JPS5915736B2 - Manufacturing method of composite steel ingot for forging - Google Patents

Manufacturing method of composite steel ingot for forging

Info

Publication number
JPS5915736B2
JPS5915736B2 JP14622080A JP14622080A JPS5915736B2 JP S5915736 B2 JPS5915736 B2 JP S5915736B2 JP 14622080 A JP14622080 A JP 14622080A JP 14622080 A JP14622080 A JP 14622080A JP S5915736 B2 JPS5915736 B2 JP S5915736B2
Authority
JP
Japan
Prior art keywords
core material
forging
steel ingot
composite steel
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14622080A
Other languages
Japanese (ja)
Other versions
JPS5770074A (en
Inventor
淳一 松野
道夫 田中
功 一瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14622080A priority Critical patent/JPS5915736B2/en
Publication of JPS5770074A publication Critical patent/JPS5770074A/en
Publication of JPS5915736B2 publication Critical patent/JPS5915736B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は鍛造用複合鋼塊の製造方法に関し、特に芯材と
鋳造材との接合を容易にして完全一体化された鍛造製品
の製造を確実にする複合鋼塊の製造方法を提供しようと
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a composite steel ingot for forging, and more particularly to a method for producing a composite steel ingot for making a composite steel ingot that facilitates the joining of a core material and a cast material to ensure the production of a completely integrated forged product. The purpose is to provide a manufacturing method.

鍛鋼品にはC,r 、 N i 2Mo等を含む合金鋼
、およびCを1係程度まで含む高炭素鋼などの鋼種があ
り、これらの鋼種は凝固時に柱状晶が発達しやすいため
鋼塊中心部に凝固収縮に起因するサク巣が発生しやすい
Forged steel products include steel types such as alloy steels containing C, r, Ni2Mo, etc., and high carbon steels containing up to about 1 modulus of C. These steel types tend to develop columnar crystals during solidification, so the center of the steel ingot is It is easy to develop cavities due to coagulation and shrinkage.

このようなサク巣は多くの場合鍛造時に圧着して製品の
欠陥とは彦らないのが通例であるが、サク巣の発達が著
しい場合や製品の形状から十分々鍛練加工比がとれない
場合には製品の欠陥として残存する。
In most cases, such cavities are crimped during forging and are not considered defects in the product, but if the cavities are significantly developed or the forging process ratio cannot be maintained sufficiently due to the shape of the product. remains as a product defect.

そこでサク巣の発生を完全に避ける必要がある場合には
、鋼塊を鋳込む際芯材を鋳型内にあらかじめセットして
おき、そこへ溶鋼を鋳込んで芯材を鋳ぐるんだ鋼塊を製
造する方法がとられることがある。
Therefore, if it is necessary to completely avoid the occurrence of cavities, the core material is set in the mold beforehand when casting the steel ingot, and the molten steel is poured into the steel ingot to surround the core material. A method of manufacturing may be used.

また、表面は硬く内部は靭性を有するのが望ましいロー
ルなどのように、内部と表層部で材質を異にし、しかも
一体である製品を製造する目的にも、この鋳ぐるみ法が
利用される。
The casting method is also used to manufacture products that are made of different materials on the inside and surface, such as rolls, which are preferably hard on the surface and tough on the inside, but are also integral.

しかし、このような鋳ぐるみ法では、多くの場合芯材と
しては鋼塊内のかなシの部分を占める大きなものが用い
られるため、熱容量が大きく鋳造時に溶鋼と接しても表
面温度はあまシ上がらず、鋳造材と溶着して鋳造のまま
で一体化することが出来ない。
However, in this type of casting method, a large core material that occupies the core part of the steel ingot is often used, so it has a large heat capacity and the surface temperature does not rise slightly even when it comes into contact with molten steel during casting. First, it cannot be welded to the cast material and integrated with the cast material.

したがって鍛造時に圧着によって境界部を完全に接合さ
せ一体化する必要がある。
Therefore, it is necessary to completely join the boundary parts and integrate them by crimping during forging.

従来この芯材の断面形状は、鋼塊の断面形状の閑散、角
型、偏平に応じて円形または四辺形とされていたが、こ
のような単純な断面形状では、鍛練加工比が2S程度の
小さい値では芯材と鋳造材の境界部の完全な接合が困難
であった。
Conventionally, the cross-sectional shape of this core material has been circular or quadrilateral depending on whether the cross-sectional shape of the steel ingot is flat, square, or flat. When the value was small, it was difficult to completely join the boundary between the core material and the cast material.

本発明は上記のような従来の鍛造用複合鋼塊の欠点、問
題点を解消するために、芯材断面を円または四辺形の周
上に波形を付した形状とすることによって、鍛練加工比
が小さい場合でも、芯材と鋳造材の境界部の完全な圧着
、接合が行なわれるような複合鋼塊の製造方法を提供す
るものである。
In order to solve the drawbacks and problems of the conventional composite steel ingots for forging as described above, the present invention improves the forging process ratio by making the cross section of the core material into a circular or quadrilateral periphery with corrugations. To provide a method for manufacturing a composite steel ingot, in which the boundary between the core material and the cast material can be completely crimped and joined even when the material is small.

本発明は鍛造用大型鋼塊を製造する場合、中心部に形成
されるサク巣を避けるため、あるいは内部と表層部で材
質の異なる複合材の鍛造品の製造を目的とする際に、従
来から採用されていた方法、即ち芯材となる厚さまたは
直径が5篩以上の鋼材を鋳鉄製鋳型内に予め設置してお
き、下注法により表層部を形成する溶鋼を注入して芯材
を鋳ぐるみにすることによる複合鋼塊の製造方法におい
て、芯材表面を高さ方向には一様であって横断面内では
波形を形成するように予め切削加工し、かつ波形の波高
とピッチを h/D≧0.01 1/h≦3 ここで h:表面波形の波高α l二表面波形のピッチ函 D:芯材の厚さまたは直径ぼ であるようにすることによって、鍛練加工比が小さい場
合でも芯材と表層部鋳造材の接合を容易にし、境界部の
完全な圧着、接合が行なわれることを特徴とする鍛造用
複合鋼塊の製造方法である。
The present invention is used to avoid cavities formed in the center when manufacturing large steel ingots for forging, or when manufacturing forged products made of composite materials with different materials on the inside and surface. The method used was to place a steel material with a thickness or diameter of 5 or more sieves in advance into a cast iron mold, and then pour the molten steel that would form the surface layer using the bottom pouring method to form the core material. In the manufacturing method of composite steel ingots by casting, the core material surface is cut in advance so that it is uniform in the height direction and forms a waveform in the cross section, and the wave height and pitch of the waveform are adjusted. h/D≧0.01 1/h≦3 where h: Wave height α of the surface corrugation l Pitch box of the surface corrugation D: Thickness or diameter of the core material By making the forging process ratio This is a method for manufacturing a composite steel ingot for forging, which is characterized in that it facilitates joining of the core material and the surface cast material even when the material is small, and complete crimping and joining of the boundary portion is performed.

次に本発明方法の構成を具体的な実施態様に基づいて詳
細に説明する。
Next, the configuration of the method of the present invention will be explained in detail based on specific embodiments.

第1図は本発明方法の1具体例の説明図であって、定盤
1の上に設置された鋳型2の内部に吊り棒3を介して吊
り金具4より吊り下げられた芯材5をあらかじめ装入し
ておき、湧上り口6を通して溶鋼7を下注ぎ法により注
入し鋳造材8を形成せしめる。
FIG. 1 is an explanatory diagram of a specific example of the method of the present invention, in which a core material 5 is suspended from a hanging fixture 4 via a hanging rod 3 inside a mold 2 placed on a surface plate 1. The steel is charged in advance, and molten steel 7 is injected through the upwelling port 6 by a bottom pouring method to form a cast material 8.

鋼塊が大型で複数個の湯上り口を用いるときは、芯材5
を吊り下げる代りに、定盤1上に固定して、湯上り口6
を芯材の周囲に設けるようにすることもできる。
When the steel ingot is large and multiple hot water outlets are used, the core material 5
Instead of hanging it, fix it on the surface plate 1,
It is also possible to provide around the core material.

この芯材5の断面形状は鋼塊の断面形状にほぼ相似のも
のが選ばれ矩形、正方形、あるいは円形とされる。
The cross-sectional shape of the core material 5 is selected to be approximately similar to the cross-sectional shape of the steel ingot, and is rectangular, square, or circular.

しかしながら、芯材表面が完全な平面あるいは円筒面で
ある場合、鍛練加工比が十分大きく取れれば問題はない
が、鍛練加工比が2〜3と小さいときは、芯材5と鋳造
材80間の接合が不十分で完全な一体とは々らないこと
が判明した。
However, if the core material surface is completely flat or cylindrical, there is no problem if the forging ratio is sufficiently large, but when the forging ratio is as small as 2 to 3, the gap between the core material 5 and the cast material 80 It was discovered that the joint was insufficient and could not be completely integrated.

これは鍛練圧下時、芯材と鋳造材の間にすベシを生じ、
相互の押し付は力が不足するためである。
This creates a gap between the core material and the cast material during rolling reduction.
This is due to the lack of force in mutual pressing.

そこで芯材表面に波形の加工をほどこし、横方向へのす
べりを防止するならば、芯材と鋳造材は相互 強く押し
付けられ、良好な圧着状況を示すであろうと考え、実際
に芯材表面の半周に波形を付し、半周は円筒面のままと
して鋳ぐるみ鋼塊を製造し、鍛練加工比3の延伸鍛造を
行なったところ、波形部分は完全に接合していたが、円
筒面部分では接合の不完全な箇所が存在した。
Therefore, we thought that if we apply a corrugated process to the surface of the core material to prevent it from sliding laterally, the core material and the cast material will be strongly pressed against each other, and a good crimping condition will be exhibited. When a cast steel ingot was produced with a corrugated half circumference and a cylindrical surface on the other half, and stretch forging was performed at a forging ratio of 3, the corrugated portion was completely joined, but the cylindrical surface was not joined. There were some incomplete parts.

鍛練時の圧着のみを考慮すれば、芯材表面の波形は高さ
方向につけられても同様の効果を有するが、鋳込時に湯
面に浮遊する不鈍物が捕捉されるのを防止するためには
高さ方向に波形を付すのは不適当である。
If only the crimping during forging is considered, the corrugation on the surface of the core material has the same effect even if it is applied in the height direction. It is inappropriate to add corrugations in the height direction.

すなわち、芯材表面は高さ方向には一様でなければなら
ない。
That is, the surface of the core material must be uniform in the height direction.

芯材表面の波形形状は切削加工の難易や鋳込時に発生す
る境界の割れなどを考慮して適宜選択されるが、一般に
用いられるのはコルゲートあるいはフルートである。
The corrugated shape on the surface of the core material is appropriately selected taking into account the difficulty of cutting and cracks at the boundaries that occur during casting, but corrugates or flutes are generally used.

凝固時の割れの問題がなけれれば三角形が切削加工が容
易である。
Triangular shapes are easy to cut if there is no problem with cracking during solidification.

芯材の表面に波形を付す方法としては切削加工のほか鋳
造あるいは鍛造による方法もあるが、いずれにしても芯
材表面の酸化スケールを完全に除去しなければ鋳造材と
の完全な接合が得られないので、ある程度の切削加工は
不可避である。
In addition to cutting, there are other methods for creating corrugations on the surface of the core material, such as casting or forging, but in either case, complete bonding with the cast material cannot be achieved unless the oxidized scale on the surface of the core material is completely removed. Therefore, some cutting work is unavoidable.

芯材表面に波形を付す目的は、鍛練加工時に鋳造材と芯
材が相対的に自由に塑性流動を起すことを拘束するため
であるから、十分な拘束力を得るためにはその形状につ
いての条件が必要である。
The purpose of adding corrugations to the surface of the core material is to restrain the relatively free plastic flow between the cast material and the core material during forging, so in order to obtain sufficient restraining force, the shape must be carefully selected. Conditions are necessary.

この条件を求めるために、芯材の横断面形状を変えた多
数の複合鋼塊について鍛練し、芯材表面と鋳造材との境
界部の接合状態の調査を実施した。
In order to find this condition, we forged a number of composite steel ingots with different cross-sectional shapes of the core material, and investigated the bonding state at the boundary between the core material surface and the cast material.

即ち20トン乃至200トンの閑散および偏平鋳型を用
いて、第2図で定義される波高h、ピッチ1、および直
径または厚さDを種種変化させた芯材を鋳ぐるみにした
複合鋼塊を製造し、鍛練加工比2Sの延伸鍛造を行なっ
て、芯材表面と鋳造材との境界部の接合状態を超音波探
傷法で調査した。
That is, using 20 to 200 ton blank and flat molds, composite steel ingots are made using core materials with varying wave height h, pitch 1, and diameter or thickness D as defined in Fig. 2. It was manufactured and subjected to stretch forging at a forging ratio of 2S, and the bonding state of the boundary between the core material surface and the cast material was investigated using ultrasonic flaw detection.

その結果は第3図に示すように、芯材の直径または厚さ
をDとするとき h / D≧0.01 で、かつ l/h≦3 ならば、境界部は完全に接合し欠陥は認められないこと
を見出した。
The results are shown in Figure 3. If h/D≧0.01 and l/h≦3, where D is the diameter or thickness of the core material, the boundary will be completely joined and there will be no defects. I found something that was unacceptable.

なお、ここで用いられる芯材は、溶鋼の鋳込みあるいは
凝固中に溶融せずに固体のままで残存しなければ本来の
目的を達成できないから、芯材の直径または厚さは5c
IrL以上であることが必要である。
Note that the core material used here cannot achieve its original purpose unless it remains solid without melting during casting or solidification of molten steel, so the diameter or thickness of the core material is 5 cm.
It needs to be IrL or higher.

本発明は鋳ぐるみ法による複合鋼塊の製造に際し、芯材
の表面形状を規定したものであって、この方法によれば
、複合鋼塊を鍛練して芯材と鋳造材との境界部における
完全な一体化が得られるために、従来の複合鋼塊の鍛造
品と比較してはるかに優れた品質の製品を確実に得るこ
とが出来る。
The present invention specifies the surface shape of the core material when manufacturing a composite steel ingot by the casting method, and according to this method, the composite steel ingot is forged and the boundary between the core material and the cast material is The complete integration ensures a product of much superior quality compared to conventional composite steel ingot forgings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は複合鋼塊製造方法の概略説明図でイは縦断面図
、口はA−A視横断面図、第2図は芯材の断面波形にお
ける波高およびピッチの定義を示す図面、第3図は芯材
の波高、ピッチおよび直径または厚さの関係によって境
界部未圧着による欠陥発生状況を示す図面である。 1・・・定盤、2・・・鋳型、3・・・吊り棒、4・・
・吊り金具、5・・・芯材、6・・・湯上り口、7・・
・溶鋼、8・・・鋳造材、h・・・波高、l・・・ピッ
チ、D・・・芯材の直径または厚さ。
Figure 1 is a schematic explanatory diagram of the method for manufacturing composite steel ingots. FIG. 3 is a drawing showing how defects occur due to unbonded boundaries due to the relationship between the wave height, pitch, diameter, or thickness of the core material. 1...Surface plate, 2...Mold, 3...Hanging rod, 4...
・Hanging metal fittings, 5... core material, 6... bath outlet, 7...
- Molten steel, 8...Casting material, h...Wave height, l...Pitch, D...Diameter or thickness of core material.

Claims (1)

【特許請求の範囲】 1 鋳鉄製鋳型内に芯材となる厚さまたは直径が5CI
rL以上の鋼材を予め設置しておき、下注法によ溶鋼を
注入して芯材を鋳ぐるむことによる複合鋼塊の製造方法
において;鋳型内に予め設置される上記芯材の表面を、
高さ方向には一様であって横断面内では波形を形成する
ように予め切削加工し、かつ波形の波高とピッチを h/D≧0.01 1/h≦3 ここで h:表面波形の波高ぼ に表面波形のピッチ儒 D:芯材の厚さまたは直径儂 であるようにすることを特徴とする鍛造用複合鋼塊の製
造方法。
[Claims] 1. The core material in the cast iron mold has a thickness or diameter of 5 CI.
In a method for producing a composite steel ingot by placing a steel material of rL or more in advance and pouring molten steel into the core material using a bottom pouring method; ,
Cutting is performed in advance to form a waveform that is uniform in the height direction and in the cross section, and the wave height and pitch of the waveform are h/D≧0.01 1/h≦3 where h: surface waveform A method for producing a composite steel ingot for forging, characterized in that the pitch of the surface corrugation is equal to the thickness or diameter of the core material.
JP14622080A 1980-10-21 1980-10-21 Manufacturing method of composite steel ingot for forging Expired JPS5915736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14622080A JPS5915736B2 (en) 1980-10-21 1980-10-21 Manufacturing method of composite steel ingot for forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14622080A JPS5915736B2 (en) 1980-10-21 1980-10-21 Manufacturing method of composite steel ingot for forging

Publications (2)

Publication Number Publication Date
JPS5770074A JPS5770074A (en) 1982-04-30
JPS5915736B2 true JPS5915736B2 (en) 1984-04-11

Family

ID=15402819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14622080A Expired JPS5915736B2 (en) 1980-10-21 1980-10-21 Manufacturing method of composite steel ingot for forging

Country Status (1)

Country Link
JP (1) JPS5915736B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105312513B (en) * 2015-11-26 2018-07-31 辽宁科技大学 A kind of method of mold core integration composite casting large size alloy steel ingot

Also Published As

Publication number Publication date
JPS5770074A (en) 1982-04-30

Similar Documents

Publication Publication Date Title
JPS5915736B2 (en) Manufacturing method of composite steel ingot for forging
US2438405A (en) Method for manufacturing bimetallic bodies
JP2622875B2 (en) Manufacturing method of metal parts
JP3104635B2 (en) Manufacturing method of round billet slab by continuous casting
JP2926228B1 (en) Method for producing double-layer titanium clad steel sheet by casting method
JPS58209464A (en) Production of laminar composite metallic plate material
JPH07232201A (en) Manufacture of extremely thick steel plate
JP2819370B2 (en) Manufacturing method of corrosion resistant clad pipe
JPH10263614A (en) Production of extra thick steel plate
JPS58159905A (en) Edger roll
JP3149818B2 (en) Manufacturing method of round billet slab by continuous casting
JPS5819373B2 (en) Forging method for metal materials
JPS5829436B2 (en) Aluminum flange Aluminum flange
JPS60206546A (en) Manufacture of pillar material
JPH0323028A (en) Manufacture of aluminum part
JPH08508450A (en) Method for producing ladle-shaped bar and ladle-shaped bar produced by this method
JPS5817704B2 (en) Osmanthus Cylinder No. Seizouhouhou
JPS6038215B2 (en) Method of manufacturing metal parts
JP3900310B2 (en) Casting forging method
JPS61176443A (en) Manufacture of hollow ingot
JPS59220272A (en) Embedding method by casting
JPS60240353A (en) Cladding metal for composite metallic ingot
JPS6038216B2 (en) Method for manufacturing hollow metal parts
JPH04190945A (en) Production of gold alloy thin disc
SU997971A1 (en) Method of producing bi metalic tubular articles