JPS5915804B2 - Optimal structure manufacturing method using fiber-reinforced materials - Google Patents

Optimal structure manufacturing method using fiber-reinforced materials

Info

Publication number
JPS5915804B2
JPS5915804B2 JP56110427A JP11042781A JPS5915804B2 JP S5915804 B2 JPS5915804 B2 JP S5915804B2 JP 56110427 A JP56110427 A JP 56110427A JP 11042781 A JP11042781 A JP 11042781A JP S5915804 B2 JPS5915804 B2 JP S5915804B2
Authority
JP
Japan
Prior art keywords
fiber
mixture
reinforced
fibers
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56110427A
Other languages
Japanese (ja)
Other versions
JPS5812722A (en
Inventor
哲也 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56110427A priority Critical patent/JPS5915804B2/en
Publication of JPS5812722A publication Critical patent/JPS5812722A/en
Publication of JPS5915804B2 publication Critical patent/JPS5915804B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は繊維強化材料を使用した最適構造物の製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing optimal structures using fiber reinforced materials.

構造物の形状と、それに作用する外力や変位が規制され
た条件下で、構造物の重量或いは材料費を最小にしたり
、或いは、剛性若しくは強度を最大にするという構造物
の最適設計法は理論的に可能であるよしかしながら、こ
れを実現させ得る製造法は、現時点では存在せず、わず
かに繊維強化複合材料によつて不十分な「最適化」が行
われているノこすぎない。
The optimal design method for structures that minimizes the weight or material cost of the structure or maximizes its rigidity or strength under conditions where the shape of the structure and the external forces and displacements that act on it are regulated is based on theory. However, there is currently no manufacturing method that can achieve this, and only a few fiber-reinforced composite materials are insufficiently ``optimized.''

しかも、繊維強化複合材料を使用した場合でも、構造物
中の応力状態に対応した繊維含有率Vfと繊維の方位θ
が構造物の各点で理論的に決定できても、それら(Vf
、θ)を構・ 進物上で3次元的になめらかに変化させ
ることは至難である。そこで有限要素法などの数値解析
法を利用して構造物を複数の要素に分け、各要素におい
ては近似的に理論上の(Vf、θ)を実現することが考
えられた。例えば、第1図に示す如き荷o 重Wを受け
る片持ばり1の強度がはりの各要素で等しくなるように
要素内で一方向に繊維を配向させるとともに、その含有
率も変えるような最小重量等強度梁設計問題の解は第1
図に示すようになる(尾田:機械学会論文集ム810−
2(1981)、5 第42頁)。この第1図において
、線の方向は各3角要素内の強化繊維の方向を示し、ま
た、線分の長さは含有率を示す。しかし、この場合で強
化繊維の分布を均一にし、かつ、その強化繊維の方向を
正しく一定に保つことは相当に困難である。)0 この
発明は上記の如き事情に鑑みてなされたものであつて、
繊維強化材料を使用した最適構造物を容易に製造し得る
方法を提供することを目的とするものである。この目的
に対応して、この発明の繊維強化材料ク5 を使用した
最適構造物の製造法は、繊維強化材料のマトリクスとな
るべき材料を溶融状態で強化繊維と無重力環境下で均一
に混合して前記材料と前記強化繊維との混合体とすると
ともに前記混合体に磁界を作用させて前記強化繊維を配
向させ、し30かる後に、前記混合体を冷却固化させ、
次に前記固化した混合体を加工して構造物のエレメント
を製造し、こうして得られたエレメントを真空環境下で
相隣り合うエレメントと微小荷重による圧接により固着
して構造物を製造することを特徴とし35ている。
Moreover, even when using fiber-reinforced composite materials, the fiber content Vf and fiber orientation θ correspond to the stress state in the structure.
can be determined theoretically at each point of the structure, they (Vf
, θ) in a three-dimensional manner on a structure or object is extremely difficult. Therefore, it has been considered to divide the structure into a plurality of elements using a numerical analysis method such as the finite element method, and approximately realize the theoretical (Vf, θ) in each element. For example, the fibers are oriented in one direction within each element so that the strength of the cantilever beam 1 that receives the load o and the weight W as shown in Fig. 1 is equal in each element, and the fiber content is also varied. The solution to the weight-equal-strength beam design problem is the first
As shown in the figure (Oda: Proceedings of the Japan Society of Mechanical Engineers, Volume 810-
2 (1981), 5 p. 42). In FIG. 1, the direction of the line indicates the direction of reinforcing fibers within each triangular element, and the length of the line segment indicates the content. However, in this case, it is quite difficult to make the distribution of the reinforcing fibers uniform and to keep the direction of the reinforcing fibers correct and constant. )0 This invention was made in view of the above circumstances, and
The object of the present invention is to provide a method for easily manufacturing an optimal structure using fiber-reinforced materials. Corresponding to this purpose, the method for manufacturing an optimal structure using the fiber-reinforced material of the present invention is to uniformly mix the material to be the matrix of the fiber-reinforced material with reinforcing fibers in a molten state in a zero-gravity environment. to form a mixture of the material and the reinforcing fibers, and applying a magnetic field to the mixture to orient the reinforcing fibers, and then cooling and solidifying the mixture,
Next, the solidified mixture is processed to produce structural elements, and the thus obtained elements are fixed to adjacent elements by pressure welding under a minute load in a vacuum environment to produce the structure. There are 35 people.

以下、この発明の詳細を一実施例について説明する。Hereinafter, the details of this invention will be explained with reference to one embodiment.

噛唱一 この発明の繊維強化材料を使用した最適構造物の製造方
法においては、まず、アルミニウムその他の金属や、或
いはプラスチツク等の繊維強化材料のマトリクスとなる
マトリクス材を溶融状態にする。
In the method of manufacturing an optimal structure using a fiber-reinforced material according to the present invention, first, a matrix material, which is a matrix of a fiber-reinforced material such as aluminum or other metal, or plastic, is brought into a molten state.

そのためには、例えば第2図に示す如き溶解装置11を
使用する。溶解装置11は炉容器12を備え、炉容器1
2の周辺部にヒータ13が配設してある。炉容器12の
周辺近傍には電磁石14が配設されており、この電磁石
14は炉容器12内の材料に磁界を作用させることがで
きる。これらの装置乃至機器は室15内に収納されて無
重力状態の環境下に保持される。炉容器12内で溶融状
態となつたマトリクス材16に対して繊維強化用の繊維
材17を混入する。
For this purpose, for example, a melting device 11 as shown in FIG. 2 is used. The melting device 11 includes a furnace vessel 12.
A heater 13 is disposed around 2. An electromagnet 14 is disposed near the periphery of the furnace vessel 12, and this electromagnet 14 can apply a magnetic field to the material within the furnace vessel 12. These devices and equipment are housed in a chamber 15 and maintained in a zero gravity environment. A fiber material 17 for fiber reinforcement is mixed into the matrix material 16 which has become molten in the furnace vessel 12.

繊維材としては、鉄、ニツケル、タングステンの如き磁
性材料の短繊維、またはウイスカが望ましく、繊維材が
各種セラミツクウイスカ、カーボン、またはガラス繊維
の如く非磁性材料の場合には、それらの非磁性繊維の表
面に鉄その他の磁性材料をコーテイングする。炉容器1
2内の溶融マトリクス材16と繊維材17とは均一分布
となるように混合する。
The fiber material is preferably short fibers or whiskers of a magnetic material such as iron, nickel, or tungsten.If the fiber material is a non-magnetic material such as various ceramic whiskers, carbon, or glass fiber, these non-magnetic fibers may be used. Coating iron or other magnetic material on the surface. Furnace vessel 1
The molten matrix material 16 and the fiber material 17 in 2 are mixed so as to have a uniform distribution.

この混合は無重力状態下でなされるから、例えマトリク
ス材16と繊維材17とに比重差があつても、その比重
差に影響されずに均一に混合することが可能である。こ
のようにして形成されるマトリクス材と繊維材との混合
体に電磁石14により磁界を作用させると、混合体中の
繊維材17は磁界の方向に配列する。繊維が磁力線にそ
つて移動開始する直前に磁界を切つて混合体を冷却固化
すると、繊維強化材料(F.R.M.またはF.R.P
.)が出来土る。前記の無重力状態は、例えば、近来開
発された人工衛星における、いわゆるスペースラボラト
リ一を利用すれば容易に得ることができる。
Since this mixing is performed under a zero gravity condition, even if there is a difference in specific gravity between the matrix material 16 and the fiber material 17, it is possible to uniformly mix them without being affected by the difference in specific gravity. When a magnetic field is applied by the electromagnet 14 to the mixture of matrix material and fiber material thus formed, the fiber materials 17 in the mixture are arranged in the direction of the magnetic field. Just before the fibers begin to move along the magnetic field lines, the magnetic field is turned off and the mixture is cooled and solidified to form a fiber-reinforced material (F.R.M. or F.R.P.
.. ) is produced. The above-mentioned weightless state can be easily obtained, for example, by using a so-called space laboratory in a recently developed artificial satellite.

次に、以上のようにして得られた繊維強化材料を、構造
物の形状等を考慮して予め定められた形状及び大きさに
切り出し、構造物の構造要素を得る。
Next, the fiber-reinforced material obtained as described above is cut into a predetermined shape and size in consideration of the shape of the structure, etc., to obtain a structural element of the structure.

このようにして、第3図に示す如く、形状、大きさ、繊
維含有率または繊維の方向の異なる各種の構造要素が準
備される。このようにして設計によつて決定された繊維
含有率と方位を持つた要素を、無重力状態で第4図に示
す如くならべ、全体を真空中で一様に加熱する。
In this way, as shown in FIG. 3, various structural elements having different shapes, sizes, fiber contents, or fiber directions are prepared. The elements having the fiber content and orientation determined by the design are arranged in a zero gravity state as shown in FIG. 4, and the whole is uniformly heated in a vacuum.

この加熱が真空中で行なわれるために、物質界面の清浄
度が高くわずかの熱と荷重で、各要素の界面は溶着し、
不連続面は生ぜず、設計仕様に合致した構造物が得られ
る。また、例えマトリクスが溶融しても無重力状態であ
るため、繊維の配列状態は保持される。
Because this heating is performed in a vacuum, the interfaces of the materials are highly clean, and the interfaces of each element are welded with a small amount of heat and load.
No discontinuous surfaces occur and a structure that meets design specifications is obtained. Further, even if the matrix is melted, the arrangement of the fibers is maintained because it is in a weightless state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は最小重量等強度梁設計問題の解を示す図、第2
図はこの発明の実施に使用する装置を示す構成説明図、
第3図は構造物の要素の各種を例示する説明図、及び第
4図は構造物の一例を示す説明図である。 1・・・・・・片持ばり、11・・・・・・溶解装置、
12・・・・・・炉容器、14・・・・・・電磁石、1
5・・・・・・室、16・・・・・・マトリクス材、1
7・・・・・・繊維材。
Figure 1 shows the solution to the minimum weight equal strength beam design problem, Figure 2
The figure is a configuration explanatory diagram showing an apparatus used for carrying out this invention.
FIG. 3 is an explanatory diagram illustrating various elements of the structure, and FIG. 4 is an explanatory diagram illustrating an example of the structure. 1... Cantilever beam, 11... Melting device,
12...Furnace vessel, 14...Electromagnet, 1
5... Chamber, 16... Matrix material, 1
7...Fiber material.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維強化材料のマトリクスとなるべき材料を溶融状
態で強化繊維と無重力環境下で均一に混合して前記材料
と前記強化繊維との混合体とするとともに前記混合体に
磁界を作用させて前記強化繊維を配向させ、しかる後に
、前記混合体を冷却固化させ、次に前記固化した混合体
を加工して構造物のエレメントを製造し、こうして得ら
れたエレメントを真空環境下で相隣り合うエレメントと
微小荷重による圧接により固着して構造物を製造するこ
とを特徴とする繊維強化材料を使用した最適構造物の製
造法。
1 A material to be a matrix of the fiber-reinforced material is uniformly mixed with reinforcing fibers in a molten state in a zero-gravity environment to form a mixture of the material and the reinforcing fibers, and a magnetic field is applied to the mixture to strengthen the reinforcing material. After orienting the fibers, the mixture is cooled and solidified, the solidified mixture is then processed to produce structural elements, and the elements thus obtained are combined with adjacent elements in a vacuum environment. An optimal method for manufacturing structures using fiber-reinforced materials, which is characterized by manufacturing a structure by bonding by pressure welding under a minute load.
JP56110427A 1981-07-15 1981-07-15 Optimal structure manufacturing method using fiber-reinforced materials Expired JPS5915804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56110427A JPS5915804B2 (en) 1981-07-15 1981-07-15 Optimal structure manufacturing method using fiber-reinforced materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56110427A JPS5915804B2 (en) 1981-07-15 1981-07-15 Optimal structure manufacturing method using fiber-reinforced materials

Publications (2)

Publication Number Publication Date
JPS5812722A JPS5812722A (en) 1983-01-24
JPS5915804B2 true JPS5915804B2 (en) 1984-04-11

Family

ID=14535469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56110427A Expired JPS5915804B2 (en) 1981-07-15 1981-07-15 Optimal structure manufacturing method using fiber-reinforced materials

Country Status (1)

Country Link
JP (1) JPS5915804B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557382U (en) * 1992-01-10 1993-07-30 広和株式会社 Viscous fluid supply pump
JPH068802U (en) * 1992-01-30 1994-02-04 六反機械株式会社 Oil cooler in hydraulic system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9457521B2 (en) * 2011-09-01 2016-10-04 The Boeing Company Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced parts
US10703052B2 (en) * 2014-06-06 2020-07-07 Northeastern University Additive manufacturing of discontinuous fiber composites using magnetic fields

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557382U (en) * 1992-01-10 1993-07-30 広和株式会社 Viscous fluid supply pump
JPH068802U (en) * 1992-01-30 1994-02-04 六反機械株式会社 Oil cooler in hydraulic system

Also Published As

Publication number Publication date
JPS5812722A (en) 1983-01-24

Similar Documents

Publication Publication Date Title
CA1274500A (en) Spacecraft structure
US5678298A (en) Method of making composite castings using reinforcement insert cladding
US5261477A (en) Process for producing parts with an abrasion-proof surface
US6857461B2 (en) Method and device for the production of reticular structures
JPS58217435A (en) Manufacture of fiber reinforced glass matrix composite material article
EP0108216B1 (en) Composite material manufacturing method exothermically reducing metallic oxide in binder by element in matrix metal
US4669523A (en) Castings and their production process
JPS5915804B2 (en) Optimal structure manufacturing method using fiber-reinforced materials
US3460305A (en) Ceramic structural composite
Angel et al. Manufacture of large glass honeycomb mirrors
US4260657A (en) Reinforced ceramic structure
JPS5617157A (en) Reinforcing method of ceramic shell mold
JPH0250044B2 (en)
Mishima et al. Fabrication of a carbon fibre/aluminium alloy composite under microgravity
GB2222793A (en) "Method of forming a fibre reinforced material"
Amende et al. The development steps towards the single-crystalline solidification of shaped components in space
JPH026380A (en) Method for growing crystal
RU2086015C1 (en) Dispersion-type fuel element manufacturing process
TRESSLER et al. Silicon carbide fiber/mullite composites from rapidly solidified aluminosilicate powder[Final Technical Report, 21 Jun.- 21 Dec. 1983]
Zabolotskiy et al. Composite materials with aluminum matrix reinforced with carbon fibers[Abstract Only]
Seibert Spacelab and past and future crystal growth experiments in space
Yue et al. Zero-gravity growth of NaF-NaCl eutectics in the NASA Skylab program
JPH03284937A (en) Method and apparatus for forming fiber reinforced composite material
Hack et al. Fabrication of aluminum oxide fiber reinforced aluminum matrix composites[Final Report]
Johnson Development of techniques for processing metal-metal oxide systems