JPS59158533A - Method of measurement of impurity - Google Patents

Method of measurement of impurity

Info

Publication number
JPS59158533A
JPS59158533A JP3099383A JP3099383A JPS59158533A JP S59158533 A JPS59158533 A JP S59158533A JP 3099383 A JP3099383 A JP 3099383A JP 3099383 A JP3099383 A JP 3099383A JP S59158533 A JPS59158533 A JP S59158533A
Authority
JP
Japan
Prior art keywords
insulating film
measurement
semiconductor single
galium
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3099383A
Other languages
Japanese (ja)
Inventor
Fumio Ichikawa
市川 文雄
Kosuke Uchiho
打保 皓右
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP3099383A priority Critical patent/JPS59158533A/en
Publication of JPS59158533A publication Critical patent/JPS59158533A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable to measure the quantity of movable ions located in an insulating film by a method wherein, after an insulating film has been formed on a semiconductor single cyrstal, galium is dissolved on the insulating flim, subsequently galium is heated up, and the voltage and the current characteristics between galium and the semiconductor crystal are measured. CONSTITUTION:An insulating film 12 is formed on a semiconductor single crystal 11 of Si and the like. Then, Ga 13 is placed thereon, the Ga 13 is dissolved by heating it up as a sample to approximately 250 deg.C on a wafer probe, and a TVS measurement is performed by bringing a probe 14 to be used for voltage-current measurement to come in contact with the Ga 13 using the Ga 13 as an electrode in MOS structure. The electrode area necessary for calculatin of movable ions can be calculated from the background composition IB of current.

Description

【発明の詳細な説明】 (技術分野) この発明は、測定用の試料作成工程なしにMOS構造の
絶縁膜中に含まれる可動イオン量を測定す従来のMOS
構造での絶縁膜中の可動イオン測定法としての、TVS
測定に於ける試料の構造を第1図に示す。TVS法とは
、Triangie Voltage Sweep法の
略で、三角波を印加して、可動イオンによる電位電流の
パルス状の波形を取p出し、その面積よりイオン量を求
め乙可動イオン測定方法である。
Detailed Description of the Invention (Technical Field) The present invention relates to a conventional MOS device that measures the amount of mobile ions contained in an insulating film of a MOS structure without a sample preparation process for measurement.
TVS as a method for measuring mobile ions in insulating films in structures
Figure 1 shows the structure of the sample used in the measurement. The TVS method is an abbreviation for the Triangie Voltage Sweep method, and is a mobile ion measurement method in which a triangular wave is applied, a pulsed waveform of a potential current caused by mobile ions is extracted, and the amount of ions is determined from the area thereof.

すなわち、第1図に示すように、250℃以上の高温で
MOSに印−D口するバイアスを正から負にランプ走査
を行い、電圧の極性が変化する際、絶縁膜2中の可動イ
オンが5il−絶縁膜2の界面より絶縁膜2−電極3の
界面へ移動するときの変位電流として測定することによ
p1可動イオン量を求めるものである。
That is, as shown in FIG. 1, the bias applied to the MOS is ramp-scanned from positive to negative at a high temperature of 250° C. or higher, and when the polarity of the voltage changes, the mobile ions in the insulating film 2 The amount of p1 mobile ions is determined by measuring the displacement current when moving from the 5il-insulating film 2 interface to the insulating film 2-electrode 3 interface.

したがって、TVSの測定には、MOS構造が必要であ
り、たとえばSi上に5in2形成後電極形成工程が必
要となる。
Therefore, a MOS structure is required for TVS measurement, and an electrode formation step is required after forming 5in2 on Si, for example.

電極形成は、一般に真空中で電子ビーム蒸着やスパッタ
蒸着により、SiO□上に全面届などの金属を形成し、
その後ホトリソ、エツチング工程により、任意の形状、
面積を有する電極が形成される。
Electrode formation generally involves forming a metal layer on the entire surface of SiO□ by electron beam evaporation or sputter deposition in a vacuum.
After that, photolithography and etching processes are used to create any desired shape.
An electrode having an area is formed.

このように、電櫨形成には、いくつかの工程が必要であ
るため、その間、ナトリウム(Na)などの可動イオン
が8102中に混入し、実際に5j02 中に含まれて
い/と量に対する誤差要因となっていた。
As described above, since several steps are required for the formation of the electric wire, mobile ions such as sodium (Na) are mixed into the 8102 during the process, and there is an error in the amount actually contained in the 5j02. This was a contributing factor.

(発明の目的) この発明は、これらの欠点を除去するためになされたも
ので、複雑な試料作成工程を経ず、半導体単結晶上の絶
縁膜中に含まれる可動イオン量を4易に測定でき、5i
LSIでのプロセス評価法として利用できる不純物の測
定方法を提供することを目的とする。
(Purpose of the invention) This invention was made to eliminate these drawbacks, and it is possible to easily measure the amount of mobile ions contained in an insulating film on a semiconductor single crystal without going through a complicated sample preparation process. Yes, 5i
The purpose of this invention is to provide a method for measuring impurities that can be used as a process evaluation method for LSI.

(発明の構成) この発明の不純物の測定方法は、半導体単結晶上の絶縁
膜形成後、ガリウム(Ga)をこの絶縁膜上で熔解させ
、その後ガリウムを加熱してガリウムと半導体単結晶間
の電圧、電流特性を測定することにより絶縁膜中の可動
イオン量を測定するようにしたものである。
(Structure of the Invention) The method for measuring impurities of the present invention is to melt gallium (Ga) on the insulating film after forming an insulating film on a semiconductor single crystal, and then heat the gallium to create a bond between the gallium and the semiconductor single crystal. The amount of mobile ions in the insulating film is measured by measuring voltage and current characteristics.

(実施例) 以下、この発明の不純物の測定方法の実施例について図
面に基づき説明する。第2図(a)〜第2図(c)はそ
の一実施例を説明するための図であり、まず、第2図(
a)に示すように81などの半導体単結晶11上に絶縁
膜12を形成する。
(Example) Hereinafter, an example of the method for measuring impurities of the present invention will be described based on the drawings. FIGS. 2(a) to 2(c) are diagrams for explaining one embodiment of the present invention.
As shown in a), an insulating film 12 is formed on a semiconductor single crystal 11 such as 81.

次に、第2図(b)のように、絶縁膜12上に室温にて
ガリウムぐ以下Gaと云う)13を約10キのせる。
Next, as shown in FIG. 2(b), approximately 10 kg of gallium (hereinafter referred to as Ga) 13 is placed on the insulating film 12 at room temperature.

次に、第2図(c)に示すように、試料としてのGa】
3の温度をウェハープロパー上で約250℃に上昇させ
、Ga1.3を熔解させ、Ga13をMO8構造での電
極として、電圧〜電流測定用の探針14をGa13に接
触させることによシ、TVS測定を行う。
Next, as shown in FIG. 2(c), Ga]
By raising the temperature of 3 to about 250°C on the wafer proper to melt Ga1.3, using Ga13 as an electrode in the MO8 structure, and bringing the probe 14 for voltage to current measurement into contact with Ga13, Perform TVS measurement.

第3図は、この発明でのTVS測定の例を示す。FIG. 3 shows an example of TVS measurement according to the present invention.

可動イオンを求めるための電極面積は、電流のバックグ
ラウンド成分IBから容易に求めることができる0 以上のように、この発明では、面倒な従来の電極形成工
程が省略でき、かつその間での汚染の影響がなくなるた
め、精度良く絶縁膜12中の可動イオン量を測定するこ
とができる。
The electrode area for determining the mobile ions can be easily determined from the background component IB of the current. Since the influence is eliminated, the amount of mobile ions in the insulating film 12 can be measured with high accuracy.

(発明の効果) 以上のように、この発明の不純物の測定方法によれば、
半導体単結晶上の絶縁膜形成後Gaをこの絶縁膜上で熔
解させ、その後ガリウムを加熱してガリウムと半導体単
結晶間の電圧・電流特性を測定することにより、絶縁膜
中の可動イオン量を測定するようにしたので、複雑な試
料作成工程を経ず、5iotなどの絶縁膜中の可動イオ
ン量が測定できる。これにより5iLSIでのプロセス
評価法として利用することができる。
(Effect of the invention) As described above, according to the method for measuring impurities of the present invention,
After forming an insulating film on a semiconductor single crystal, we melted Ga on the insulating film, then heated the gallium, and measured the voltage and current characteristics between the gallium and the semiconductor single crystal to determine the amount of mobile ions in the insulating film. Since the measurement is carried out, the amount of mobile ions in an insulating film such as 5iot can be measured without going through a complicated sample preparation process. This allows it to be used as a process evaluation method for 5iLSI.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の可動イオン測定用試料の構造を示す断面
図、第2図(a)〜第2図(、)は、それぞれこの発明
の不純物の測定法の一実施例を説明するための図、第3
図は、この発明の不純物の測定法によるTVSの測定結
果を示す図である。 11・・・半導体単結晶、12・・・絶縁膜、13・・
・Ga。 14・・・測定用探針。 手続補正書 昭和58年10月1.9日 特許庁長官若 杉 和 夫殿 ■、小事件表示 昭和58年 特 許 願第30993   号2、発明
の名称 不純物の測定方法 3、補正をする者 事件との関係    特 許  出願人(029)沖電
気工業株式会社 4、代理人 5、  r+li正命令の日付  昭和  年  月 
 日(自発)6、補正の対象 明細壱の発明の詳細な説明の欄 7、補正の内容 1)  F3A細橘1頁末惰「パルス状の」を削除する
FIG. 1 is a cross-sectional view showing the structure of a conventional sample for measuring mobile ions, and FIGS. Figure, 3rd
The figure is a diagram showing the results of TVS measurement using the impurity measurement method of the present invention. 11... Semiconductor single crystal, 12... Insulating film, 13...
・Ga. 14...Measurement probe. Written amendment dated October 1, 1980, Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office■, Minor case indication, Patent Application No. 30993 of 1982 2, Title of invention Method for measuring impurities 3, Person making amendment case Relationship with Patent Applicant (029) Oki Electric Industry Co., Ltd. 4, Agent 5, Date of r+li positive order Month, Showa
Day (spontaneous) 6, Detailed explanation of the invention column 7 of Specification subject to amendment 1, Contents of amendment 1) Delete "pulse-like" at the end of page 1 of F3A Hoso Tachibana.

Claims (1)

【特許請求の範囲】[Claims] 半導体単結晶上に絶縁膜形成後、ガリウムをこの絶縁膜
上で熔解させ、その後このガリウムを加熱してガリウム
と半導体単結晶間の電圧電流特性を測定することにより
」記絶縁膜中に含まれる可動イオン量を測定することを
特徴とする不純物の測定方法。
After forming an insulating film on a semiconductor single crystal, gallium is melted on this insulating film, and then the gallium is heated and the voltage-current characteristics between the gallium and the semiconductor single crystal are measured. A method for measuring impurities characterized by measuring the amount of mobile ions.
JP3099383A 1983-02-28 1983-02-28 Method of measurement of impurity Pending JPS59158533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3099383A JPS59158533A (en) 1983-02-28 1983-02-28 Method of measurement of impurity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3099383A JPS59158533A (en) 1983-02-28 1983-02-28 Method of measurement of impurity

Publications (1)

Publication Number Publication Date
JPS59158533A true JPS59158533A (en) 1984-09-08

Family

ID=12319123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3099383A Pending JPS59158533A (en) 1983-02-28 1983-02-28 Method of measurement of impurity

Country Status (1)

Country Link
JP (1) JPS59158533A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224355A (en) * 1988-12-21 1990-09-06 American Teleph & Telegr Co <Att> Measurement of concentration of movable ions in semiconductor device
JP7177971B1 (en) * 2022-05-02 2022-11-24 株式会社東陽テクニカ Physical property measuring method, physical property measuring system, and physical property measuring element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224355A (en) * 1988-12-21 1990-09-06 American Teleph & Telegr Co <Att> Measurement of concentration of movable ions in semiconductor device
JP7177971B1 (en) * 2022-05-02 2022-11-24 株式会社東陽テクニカ Physical property measuring method, physical property measuring system, and physical property measuring element
WO2023214455A1 (en) * 2022-05-02 2023-11-09 株式会社東陽テクニカ Physical property measurement method, physical property measurement system, and element for physical property measurement

Similar Documents

Publication Publication Date Title
Koenig et al. The low temperature electrical conductivity of n-type germanium
Burkhardt Tracer Evaluation of Hydrogen in Steam‐Grown SiO2 Films
JPS5916970A (en) Method for detecting and controlling evaporation amount of evaporation material in ion plating
JP5759425B2 (en) Quality evaluation method of target assembly used for forming thin film for semiconductor layer of thin film transistor
JPS59158533A (en) Method of measurement of impurity
Dalven et al. Energy Gap in β− Ag 2 Te
Hooper et al. The electrical properties of zinc diffused indium phosphide
Peck et al. The Hall Effect in Semiconducting Glasses
SU1702280A1 (en) Method of manufacturing fluoride-selective electrode membrane
US3912483A (en) Method of making a magnetic head
Nenadović et al. Some characteristic properties of NiCr thin films
Davies et al. Lead in holmium iron garnet films grown from fluxed melts by liquid phase epitaxy
JP3401731B2 (en) Charge measurement method
JPS63283176A (en) Josephson device
JP2904146B2 (en) Method for measuring impurities using secondary ion mass spectrometry
JPH0453268B2 (en)
JP3287317B2 (en) How to make an analysis sample
Sole et al. Electronic structure and the stability of inorganic cyanamides
JPH02238646A (en) Measurement of impurities in semiconductor
Craig The Hall effect in bismuth with low magnetic fields
JPS5950092B2 (en) Method of electroplating semi-insulating semiconductor material surfaces
DiGiacomo Microprobe Technique for Determination of Thickness and Phosphorous Concentration of Gate Oxide Phosphosilicate Glass in FET Devices
SU934339A1 (en) Method of detecting the presence of metallic lead in glass solder applied onto substrate at its sintering
SU557698A1 (en) Method for making shf pulse power transducers
JPS6436005A (en) Magnetooptic garnet material