JPS59157258A - Amorphous magnetic material - Google Patents

Amorphous magnetic material

Info

Publication number
JPS59157258A
JPS59157258A JP2945583A JP2945583A JPS59157258A JP S59157258 A JPS59157258 A JP S59157258A JP 2945583 A JP2945583 A JP 2945583A JP 2945583 A JP2945583 A JP 2945583A JP S59157258 A JPS59157258 A JP S59157258A
Authority
JP
Japan
Prior art keywords
core
magnetic
ribbon
amorphous
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2945583A
Other languages
Japanese (ja)
Inventor
Sadami Tomita
冨田 貞美
Hideo Suzuki
秀夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2945583A priority Critical patent/JPS59157258A/en
Publication of JPS59157258A publication Critical patent/JPS59157258A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an amorphous magnetic material suitable in an application such as a flexible type rolled core or the like which has the decreased deterioration in the square hysteresis characteristic when strained and is to be subjected to molding strain for the purpose of rolling by performing baking in a specific temp. range. CONSTITUTION:An Fe or Fe-Ni amorphous ribbon having a prescribed thickness and width is manufactured by a quick cooling method for a molten metal using a single roll and such ribbon is molded to a troidal-rolled core. The core is baked in a temp. range of 260-390 deg.C and is then unrolled and thereafter the core is rolled again to form a troidal-rolled core. In other words, the core is rolled again after the rolling strain is applied thereon. The rerolled troidal-rolled core shows an increase in magnetic flux density as shown by B1, B10 and in squareness ratio as shown by Br/B1. The coercive force Hc which is the characteristic of an amorphous magnetic material is small in this range.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はアモルファス磁性材料の磁気特性改良のだめの
熱処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a heat treatment method for improving the magnetic properties of an amorphous magnetic material.

〔従来技術〕[Prior art]

磁気移相器、磁気増幅器などに用いられる磁心材料には
Fe−Ni系合金(ノクーマロイ)のNA’Lが用いら
れている。パーマロイは圧延のままの状態では磁気特性
が悪いために熱処理を施して使用するのが普通である。
NA'L, which is a Fe-Ni alloy (NOKUMAROY), is used as a magnetic core material used in magnetic phase shifters, magnetic amplifiers, and the like. Since permalloy has poor magnetic properties in its as-rolled state, it is usually heat-treated before use.

しかし熱処理によって得られた磁気特性は歪を加えると
著しく悪くなる欠点をもっていた。このことからノく−
マロイ全磁心イ2料として使用するには第1図に示すよ
うな構造で用いられていた。すなわち、薄板をトロイダ
ル状に巻き、それケ熱処理し、その後の取扱い中に磁性
材料に歪がかからないようにパーマロイ巻磁心1をケー
ス2に入れ、シリコンオイルなどの緩衝剤3を充填して
パーマロイ巻磁心に歪がかからないよう々細ルの注意?
払って使われてきている。
However, the magnetic properties obtained by heat treatment have the disadvantage that they deteriorate significantly when strain is applied. From this,
The structure shown in FIG. 1 was used as a Malloy all-magnetic core I2 material. That is, a thin plate is wound into a toroidal shape, then heat treated, and the permalloy-wound magnetic core 1 is placed in a case 2 to prevent distortion from being applied to the magnetic material during subsequent handling, filled with a buffer 3 such as silicone oil, and then permalloy-wound. Be very careful not to strain the magnetic core.
It has been used and paid for.

このような歪によシ磁気特性が敏感に変化する材料は実
用に際して保護した使い万全必要とするので応用が制約
され、またその使用にコスト高を生む畏因全はらんでい
た。最近、Fe−Ni系合金に替わる新規な磁性材料薄
板として溶湯急冷法によるアモルファス磁性材料が出現
し、特にその中で高磁束密度、高角型比、低保磁力全特
徴とするFeあるいはpe−Ni系アモルファス磁心材
料がある。アモルファス磁性材料は結晶質であるパーマ
ロイに比べて歪感受性は小さい。このような歪感受性の
小さいこと全利用してアモルファス磁性合金リボンをリ
アクトルとして使用するとき、直線全環状に巻回して巻
線を作り、この@線上にアモルファスリボン全巻装する
ことによって目的上達せられる。
Materials whose magnetic properties change sensitively due to strain must be protected and fully usable in practical use, which limits their application, and their use is fraught with potential causes of high costs. Recently, amorphous magnetic materials produced by molten metal quenching have appeared as new magnetic material thin plates to replace Fe-Ni alloys, and among them, Fe or pe-Ni, which have all the characteristics of high magnetic flux density, high squareness ratio, and low coercive force, have appeared. There are amorphous magnetic core materials. Amorphous magnetic materials have less strain sensitivity than crystalline permalloy. When using an amorphous magnetic alloy ribbon as a reactor by taking full advantage of its low strain sensitivity, the purpose can be achieved by winding the ribbon in a straight ring in a straight line and wrapping the entire amorphous ribbon around this @ wire. .

以上述べたような巻回のだめの成型歪がかかるpeある
いはpe−Ni系アモルファス磁性合金の使用で、それ
に適する熱処理法があることは知られていなかった。
It has not been known that there is a heat treatment method suitable for the use of PE or PE-Ni amorphous magnetic alloys which are subjected to molding distortion during winding as described above.

〔発明の目的〕[Purpose of the invention]

本発明の目的は巻回のだめの成型歪が与えられた状態で
アモルファスリボンを使用するに際して適合する熱処理
法を提供するにある。
An object of the present invention is to provide a heat treatment method that is suitable for using an amorphous ribbon in a state where molding distortion is applied to the winding stop.

〔発明の概要〕[Summary of the invention]

本発明は特にdi路が閉じているリアクトルに適用する
アモルファスリボンの製作方法に関係がある。磁路が閉
じているリアクトルは変圧器、変流器、磁気増幅器など
の基本的構成として広く用いられている。特にリアクト
ルを磁路にギャップのないトロイダル巻磁心で構成すれ
ば励磁電流が小さくなる゛ので、高性能の変圧器、変流
器、磁気増幅器等を実現することができる。
The present invention is particularly concerned with a method of manufacturing an amorphous ribbon for use in reactors with closed di-paths. A reactor with a closed magnetic path is widely used as a basic component of transformers, current transformers, magnetic amplifiers, etc. In particular, if the reactor is configured with a toroidal wound magnetic core with no gaps in the magnetic path, the excitation current will be reduced, making it possible to realize high-performance transformers, current transformers, magnetic amplifiers, etc.

〔発明の実施例〕 第2図は本発明の一実施例であるアモルファスリボン分
用いた可撓型巻磁心の構造である。これは浴湯急冷法に
よるアモルファスリボンは巻回程度の変形を与えても磁
気特性はあ葦り劣化しないと云う特徴からこれ盆生かし
て従来とは逆にあらかじめ用意されたコイルにアモルフ
ァス磁性合金リボンを巻いて磁心全作ったものである。
[Embodiment of the Invention] FIG. 2 shows the structure of a flexible wound magnetic core using an amorphous ribbon according to an embodiment of the present invention. This is because the amorphous ribbon made by the bath water quenching method does not deteriorate its magnetic properties even if it is deformed to the extent of winding. Taking advantage of this, an amorphous magnetic alloy ribbon is placed in a pre-prepared coil, contrary to the conventional method. The entire magnetic core was made by winding the .

第3図は本発明の他の一実施例であるアモルファスリボ
ンを用いた内鍋外鉄型リアクトルの構造である。これは
励磁電流が小さくかつ生産性の良いリアクトル全可能に
するものである。これら実施例においてリアクトルの性
能は励磁電流特性で丘・ト画されるが、励磁電流が高い
励磁電圧まで低く抑えられることが好丑しい特性である
FIG. 3 shows the structure of an inner pot/outer iron type reactor using an amorphous ribbon, which is another embodiment of the present invention. This makes it possible to create a reactor with a small excitation current and high productivity. In these embodiments, the performance of the reactor varies depending on the excitation current characteristics, but a desirable characteristic is that the excitation current can be suppressed to a low level up to a high excitation voltage.

良好な励磁電流特性とは何かと云う点についていま少し
説明を補足する。第4図に示すようなトランスの原理的
回路図においてコイル1とコイル2は磁心3を介して結
合している。いま巻数Nlの1次コイルに1】囚の交番
電流が流れるとき、路に入力される電圧であり、R1は
1次コイルを化量である。
Let me add a little additional explanation to what good excitation current characteristics are. In the principle circuit diagram of a transformer as shown in FIG. 4, coil 1 and coil 2 are coupled via a magnetic core 3. In FIG. When an alternating current of 1] flows through the primary coil with Nl turns, it is the voltage input to the path, and R1 is the value of the primary coil.

このような電圧変成器の用途において、小さい励磁電流
(11)で大きい磁束変化を行ない、したがって大きい
■1及びV2に生ずるような磁心が望まれる。このよう
な礎石における問題全磁性材型比、低保磁力の磁気特性
の場合に得られる。この点から以下の説明では材料の磁
気特性として(は磁束密度、角型比、保磁力を取上げる
In such voltage transformer applications, a magnetic core is desired that produces a large magnetic flux change with a small excitation current (11), thus resulting in large 1 and V2. Problems in such foundation stones are obtained in the case of total magnetic material type ratio, magnetic properties of low coercive force. From this point of view, in the following explanation, the magnetic properties of the material (magnetic flux density, squareness ratio, and coercive force) will be discussed.

ロール急冷法によって作製したアモルファスリ・  ボ
ンにtri溶湯噴出温度、圧力およびロール回転速度な
どの製造条件が磁気特性に影響を及ぼし、上述した高磁
束密度、高角屋比、低保磁力磁気特性を得るには最適の
条件がある。一般にはアモルファスリボンはリボンの面
性状と磁気特性の両者の一番よい条件で作製する。l?
’eあるいはFe−Ni系アモルファスリボンはCo系
アモルファスリボンと異なって磁歪係数が30x’1O
−6程度と大きくリボンに存在するリボンの長手方向の
張力によって一軸異方性を持つという事柄がある。すな
わち、浴湯急冷時にリボンに与えられる歪によって異方
性が生れ、それがリボンの長手方向での角型ヒステリシ
ス特性を生む。しかしこのような角型ヒステリシス特注
は熱処理によって可成りの程度の改良が可能なことも刈
られている。すなわち、リボンの長手方向に張力を与え
たり、リボンの長手方向に磁界に印加したりしてその材
料の磁気変態点以下の(A kでベーキングすれば角型
ヒステリシス″特性の改良がなされる。合金組成によっ
て幾分の違いはあるがFeあるいはpe−Ni系アモル
ファス磁性合金ではこのような熱処理の最適温度は40
0C付近にある。しかし、このようにして得られた角型
ヒステリシス特性は巻回のために歪によって大きく損な
われると云う欠点があって実施例1に示すような可撓型
巻磁心あるいは実施例2に示すようなリアクトルへの用
途に適さない。そこで熱処理後の巻回によって磁気特性
が損なわれないような熱処理を探索し、アモルファスリ
ボンのよりすぐれた磁気特性を得るための熱処理法ケ探
索した。
Manufacturing conditions such as tri-molten metal ejection temperature, pressure, and roll rotation speed affect the magnetic properties of amorphous li-bon produced by the roll quenching method, and the above-mentioned high magnetic flux density, high kakuya ratio, and low coercive force magnetic properties are obtained. has optimal conditions. Generally, amorphous ribbons are manufactured under the best conditions for both surface properties and magnetic properties of the ribbon. l?
Unlike the Co-based amorphous ribbon, the 'e or Fe-Ni amorphous ribbon has a magnetostriction coefficient of 30x'1O.
There is a problem in that the ribbon has uniaxial anisotropy due to the tension in the longitudinal direction of the ribbon, which is as large as about -6. That is, the strain applied to the ribbon during rapid cooling in the bath water produces anisotropy, which produces square hysteresis characteristics in the longitudinal direction of the ribbon. However, it is also known that such custom-made square hysteresis can be improved to a considerable degree by heat treatment. That is, by applying tension in the longitudinal direction of the ribbon or applying a magnetic field in the longitudinal direction of the ribbon and baking at a temperature below the magnetic transformation point of the material (Ak), the "square hysteresis" characteristic can be improved. Although there are some differences depending on the alloy composition, the optimum temperature for such heat treatment is 40°C for Fe or Pe-Ni amorphous magnetic alloys.
It is near 0C. However, the rectangular hysteresis characteristic obtained in this way has the disadvantage that it is greatly impaired by distortion due to the winding. Not suitable for use in reactors. Therefore, we searched for a heat treatment that would not impair the magnetic properties of the amorphous ribbon by winding it after the heat treatment, and searched for a heat treatment method that would give the amorphous ribbon even better magnetic properties.

以下、発明ケ実施例にしたがって説明する。Hereinafter, the invention will be explained according to embodiments.

実施例1 片ロールによる溶湯急冷法により、厚さ20μm1幅5
喘のリボン全作製した。合金組成は原子%でFeニア3
.Ni8.Si二10.I3:(3である。
Example 1 Thickness 20 μm 1 width 5 by rapid cooling of molten metal using one roll
I made all the pant ribbons. Alloy composition is FeNia3 in atomic%
.. Ni8. Si210. I3: (3.

次いでこのリボン全トロイダル巻きコアに成型した。巻
コアの内径(は25m、外径は35mmとした。
This ribbon was then molded into a full toroidal wound core. The inner diameter of the wound core was 25 m, and the outer diameter was 35 mm.

このようにして作製したトロイダル巻きコアを210〜
390Cの範囲で0,5hのベーキングを行なった。次
いで巻きコアを解きほぐし、これを再巻してトロイダル
巻きコアとした。すなわち、巻回の歪を与えてコアに成
壓し直した訳である。巻コアの成型において、リボンに
200gの巻き取シ張力を与えて成型した。このように
したときの磁気特性を最初の熱処理温度全横軸として整
理したのが第5図である。
The toroidal wound core produced in this way is 210 ~
Baking was performed at 390C for 0.5h. The wound core was then unraveled and re-wound to form a toroidal wound core. In other words, the core was re-formed by applying distortion to the winding. In molding the wound core, a winding tension of 200 g was applied to the ribbon. FIG. 5 shows the magnetic properties obtained in this manner, arranged on the horizontal axis of the initial heat treatment temperature.

再巻したトロイダル巻きコアの磁気特性で注目されるの
は260〜360Cベーキングによる磁束密度Bl +
 Bla及び角型比Br’/Btの増力11である。
What is noteworthy about the magnetic properties of the re-wound toroidal core is the magnetic flux density Bl + due to baking at 260-360C.
Bla and the squareness ratio Br'/Bt are increased by 11.

また、この範囲でアモルファス磁1生材料の特徴である
保磁力f(cが小さい。これは再巻き作業をイテなわな
いとき保磁力が最も小爆くなる360〜390Cでのベ
ーキングと異なったベーキング温度となっている。1だ
、熱処理なしと比較して260〜360Uでのベーキン
グにより明らかに角型比が改良される。
In addition, in this range, the coercive force f(c), which is a characteristic of the amorphous magnetic 1 raw material, is small. 1. Baking at 260 to 360 U clearly improves the squareness ratio compared to no heat treatment.

実施例2 片ロール急冷法により、厚さ30μm、19畠5配のリ
ボンを作製した。合金組成(、は原子%でFe;78+
 Si ;9+ B;13である。次いでこのリボンイ
トロイダル巻きコアに成型した。このようにして作製し
たトロイダル善さコアを210〜440CCO範囲で0
.5hのベーキング2行なった。仄いで巻きコア金屑き
ほぐし、これを再巻してトロイダル巻きコアとした。こ
の際、リボンに200gの巻き取り張力τ与えて成型し
た。このようにしたときの磁気特性?最初の熱処理温度
(i:横軸として藍理したのが第6図である。再巻した
トロイダル巻きコアの磁気特性で注目されるのは260
〜390Cベーキングによる磁束密度BI + BIO
及び角型比B r/B、の増vOである。また、この範
囲でアモルファス磁性材料の特長である小さい保磁力が
得られ、熱処理なしに比較して260〜390Cのベー
キングにより磁気特性が改良される。
Example 2 A ribbon with a thickness of 30 μm and 19 halves and 5 ribbons was produced by a single roll quenching method. Alloy composition (, is Fe in atomic %; 78+
Si;9+B;13. This ribbon was then molded into an itroidal wound core. The toroidal goodness core prepared in this way was 0 to 210 to 440 CCO.
.. I did two 5 hour baking sessions. The metal scraps from the wound core were loosened, and this was re-wound to form a toroidal wound core. At this time, the ribbon was molded with a winding tension τ of 200 g. What are the magnetic properties when done this way? The initial heat treatment temperature (i: plotted as the horizontal axis is shown in Figure 6.The magnetic properties of the re-wound toroidal core are notable for the
~Magnetic flux density BI + BIO by 390C baking
and the increase vO of the squareness ratio B r/B. Furthermore, within this range, a small coercive force, which is a feature of amorphous magnetic materials, can be obtained, and the magnetic properties are improved by baking at 260 to 390 C compared to those without heat treatment.

実施例3 第2図に示すような可撓型巻磁Ib金熱処理なしリボン
及び熱処理ありリボンを用いて作製し、その1藏克移相
6特性を比較した。実、・戎結果ケ第7図に示す。熱処
理ありは実〃fj ?1 iの合金で310Cのベーキ
ングを施したリボンを用いた場合であり、熱処理なしは
急冷のままのリボンを用いた場合である。磁気移相器特
性として曲線の立上りの煩斜が大きくかつその直線部が
広いことが望ましい。
Example 3 A flexible wound Ib gold ribbon as shown in FIG. 2 was prepared using a ribbon without heat treatment and a ribbon with heat treatment, and the phase shift characteristics thereof were compared. In fact, the results are shown in Figure 7. Is it true with heat treatment? This is a case in which a ribbon baked at 310C with an alloy of 1i is used, and the case without heat treatment is a case in which a rapidly cooled ribbon is used. As a characteristic of the magnetic phase shifter, it is desirable that the rising slope of the curve is large and the straight line portion thereof is wide.

熱処理あすのものが熱処理なしのものに戟べてすぐれた
磁気移相器特性である。
The magnetic phase shifter characteristics of the heat-treated one are superior to those without heat treatment.

実施列 第3図に示すような外仙Hvcアモルファス磁性リボン
を用いた内鍋外鉄型すアクトル會作製した。
An inner pot and outer iron type actuator using an outer Hvc amorphous magnetic ribbon as shown in FIG. 3 was prepared.

使用したリボンは実施例20合金で3300で1hのベ
ーキングしたものと熱処理なしの2通りである。第8図
に励磁電流特性を示す。熱処理ありの方が高い励磁電圧
まで励磁龜流が低く保たれ、かつ励磁准流特性の直線性
が良好であり、巻付は前に330Cでベーキングしたこ
との効果が認められる。
Two types of ribbons were used: one made of the alloy of Example 20 and one baked at 3300 for 1 hour and the other without heat treatment. Figure 8 shows the excitation current characteristics. With heat treatment, the excitation current was kept low up to a high excitation voltage, and the linearity of the excitation quasi-current characteristics was better, and the effect of baking at 330C before winding was recognized.

〔発明の効果〕〔Effect of the invention〕

一般に磁性材料はひずみが加わると磁気特性が変化する
が、アモルファス磁性材料もその範1卿から逃れること
ができない。しかし、本発明で述べた適切なベーキング
を施したアモルファス磁性材料はひずみが加わったとき
の角型ヒステリシス特性の劣化が小さく、巻回のための
成型歪かがかる可撓型巻磁’Llz内銅外鉄銅外鉄型リ
アクトル用途に適する。このような磁気部品は励磁電流
や損失が小さくかつ生産性がよいので高性能の変圧器、
変流器、磁気増幅器などに用いられる。
Generally, the magnetic properties of magnetic materials change when strain is applied to them, but amorphous magnetic materials cannot escape from this category. However, the amorphous magnetic material that has been properly baked as described in the present invention has a small deterioration of the square hysteresis characteristics when strain is applied, and is suitable for flexible winding magnet 'Llz inner copper which is subjected to molding distortion for winding. Suitable for use in external copper and external iron type reactors. These magnetic components have low excitation current and loss, and are highly productive, so they are used in high-performance transformers,
Used in current transformers, magnetic amplifiers, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のパーマロイなどの巻侮心の構造図、第2
図は本発明の一実施vすのアモルファスリ・・ボンを用
いた可撓型巻磁ノuの構造図、第3図は不発明の一実7
加例のアモルファスリボンを用いたピョ潮外妖型リアク
トルの構造図、第4図は也(a変換特性全説明するため
のトランスの原理的回路図、第5図、第6図はFe系及
びFe−Nr系アモルファス磁性材料の焼鈍温度と磁気
特性の関係を示す線図、第7図は本発明の実施例の磁気
移相器の特性曲線図、第8図は本発明の実施例の励磁I
E流%匣図である。 1・・・舎磁’IJz 2・・・ケース、3・・・緩衝
剤。 代理人 弁理士 高橋明大 第1辺 第2図 Cb) べ−へンフー&2夜−(0Q少 ベーキングシ易渡 (0c) 制御電洗 1a(fn−A)
Figure 1 is a structural diagram of conventional permalloy etc.
The figure is a structural diagram of a flexible winding magnet using an amorphous ribbon according to one embodiment of the present invention, and Figure 3 is an example of the invention.
Fig. 4 is a structural diagram of a Pyoshio-gai-type reactor using an additional amorphous ribbon. A diagram showing the relationship between annealing temperature and magnetic properties of Fe-Nr based amorphous magnetic material, FIG. 7 is a characteristic curve diagram of a magnetic phase shifter according to an embodiment of the present invention, and FIG. 8 is an excitation diagram according to an embodiment of the present invention. I
It is an E flow% box diagram. 1...Shaji'IJz 2...Case, 3...Buffer. Agent Patent Attorney Meidai Takahashi 1st side Figure 2 Cb) Bahenfu & 2 nights (0Q small baking sheet transfer (0c) Control electric washing 1a (fn-A)

Claims (1)

【特許請求の範囲】[Claims] 1.39(1’以下、260C以上でのベーキングを行
なったことを特徴とするアモルファス磁性材料。
1.39 (An amorphous magnetic material characterized by being baked at 1' or less and 260C or more.
JP2945583A 1983-02-25 1983-02-25 Amorphous magnetic material Pending JPS59157258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2945583A JPS59157258A (en) 1983-02-25 1983-02-25 Amorphous magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2945583A JPS59157258A (en) 1983-02-25 1983-02-25 Amorphous magnetic material

Publications (1)

Publication Number Publication Date
JPS59157258A true JPS59157258A (en) 1984-09-06

Family

ID=12276577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2945583A Pending JPS59157258A (en) 1983-02-25 1983-02-25 Amorphous magnetic material

Country Status (1)

Country Link
JP (1) JPS59157258A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2506681A (en) * 2012-10-08 2014-04-09 Vacuumschmelze Gmbh & Co Kg Soft anisotropic magnetic material article and method for its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2506681A (en) * 2012-10-08 2014-04-09 Vacuumschmelze Gmbh & Co Kg Soft anisotropic magnetic material article and method for its production

Similar Documents

Publication Publication Date Title
US4150981A (en) Glassy alloys containing cobalt, nickel and iron having near-zero magnetostriction and high saturation induction
US4268325A (en) Magnetic glassy metal alloy sheets with improved soft magnetic properties
US4038073A (en) Near-zero magnetostrictive glassy metal alloys with high saturation induction
JPS5929644B2 (en) Method for modifying magnetic properties of high magnetic permeability amorphous alloy
JPS5934781B2 (en) Method for reducing magnetic hysteresis loss of soft magnetic amorphous alloy ribbon material
JPH0219179B2 (en)
US5138393A (en) Magnetic core
EP0086485B1 (en) Wound iron core
US5091253A (en) Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation
JP2552274B2 (en) Glassy alloy with perminer characteristics
JPS6362579B2 (en)
JP2710949B2 (en) Manufacturing method of ultra-microcrystalline soft magnetic alloy
JPH01294847A (en) Soft-magnetic alloy
KR20020002424A (en) Magnetic glassy alloys for high frequency applications
JPH0544165B2 (en)
JP2823203B2 (en) Fe-based soft magnetic alloy
JPS6119701B2 (en)
JPH0338334B2 (en)
JPS59157258A (en) Amorphous magnetic material
US4834814A (en) Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability
JPH0123926B2 (en)
JP3055722B2 (en) Method for manufacturing wound core having high squareness ratio at high frequency and wound core
JPH0549742B2 (en)
JPS6137762B2 (en)
Luborsky et al. Engineering magnetic properties of Fe-Ni-B amorphous alloys