8(t)at, v(t,)-/'
:(t)dt=r(t)−/,'r(t)dt
-16) If these hull speeds u(t), v(t), r(t) are found, then at a certain time t during y dust, the trajectory of the ship's center of gravity G xCf(t), Ye(t), ψ (1) can be obtained from the following equation.

(6)、(7)式の積分計算は非線型のため、数値近似
積分により行なうことになる〇 船体重心Gの軌跡xe(t)、Y6(t)、ψ(1)よ
り船体挺触点Cの軌跡XC(t)、Yυ(1)は幾ノ町
学的に次式で求めろことができろ。
Since the integral calculations of equations (6) and (7) are nonlinear, they will be performed by numerical approximation integration. From the locus xe(t), Y6(t), and ψ(1) of the ship's center of gravity G, the ship's contact point The locus of C, XC(t), Yυ(1), can be calculated using the following formula in terms of Ikunomachi.

さらに船体y触点CのX、Y方向速度Vcy・Vcyは
次式によって求めろことかでさる。
Furthermore, the velocity Vcy/Vcy of the hull y contact point C in the X and Y directions can be determined using the following equation.

ここにVx(t)、vy(t)は船体の重心速度のX、
Y方向の速度成分であって次式で与えられるものであろ
O またξいη6は船体固定座標系における船体接触点Cの
位置であって前記l、グ。より次式で与えられろ。
Here, Vx(t) and vy(t) are the velocity of the center of gravity of the ship,
The velocity component in the Y direction is given by the following equation: ξ η6 is the position of the hull contact point C in the hull-fixed coordinate system, and is equal to the above l and g. It is given by the following formula.

ξ<、 = (3c o s〆o1 η、 =lSin
$、 ・−、−−−−([1)よって船体速度U・■、
rと船体の回転ψが与えられれば船体接触点CのX、Y
方向の速度成分が得られろ。
ξ<, = (3cos〆o1 η, =lSin
$, ・−, −−−−([1) Therefore, the hull speed U・■,
If r and the rotation ψ of the hull are given, X, Y of the hull contact point C
Obtain the velocity component in the direction.

以上の演算により船体接触点Cすなわち防舷材σ)船体
との接触点の空間固定座標系を基準にする11σし跡x
し、Ycおよび速度Vc(、VC,Yン得ることができ
ろ。
Based on the above calculation, the point of contact with the ship (C, i.e., the fender σ) is 11σ based on the spatially fixed coordinate system of the point of contact with the ship.
Then, we can obtain Yc and velocity Vc(, VC, Yn.

次に時刻tより微少時間Δを後の船体の動きおよび船体
接触点Cの動き暑予測する方法について説明する。
Next, a method for predicting the movement of the ship and the movement of the ship's contact point C after a short time Δ after time t will be described.

まず船体加速度の予測値u (t+Δt)の計算は種々
i〕方法が考えられるがここでは時刻t−Δtからtま
での加速度の変化乞直線延長して求めろこととする。す
なわち u (を十Δt)=2u(t)一台(を−Δt)・01
1.・・σ2の式によって求めろ。÷(t+Δt) 、
r (t+Δt)も同様とする。1にお船体が防舷材に
接触しL直後σ)予測加速度は直前の加速度をj−目い
Φものとする。
First, there are various methods for calculating the predicted value u (t+Δt) of the hull acceleration, but here we will calculate it by extending the line representing the change in acceleration from time t-Δt to time t. That is, u (10Δt) = 2u(t) 1 unit (−Δt)・01
1. ...Find it using the formula for σ2. ÷(t+Δt),
The same applies to r (t+Δt). 1, the hull comes into contact with the fender, and immediately after L σ), the predicted acceleration is the acceleration immediately before the j-th dimension Φ.

船体加速度の予測値も(を十Δt) 、v (を十Δt
)富(t−1−Δt)tこのようにして求めればあと、
船体速度の予測値u (t+Δt) 、v (t+Δt
) 、r (を十Δt)は(6)式により、船体重心の
軌跡の予測値X、(を十Δt) −Y 、 (を十Δt
)、y(t+Δt)は(7)式により、そして船体接触
点Cの動。
The predicted value of the hull acceleration is also (10Δt), v (10Δt)
) Wealth (t-1-Δt)t If you find it in this way, then
Predicted values of hull speed u (t+Δt), v (t+Δt
), r (10Δt) is the predicted value of the trajectory of the ship's center of gravity X, (10Δt) −Y, (10Δt
), y(t+Δt) is determined by equation (7), and the movement of the hull contact point C.

跡の予測値x 、 (を十Δt)、Yc(t+Δt)は
(8)式によ(′)、′Eた船体接触点CのX、Y方向
速度のT測値V Q X(t+Δt) 、V (、y 
(を十Δt)は(9)、住0.Qυ式に」ニリ用口吹求
めることができる。
The predicted value of the track x, (10Δt), Yc(t+Δt) is calculated from equation (8) by (′),′E, and the measured T value of the velocity in the X and Y directions of the hull contact point C is V Q X(t+Δt) ,V(,y
(10Δt) is (9), and 0. You can find the mouth blow for Nili using the Qυ formula.

ここて以上σ)演算結果の中で試験機を動作ぎせ、/、
)ためπ必彎/f要素ン抽出してみると・時刻tにおけ
ろ船体Jz触点0 (7) (3z gxc、(t)、
Y、(t) オ、J: (Q(t)ソして(H;+r刻
t+Δtにおける船体接触点Cの位置の予測値xc(t
モΔt) 、Yc (を十Δt) 、J (を十Δt)
とその予測法f V CX (t + J t ) 、
V c Y (t+Δt) 、7” (を十Δt)であ
る。
σ) Operate the test machine within the calculation results, /,
), so when extracting the π required curve/f element, at time t the hull Jz contact point 0 (7) (3z gxc, (t),
Y, (t) O, J: (Q(t) and (H;+r interval t+Δt predicted value xc(t
Mo Δt), Yc (10Δt), J (10Δt)
and its prediction method f V CX (t + J t ),
V c Y (t+Δt), 7” (10Δt).

ざらに実際の変位を検出した値″11−s、 、@s、
 fsがあり・コレラσ)値乞もとQて試験i乞動作ぎ
せる変位f:’CI T’ ”” 2 p”” f T
’ ” Y求めることになる。
Roughly detected value of actual displacement ``11-s, , @s,
There is fs/Cholera σ) Displacement f that causes begging Q and test i: 'CI T' ”” 2 p”” f T
'''Y will be asked.

ここで記号ヲi′aj略化して時刻tにおける船体接触
点(Nの位i1を欠・7・fとし〜時刻を十Δtにおげ
/、)接触点Cの位Itおよび速度の予測値乞ズp、y
p・′f’Pオ、J二びvc、 p−vcyp−ipト
装き換えチオ〈。
Here, the symbol ゲi'aj is abbreviated to the ship body contact point at time t (N position i1 is omitted, 7, f ~ time is set to 10Δt/,), and the predicted value of the position It of contact point C and the speed. beggar p,y
p・'f'Po, J2bivc, p-vcyp-ipto replacement thio〈.

まず時刻上におりる位置工、7−fと実際の変位″l:
l−s、 、j/ s= ’j’ sの差Δ711−(
−美−Xs) 、Δ!<=7−、@s)、Δア<−y−
ゾS)を変位予測値寿4k、分に補正値として1Jll
算して差% (−・、%+コ又)Jp  (−j(、十
ΔV) 、’J’i <−ゾf+j%)7r計算する。
First, the positioning work that falls on the time, 7-f and the actual displacement ``l:
l-s, , j/s='j' s difference Δ711-(
-Beauty-Xs), Δ! <=7-, @s), Δa<-y-
zoS) as a displacement prediction value of 4k, and a correction value of 1Jll.
Calculate the difference % (-., % + Komata) Jp (-j (, 1 ΔV), 'J'i <-zof+j%) 7r.

この値ビ基準にΔを時間後vcVc、XglΔC1V*
(f’iΔし、f AAjだ(、ツの変化を受けろよう
に順次出方するよう(・こする。すなわち試験機を動作
させる変位271 考慮すると0.1秒程度が望ましい。
After time Δ based on this value Bi reference vcVc, XglΔC1V*
(f'iΔ and f AAj(, rub) so that they appear sequentially to receive the changes in (・rubbing. In other words, considering the displacement 271 for operating the test machine, about 0.1 seconds is desirable.

以上の演算過程の系統図を第4図に示す。A system diagram of the above calculation process is shown in FIG.

実際に船舶が防舷Viに接触してから離れるまでの現象
を′擬似再現する場合においてあらかじめ計算機に初期
条件として入力しておく要素は船の動きについては船体
の防舷イオに接触する直前の速度μO%11O%らと船
体重心Gと防舷イオの接触点Cとの距iv iおよび接
触点Cのξ軸からの角度ダ。があり、その他船の形状に
よる要素、海水の性質、潮流、風力および波の性質の要
素が存在する。
When actually reproducing the phenomenon from when a ship contacts the fender Vi to when it leaves the fender Vi, the elements that should be entered into the computer as initial conditions are: The speed μO%11O%, etc., the distance between the ship's center of gravity G and the contact point C of the fender Io, and the angle da of the contact point C from the ξ axis. There are other factors such as the shape of the ship, the nature of seawater, tidal currents, wind power, and wave properties.

不試験装置により船舶が防舷材に接触してからある時間
までの船体重心の動き、船体速度および防舷イでの反力
等の一例を第6図に示す。
Figure 6 shows an example of the movement of the ship's center of gravity, the speed of the ship, and the reaction force on the fender up to a certain time after the ship came into contact with the fender using the untested equipment.

こσ)例の如く船舶の接岸時から時々刻々と変化すイ)
船の動きおよび防舷材の変形反力等を室内に擬似再現で
きろことからより実体に沿った防舷茗の評価が酊能であ
る。
(σ) As usual, it changes from moment to moment from the time the ship berths (a)
Since it is possible to simulate the ship's movement and the deformation reaction force of the fender indoors, it is better to evaluate the fender in a more realistic manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試験機の正面図、第2図は試験機の側面図、第
3図は試験装置フロック図、第4図は演算過程の概略系
統図、第5図は船体と防舷材の動きの一例、第6図は不
試験機による結果の一例である。 1・・・防舷材、2・・・試験機、3・・・水平移動台
、4・・・ガイドレール、5・・・前後油圧シリンダ、
6・・・前後方向荷重変換器、7・・・架台、8・・・
軸方向M■Iffンリンダ・9・・・軸方向荷重変換器
、10・・・軸方向移動台・11・・ブラケット、12
・・・加圧板、13・・・旋回油圧ンリンダ・14・・
旋回荷重変換器、15・・・ビン。 代理人 弁理士 江 原   望 外1名 黒1 図 第3図 二一
Figure 1 is a front view of the test machine, Figure 2 is a side view of the test machine, Figure 3 is a block diagram of the test equipment, Figure 4 is a schematic system diagram of the calculation process, and Figure 5 is a diagram of the hull and fender. An example of the movement, FIG. 6, is an example of the results obtained by an untested machine. 1... Fender, 2... Test machine, 3... Horizontal moving platform, 4... Guide rail, 5... Front and rear hydraulic cylinders,
6... Front-back direction load converter, 7... Frame, 8...
Axial direction M■Iff cylinder・9...Axial load converter, 10...Axial direction moving table・11...Bracket, 12
...Pressure plate, 13...Swivel hydraulic cylinder, 14...
Swing load converter, 15...bin. Agent Patent attorney Nozomi Ehara 1 person Kuro 1 Figure 3 Figure 21

Claims (1)

【特許請求の範囲】[Claims] 防舷材の受衝面に対し直角な圧縮方向と同受衝面に沿っ
た剪断方向と同剪断方向に対し直角な軸方向の反力とを
検出する変位検出器に荷重変換器同検出器の検出信号を
基にし船舶が前記防舷材に緩衝されつつ接岸する運動を
演算しざらにこれより微少時間経過後の前記船舶の運動
を演算する計算機と、この演算結果に従って前記加圧部
材ビ駆動ぎぜるように前記試験機を制御ずろ制御装置と
よりなること乞特徴とする防舷材の試験装置。
A load transducer is used as a displacement detector that detects the compression direction perpendicular to the impact surface of the fender, the shear direction along the same impact surface, and the reaction force in the axial direction perpendicular to the shear direction. a computer that calculates the movement of the ship as it approaches the berth while being buffered by the fender based on the detection signal of the ship; and a computer that calculates the movement of the ship after a minute elapsed time; A testing device for fender materials, characterized in that the testing device is comprised of a control device for controlling the driving force.
JP3296983A 1983-03-02 1983-03-02 Fender testing apparatus Granted JPS59159047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3296983A JPS59159047A (en) 1983-03-02 1983-03-02 Fender testing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3296983A JPS59159047A (en) 1983-03-02 1983-03-02 Fender testing apparatus

Publications (2)

Publication Number Publication Date
JPS59159047A true JPS59159047A (en) 1984-09-08
JPH0464020B2 JPH0464020B2 (en) 1992-10-13

Family

ID=12373728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3296983A Granted JPS59159047A (en) 1983-03-02 1983-03-02 Fender testing apparatus

Country Status (1)

Country Link
JP (1) JPS59159047A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543076A (en) * 2012-07-13 2014-01-29 广州海宁橡胶有限公司 Method for testing shear compression performance of rubber fender
CN103543004A (en) * 2012-07-13 2014-01-29 广州海宁橡胶有限公司 Method for testing oblique compression performance of rubber fender
CN108168607A (en) * 2017-12-21 2018-06-15 同济大学 Rubber fender outer surface integrity detection device
CN110646304A (en) * 2019-11-11 2020-01-03 姚帅锋 Automobile fender production strength detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543076A (en) * 2012-07-13 2014-01-29 广州海宁橡胶有限公司 Method for testing shear compression performance of rubber fender
CN103543004A (en) * 2012-07-13 2014-01-29 广州海宁橡胶有限公司 Method for testing oblique compression performance of rubber fender
CN108168607A (en) * 2017-12-21 2018-06-15 同济大学 Rubber fender outer surface integrity detection device
CN110646304A (en) * 2019-11-11 2020-01-03 姚帅锋 Automobile fender production strength detection device
CN110646304B (en) * 2019-11-11 2020-09-11 新昌县维斯机械有限公司 Automobile fender production strength detection device

Also Published As

Publication number Publication date
JPH0464020B2 (en) 1992-10-13

Similar Documents

Publication Publication Date Title
US7086293B2 (en) Method for monitoring a machine and such a machine, particularly a robot
Jilin et al. Further experimental investigations on the failure of clamped beams under impact loads
JP4166293B2 (en) Vehicle collision detection device
Noureddine et al. Computer modeling and validation of a hybrid III dummy for crashworthiness simulation
JP2019191041A (en) Testing condition setting method of automobile collision simulation test and testing condition setting system of automobile collision simulation test
Lewison et al. On the cushioning of water impact by entrapped air
CN106644377A (en) Basin test device and method for wave-resistant capability full-aircraft power-free model of water surface aircraft
JPS59159047A (en) Fender testing apparatus
KR20200042871A (en) Integrated testing apparatus for a self balancing robot
JPH05281096A (en) Railway rolling stock testing apparatus and method thereof
Galeotti et al. Servo actuated railway pantograph for high-speed running with constant contact force
Kerrigan et al. Test methodology and initial results from a dynamic rollover test system
JP4141353B2 (en) Vehicle collision simulation program and device
CN113176064B (en) Temperature control-based safety comprehensive test system and method for vehicle power battery box
Melvin et al. A biomechanical face for the Hybrid III dummy
Patrick et al. Impact dynamics of unrestrained, lap belted, and lap and diagonal chest belted vehicle occupants
Aekbote et al. A new component test methodology concept for side impact simulation
CN113588911A (en) Solid propellant acoustic resonance mixed safety state evaluation method and online monitoring system
Wang et al. The controlled impact of elastic plates on a quiescent water surface
Li et al. Design and simulation analysis of 6-DOF electric platform
Robbins et al. Predictions of mathematical models compared with impact sled test results using anthropometric dummies
Janssen et al. Biofidelity of the European side impact dummy—EUROSID
JP2851177B2 (en) Mass body collision simulation test method and apparatus
Kang et al. Air bag loading on in-position Hybrid III dummy neck
Naab Performance Repeatability of the SA106C Six-Year-Old Child Test Dummies