JPS59158061A - Objective lens magnetic pole piece - Google Patents
Objective lens magnetic pole pieceInfo
- Publication number
- JPS59158061A JPS59158061A JP58033606A JP3360683A JPS59158061A JP S59158061 A JPS59158061 A JP S59158061A JP 58033606 A JP58033606 A JP 58033606A JP 3360683 A JP3360683 A JP 3360683A JP S59158061 A JPS59158061 A JP S59158061A
- Authority
- JP
- Japan
- Prior art keywords
- pole piece
- magnetic pole
- sample
- lens
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims description 7
- 238000010894 electron beam technology Methods 0.000 claims description 3
- 230000004075 alteration Effects 0.000 abstract description 18
- 230000005284 excitation Effects 0.000 abstract description 3
- 125000006850 spacer group Chemical group 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- 241001112584 Euripus nyctelius Species 0.000 description 1
- 244000061354 Manilkara achras Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001239 high-resolution electron microscopy Methods 0.000 description 1
- 238000012966 insertion method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/10—Lenses
- H01J37/14—Lenses magnetic
- H01J37/141—Electromagnetic lenses
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は電子顕微鏡等に使用される対物レンズの磁極片
に関づる。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic pole piece of an objective lens used in an electron microscope or the like.
高分解能電子顕微鏡用の対物レンズ磁極片の形。Objective lens pole piece shape for high-resolution electron microscopy.
状としては狭いギャップと5小さい穴径を有するものが
古くから知られていたが、このようにギャップ、穴径共
に小さくすると試料の挿入が困難になり、実用的に問題
があった。そこで、この難点を解決するために上磁極片
の穴径を下磁極片の穴径のそれに比し大きくした、所謂
非対称レンズが開発されトップエントリー型試料挿入方
式に使用されている。しかし乍ら、試料の挿入法は前記
トップエントリーに限らず、試料をレンズギャップの横
方向から挿入するサイドエントリー型も広く採用されて
おり、該サイドエントリーに対しては試料ホルダーの挿
入を可能にするたりギャップを広げたレンズが使用され
ている。しかし、広いギャップを有するレンズは狭いギ
ャップのレンズに比較して球面収差係数O3が人きく、
2n1m以下の1ノンズを作ることは甚だ困難で、従っ
て高分解能の電子顕微鏡像が得られなくなる。而して、
球面収差係数Csを小さくするレンズとして従来提案さ
れているものの1つにピンホールレンズがある。It has long been known to have a narrow gap and a small hole diameter, but when both the gap and the hole diameter are made small, it becomes difficult to insert the sample, which poses a practical problem. In order to solve this problem, a so-called asymmetric lens, in which the hole diameter of the upper magnetic pole piece is made larger than that of the lower magnetic pole piece, has been developed and is used in the top entry type sample insertion method. However, the method of inserting the sample is not limited to the above-mentioned top entry method; the side entry method, in which the sample is inserted from the side of the lens gap, is also widely used, and it is possible to insert a sample holder into the side entry. A lens with a wider gap is used. However, a lens with a wide gap has a higher spherical aberration coefficient O3 than a lens with a narrow gap.
It is extremely difficult to make 1-nons with a size of 2n1m or less, and therefore high-resolution electron microscope images cannot be obtained. Then,
A pinhole lens is one of the lenses that have been proposed to reduce the spherical aberration coefficient Cs.
該レンズは上磁極片の穴径を下磁極片の穴径に対して著
しく小さくしたものであるが、このように小さい穴径を
有する上磁極片の穴径を更に小さくすることはレンズの
機械加工上難点が多く、レンズ全体のディメンジョンが
元々大きい場合を除き実用できない。又、該レンズは防
磁コイルが試料位置に対して上下に分割されているため
、最近のようにX線分析装置等が付設される分析電子顕
微鏡には利用できない。In this lens, the hole diameter of the upper magnetic pole piece is made significantly smaller than that of the lower magnetic pole piece, but it is difficult to make the hole diameter of the upper magnetic pole piece even smaller, which has such a small hole diameter. There are many difficulties in processing, and it is not practical unless the overall dimension of the lens is originally large. Furthermore, since the magnetic shielding coil of this lens is divided into upper and lower sections with respect to the sample position, it cannot be used in recent analytical electron microscopes that are equipped with an X-ray analyzer or the like.
本発明者は上記点に鑑み、種々な条件の下で試料を横方
向から挿入する型のレンズの球面収差係数及び色収差係
数を小さくし得るレンズ磁極片の形状を提案した。以下
そのレンズについて説明する。In view of the above points, the present inventor has proposed a shape of a lens pole piece that can reduce the spherical aberration coefficient and chromatic aberration coefficient of a lens into which a sample is laterally inserted under various conditions. The lens will be explained below.
先ず第1図に示すような励磁コイルが試料位置の下方に
のみ存在するような実用的な対物レンズに関し、実用上
の条件を検討した。図中、1は対物レンズのヨークであ
り、該ヨークの内部には励磁コイル2が収納しである。First, we examined the practical conditions for a practical objective lens in which an excitation coil exists only below the sample position, as shown in FIG. In the figure, 1 is a yoke of an objective lens, and an excitation coil 2 is housed inside the yoke.
、前記ヨークの上方にはスペーサ3によって一体化され
た上磁極片4と下1極片5が磁気的に接続されている。Above the yoke, an upper magnetic pole piece 4 and a lower magnetic pole piece 5, which are integrated by a spacer 3, are magnetically connected.
6は試料であり、該試料はレンズヨークの穴を介して光
軸に対して直角な方向から挿入される。Reference numeral 6 denotes a sample, which is inserted through a hole in the lens yoke from a direction perpendicular to the optical axis.
斯かるレンズの実用的条件の第1は上下磁極片の間隔S
である。現在実用されている試料ホルダー7の厚さは2
mm〜3mmであり、これを第2図に示すように±15
°程度傾斜し、しかも該試料ホルダーの下方に絞り8の
挿入も考慮した場合、前記磁極間隔Sは最低5mm程度
は必要となる。The first practical condition for such a lens is the distance S between the upper and lower magnetic pole pieces.
It is. The thickness of the sample holder 7 currently in use is 2
mm to 3 mm, and this is ±15 as shown in Figure 2.
If the sample holder is tilted at an angle of about .degree., and the aperture 8 is also inserted below the sample holder, the magnetic pole spacing S needs to be at least about 5 mm.
第2は試料位置Zoである。電子顕微鏡においてはコン
トラストをつけるために試料の下方に絞りを挿入しなけ
ればならない。従って、前記第1の条件で確保した磁極
間隔S内に試料を挿入する場合、試料を保持したボルダ
−は絞りのスペース分だけ上方に配置されることになり
、試料位置は必然的に磁極間隙の中心より幾分上(Zo
>o>に置かれることになる。The second is the sample position Zo. In an electron microscope, an aperture must be inserted below the sample to provide contrast. Therefore, when inserting a sample within the magnetic pole spacing S secured under the first condition, the boulder holding the sample will be placed above the aperture space, and the sample position will inevitably be within the magnetic pole spacing. Somewhat above the center of (Zo
It will be placed in >o>.
第3は両磁極片側面の光軸となづ角度くテーパー角)θ
である。上vi1極片の角度01が下磁極片の角度θ2
より大きく(θ1〉θ2)ならざるを。The third is the taper angle (the angle at which the optical axis meets the optical axis on one side of both magnetic poles) θ
It is. The angle 01 of the upper pole piece vi1 is the angle θ2 of the lower pole piece
It has to be larger (θ1>θ2).
得ない。もし、θ1とθ2が等しい場合や、θ1に対し
θ2が大きい場合、対物レンズの全長が01〉θ2の場
合に比較して長くなり実用的でなくなる。I don't get it. If θ1 and θ2 are equal, or if θ2 is larger than θ1, the total length of the objective lens will be longer than in the case where 01>θ2, making it impractical.
以上の条件の下で本発明者は経験的に考え得る最良のレ
ンズ形状を設計し、その性能を調べてみた。該レンズの
各部のデメンジョンはs=5mm。Under the above conditions, the present inventor empirically designed the best possible lens shape and investigated its performance. The dimension of each part of the lens is s=5 mm.
θ+=70”、θ2 =60’ 、上下!i磁極片頂面
径D+ 、D2を互いに等しく D = 8 mm、上
下磁極片の穴径b+ 、 bzを互いに等しくb=4m
mとした場合である。M3図は該レンズの性能を示すも
ので、横軸は試料位置Zo(mm)、又縦軸は焦点距離
f o (ml) 、球面収差係数Cs(+t+m)
、色収差係@Cc (mlll)を示しである。核間
から解るように試料位置ZoがZo =0.25mm程
度において、f o =2.1mm、 Cs =1.3
mm、 CG =15mmが達成されており磁極片の形
状として充分に適切であることを示している。θ+=70", θ2=60', upper and lower!i magnetic pole piece top surface diameters D+ and D2 are equal to each other D=8 mm, hole diameters of upper and lower magnetic pole pieces b+ and bz are equal to each other, b=4m
This is the case where m is used. Diagram M3 shows the performance of the lens, where the horizontal axis is the sample position Zo (mm), and the vertical axis is the focal length f o (ml) and the spherical aberration coefficient Cs (+t+m).
, chromatic aberration coefficient @Cc (mllll). As can be seen from the internuclear space, when the sample position Zo is about Zo = 0.25 mm, f o = 2.1 mm, Cs = 1.3
mm, CG = 15 mm, indicating that the shape is sufficiently suitable for the magnetic pole piece.
斯かる磁極頂面径並びに穴径の相互に等しいレンズにお
いで両磁極片の穴径すと該穴径に対する磁極片頂面径り
との一普遍的な関係を追及した。第4図は該穴径がどれ
位が適切かを示すもので、横軸は両磁極片の穴径b、縦
軸はf、)、Cs、Ccを示している。又、S、θ1.
θ2は上記と同一であり、磁極片頂面径りはBmm、つ
まりD/b =2の場合、又電子線の加速電圧■は20
0KVの場合である。核間より焦点距111’o及び色
収差係数CCはbが小さい方が小さく、b=2.5mm
(b =s /2)付近に最小値があり、球面収差係数
O8は逆にbが大きくなる方が小ざくなる傾向に必り、
わが5mm(b =s >付近において最小値を示して
いる。この光学特性図から穴径すは2゜5mll1程度
から4mm程度、即ちb:3mm程度が実用的であるこ
とが解った。In such a lens in which the diameter of the top surface of the magnetic poles and the diameter of the hole are equal to each other, a universal relationship between the hole diameter of both magnetic pole pieces and the diameter of the top surface of the magnetic pole piece with respect to the hole diameter was pursued. FIG. 4 shows the appropriate hole diameter, where the horizontal axis shows the hole diameter b of both magnetic pole pieces, and the vertical axis shows f, ), Cs, and Cc. Also, S, θ1.
θ2 is the same as above, the diameter of the top surface of the magnetic pole piece is Bmm, that is, when D/b = 2, and the acceleration voltage of the electron beam is 20
This is the case of 0KV. From the internuclear distance, the focal length 111'o and the chromatic aberration coefficient CC are smaller as b is smaller, b = 2.5 mm
There is a minimum value near (b = s / 2), and the spherical aberration coefficient O8 tends to become smaller as b becomes larger.
The minimum value is shown in the vicinity of 5 mm (b = s >). From this optical characteristic diagram, it was found that a hole diameter of about 2°5 ml1 to about 4 mm, that is, b: about 3 mm is practical.
一方、D/bに関しては穴径すを最適の3mmに固定し
た場合、該D/bの変化に対して第5図に示すようなC
s 、 Ccの値が得られた。核間からD/bは大きい
方がC3及びCCは小さくなり、D/b=2付近から@
激に低下し、D/bが5〜6の付近でC3=1.2mm
、Cc =1.4mmという極めて良好な結果が得られ
た。そこで、b;3mmにおいてD/bをできるだけ大
きくすれば高分解能対物レンズ磁極片が得られることに
なる。On the other hand, regarding D/b, when the hole diameter is fixed at the optimal 3 mm, C
The values of s and Cc were obtained. From the internuclear side, the larger D/b is, the smaller C3 and CC are, and from around D/b = 2 @
It decreases drastically, and when D/b is around 5 to 6, C3 = 1.2 mm
, Cc = 1.4 mm, which was an extremely good result. Therefore, if D/b is made as large as possible when b is 3 mm, a high-resolution objective lens pole piece can be obtained.
しかし乍ら、上記第5図から解るように球面収差CS及
び色収差CCを小さくするにはD/bを大きくしな(プ
ればならないが、bは3mm程度であることを考えると
D/b=6と云う条件ではDが18mmにもなり磁極片
頂面の直径が大きくなり、それに繋るヨークが大型化す
るという若干の問題を生ずる。However, as can be seen from Fig. 5 above, in order to reduce the spherical aberration CS and chromatic aberration CC, D/b must be increased. Under the condition of =6, D becomes as high as 18 mm, which causes a slight problem in that the diameter of the top surface of the magnetic pole piece becomes large and the yoke connected to it becomes large.
而して、本発明の目的は上記第3図乃至第5図のレンズ
を改良し、磁極片頂面の直径をあまり大ぎくすることな
く球面収差係数C3及び色収差係数CCを小さくできる
サイドエントリー型の対物レンズの磁極片を提供するこ
とにある。Therefore, the object of the present invention is to improve the lenses shown in FIGS. 3 to 5 above, and to provide a side entry type lens that can reduce the spherical aberration coefficient C3 and the chromatic aberration coefficient CC without increasing the diameter of the top surface of the magnetic pole piece too much. The object of the present invention is to provide a magnetic pole piece for an objective lens.
本発明の構成は試料が電子線光軸に対し、直角な方向か
ら挿入されるタイプであって、上磁極片と下磁極片の間
隔Sを5mm以上となし、前記試料がよ・下磁極間隙の
中心より上方に配置され、前記上磁極片のテーパー角θ
1を下磁極片のテーパー角θ2より大きくなしたレンズ
において、上磁極片の穴径をbl、下磁極片の穴径をb
2とし、上磁極パの頂面径をDl、・下磁極片の頂面径
をD2としたとき、Dl <D2 、 [1+ ≦b2
〈Sとなした対物レンズの磁極片に特徴を有する。The configuration of the present invention is of a type in which the sample is inserted from a direction perpendicular to the electron beam optical axis, and the spacing S between the upper magnetic pole piece and the lower magnetic pole piece is 5 mm or more, and the sample is inserted between the upper magnetic pole piece and the lower magnetic pole piece. The taper angle θ of the upper magnetic pole piece is
1 is larger than the taper angle θ2 of the lower magnetic pole piece, the hole diameter of the upper magnetic pole piece is bl, and the hole diameter of the lower magnetic pole piece is b.
2, and the top surface diameter of the upper magnetic pole piece is Dl, and the top surface diameter of the lower magnetic pole piece is D2, then Dl < D2 , [1+ ≦ b2
It is characterized by the magnetic pole pieces of the objective lens, which are made into S.
以下本発明を第6図乃至第9図に基づき説明づる。The present invention will be explained below based on FIGS. 6 to 9.
本発明者は上下磁極片の穴径や頂面径が互いに異なった
レンズ形状にすれば良いのではないかと考え、種々な実
験をした。第6図は該非対称磁極片の各部の符号を示す
もので、blは上磁極片の穴径、b2は下磁極片の穴径
、Dlは上磁極片の頂面径、D2は下磁極片の頂面径を
夫々示しである。他の符号は第2図と同じである。先ず
、最良と思われるb 1=b 2 =3mm、 D2
= 12mmとした場合のDlの変化に対づ゛るfo、
O3、CCの変化を求めた。第7図がその光学特性図
を示すもので、横軸にDlを縦軸にfo、C3,CGを
とっである。核間から解るようにDlが小さくなる程f
o、C3,(、Cの全てが小さくなり、従って上磁極片
の頂面径はできるだけ小ざい方が良いことが解った。The inventor of the present invention thought that it would be good if the hole diameter and top surface diameter of the upper and lower magnetic pole pieces were different from each other, and conducted various experiments. FIG. 6 shows the symbols of each part of the asymmetrical magnetic pole piece, where bl is the hole diameter of the upper magnetic pole piece, b2 is the hole diameter of the lower magnetic pole piece, Dl is the top surface diameter of the upper magnetic pole piece, and D2 is the lower magnetic pole piece. The diameter of the top surface of each is shown. Other symbols are the same as in FIG. First, b 1 = b 2 = 3 mm, D2, which seems to be the best
= fo according to the change in Dl when it is 12 mm,
Changes in O3 and CC were determined. FIG. 7 shows its optical characteristic diagram, in which Dl is plotted on the horizontal axis and fo, C3, and CG are plotted on the vertical axis. As can be seen from the internuclear space, the smaller Dl becomes, the more f
o, C3, (, C are all small, so it was found that it is better to make the top surface diameter of the upper magnetic pole piece as small as possible.
又、上磁極片の頂面径D1と下磁極片の頂面径D2との
関係を示したものが第7図である。核間において横軸は
Dlを縦軸はD2をとり、球面収差係数O3をパラメー
タにしたものである。C31はC5=1.25mmの場
合、C32はC3=1.3II1m〕場合、そしテC8
3はC5=1.35mmの場合である。この図からDl
を小さくし、D2を大きくづる程球面収差係数O3は小
さくなることが解る。そして、図中点線より上側の領域
、即ちDl<D2の関係がある領域が大変に良好な結果
をもたらし、更に2Dl<D2の領域で極めて好結果と
なることも解った。Further, FIG. 7 shows the relationship between the top surface diameter D1 of the upper magnetic pole piece and the top surface diameter D2 of the lower magnetic pole piece. In the internuclear space, the horizontal axis is Dl, the vertical axis is D2, and the spherical aberration coefficient O3 is used as a parameter. C31 is C5=1.25mm, C32 is C3=1.3II1m], then C8
3 is a case where C5=1.35 mm. From this figure, Dl
It can be seen that the smaller D2 is, the smaller the spherical aberration coefficient O3 becomes. It was also found that the region above the dotted line in the figure, that is, the region where Dl<D2, gives very good results, and furthermore, the region where 2Dl<D2 gives very good results.
第9図は第8図で実用的に最良と思われるDlを6mm
5Dzを12m1llとなしてblとb2を変えた場合
のfo、Cs 、 Ccの変化を示づものである。核間
は11′1.4 j’4に対応する図であり、横軸はb
2を、縦軸i、口0.C3,CCを夫々示し・でいる。Figure 9 shows the practically best Dl in Figure 8, which is 6mm.
This figure shows the changes in fo, Cs, and Cc when 5Dz is set to 12ml and bl and b2 are changed. The internuclear figure corresponds to 11'1.4 j'4, and the horizontal axis is b
2, vertical axis i, mouth 0. C3 and CC are shown respectively.
図中、実線はす、=3n+mの場合、点線はbl−2m
mの場合てあり、明らかにblは小J)い方がレンズv
I竹IJ良くなる。従って、b1≦1)2の関係にする
ど艮いことが解る。又、b2に関しては第4図での結論
と同様にb2:3mm程度が良く、且つ該b2は磁極間
隔Sよりも小さい方が良い。In the figure, if the solid line is =3n+m, the dotted line is bl-2m
In the case of m, obviously BL is small J) The smaller the lens v
I Bamboo IJ will get better. Therefore, it can be seen that it is difficult to make the relationship b1≦1)2. As for b2, as with the conclusion in FIG. 4, it is better that b2 is about 3 mm, and that b2 is smaller than the magnetic pole spacing S.
尚、上記第7図乃至第9図におけるデータを得るに際し
、各部のディメンジョンや加速電圧は第3図乃至第5図
の場合と同じである。In obtaining the data in FIGS. 7 to 9, the dimensions and acceleration voltages of each part are the same as in FIGS. 3 to 5.
以上説明したように、本発明では磁極間隔S、試料位置
Zo及び磁極のテーパー角θ1.θ2の実用的な条件下
において、上下磁極片の穴径と頂面径を非対称にし°、
それらに適正な関係を与える′もので、これにより磁極
片頂面の直径を大ぎくすることなく、X線分析装置等の
付設が可能であり且つ従来のトップエントリー型と同程
度の球面収差係数C3及び色収差係数CCが達成でき、
サイドエン1へり1型でも極めて高分解能の電子顕微鏡
像観察か7iJ能な対物レンズ磁極片が得られる。As explained above, in the present invention, the magnetic pole spacing S, the sample position Zo, and the magnetic pole taper angle θ1. Under practical conditions of θ2, the hole diameter and top surface diameter of the upper and lower magnetic pole pieces are made asymmetrical,
This provides an appropriate relationship between them, which allows for the installation of an X-ray analyzer, etc., without increasing the diameter of the top surface of the magnetic pole piece, and also provides a spherical aberration coefficient comparable to that of the conventional top entry type. C3 and chromatic aberration coefficient CC can be achieved,
Even with Side En 1 Edge 1 type, an objective lens pole piece capable of observing extremely high-resolution electron microscope images or 7 iJ can be obtained.
尚、−にKIP 1!加速電圧が200 K Vの場合
のデータであるか、該加速電圧が異なった場合でも傾向
は殆んど同(−7であり、上記穴径す、、b2、頂面径
D+、D2相互の関係の普遍性は成立する。In addition, KIP 1! The data is for when the accelerating voltage is 200 KV, or even when the accelerating voltage is different, the tendency is almost the same (-7, and the above hole diameters, b2, top diameters D+, and D2 are mutually different. The universality of the relationship holds true.
第1図は本発明の前提になる対物レンズの構造を示す図
、第2図乃至第5図は本発明に先立って開発したレンス
゛形状を説明する図、第6図は本発明の非対称レンズの
形状を示づ図、第7図乃至第9図は本発明を説明する図
である。
4:上磁極片
5:下磁極片
6;試料
7:試料ホルダー
8:絞り
、特許出願人
日本電子株式会社
代表者 伊藤 −夫
第2図 1
第3図
−0500,S
−ンZoC物怜)
/134−3
一一→b(笥箆)
第6図
−〉I)+(先筒)
第8図
2 4 6 .5/ρ→Q1 (t
n仇)
323
→妓(tn筑〕FIG. 1 is a diagram showing the structure of the objective lens which is the premise of the present invention, FIGS. 2 to 5 are diagrams explaining the lens shape developed prior to the present invention, and FIG. 6 is a diagram showing the asymmetric lens shape of the present invention. The figures showing the shape and FIGS. 7 to 9 are diagrams for explaining the present invention. 4: Upper magnetic pole piece 5: Lower magnetic pole piece 6; Sample 7: Sample holder 8: Aperture, Patent applicant JEOL Ltd. Representative Ito-O (Fig. 2) 1 Fig. 3-0500, S-N ZoC Materials) /134-3 11 → b (笥箮) Fig. 6-〉I) + (front tube) Fig. 8 2 4 6. 5/ρ→Q1 (t
n enemy) 323 → courtesan (tn chiku)
Claims (1)
イプであって、上磁極片と下磁極片の間隔Sを5mm以
上となし、前記試料が上・下磁極間隙の中心より上方に
配置され、前記上磁極片のテーパー角θ1を下磁極片の
テーパー角θ2より大きくなしたレンズにおいて、上磁
極片の穴径をbl、下磁極片の穴径をb2とし、上磁極
片の頂面径をDl、下磁極片の頂面径をD2としたとき
、Dl <D2 、 b 1≦b2〈sとなしたコトを
特徴とする対物レンズのvi1極片。A type in which the sample is inserted from a direction perpendicular to the electron beam optical axis, the distance S between the upper magnetic pole piece and the lower magnetic pole piece is 5 mm or more, and the sample is placed above the center of the upper and lower magnetic pole gap. In the lens in which the taper angle θ1 of the upper magnetic pole piece is larger than the taper angle θ2 of the lower magnetic pole piece, the hole diameter of the upper magnetic pole piece is bl, the hole diameter of the lower magnetic pole piece is b2, and the top of the upper magnetic pole piece is A vi1 pole piece of an objective lens, characterized in that, where Dl is the surface diameter and D2 is the top diameter of the lower pole piece, Dl < D2 and b 1 < b2 < s.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58033606A JPS59158061A (en) | 1983-02-28 | 1983-02-28 | Objective lens magnetic pole piece |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58033606A JPS59158061A (en) | 1983-02-28 | 1983-02-28 | Objective lens magnetic pole piece |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59158061A true JPS59158061A (en) | 1984-09-07 |
Family
ID=12391125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58033606A Pending JPS59158061A (en) | 1983-02-28 | 1983-02-28 | Objective lens magnetic pole piece |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59158061A (en) |
-
1983
- 1983-02-28 JP JP58033606A patent/JPS59158061A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58169762A (en) | Electron beam device | |
JPH0794299A (en) | Particle optical machine | |
JPS59158061A (en) | Objective lens magnetic pole piece | |
EP0085323B1 (en) | Electromagnetic lens polepiece structure | |
JPS59158060A (en) | Objective lens magnetic pole piece | |
JP4395913B2 (en) | Short-range correction objective lens | |
US6624412B2 (en) | Energy filter | |
JP2000321489A (en) | Image pickup lens | |
JPH09113805A (en) | Finder optical system | |
JPS6341184B2 (en) | ||
JPS63267910A (en) | Light beam scanning lens | |
JPS599842A (en) | Magnetic field type objective lens for magnetic sample observation | |
JPS59214148A (en) | electronic lens | |
JPS6157611B2 (en) | ||
JPH05119274A (en) | Evf lens | |
JPS623542B2 (en) | ||
JPH0545594A (en) | Evf lens | |
JPS58126644A (en) | In-line type electron gun electrode structural body | |
KR830002232B1 (en) | Electronic lens | |
JP2005116365A (en) | Transmission electron microscope equipped with phase plate and lens system for phase plate | |
CN207249228U (en) | For the close-up for aiding in video monitoring pick-up lens image quality to detect | |
JPH09147792A (en) | Omega-type energy filter | |
JPS5927437A (en) | Electron microscope imaging method | |
JPS58184246A (en) | Objective lens for electron beam equipment | |
Kanaya et al. | ELECTRON BEAM TRAJECTORY TRACING BY CAUSTIC AND SHADOW IMAGE |