JPS59156599A - Submerged arc welding method - Google Patents

Submerged arc welding method

Info

Publication number
JPS59156599A
JPS59156599A JP2969783A JP2969783A JPS59156599A JP S59156599 A JPS59156599 A JP S59156599A JP 2969783 A JP2969783 A JP 2969783A JP 2969783 A JP2969783 A JP 2969783A JP S59156599 A JPS59156599 A JP S59156599A
Authority
JP
Japan
Prior art keywords
flux
submerged arc
weld metal
arc welding
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2969783A
Other languages
Japanese (ja)
Inventor
Naoki Okuda
直樹 奥田
Takashi Wada
俊 和田
Kaoru Hase
薫 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2969783A priority Critical patent/JPS59156599A/en
Publication of JPS59156599A publication Critical patent/JPS59156599A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3602Carbonates, basic oxides or hydroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To provide a weld metal having a high level of low temp. toughness by specifying the component compsn. and bulk density of a flux for submerged arc welding and decreasing the content of oxygen and nitrogen in a welding wire. CONSTITUTION:A flux for submerged arc welding which contains the following components by weight % and having a bulk specific density of flux of 0.85- 1.85g/cm<2> is used: The flux contains the respective components consisting of 22-35% CaF2, 22-38% MgO, 3-12% CaO, 54-80% CaF2+MgO+CaO, 10- 25% Al2O3, 7-20% SiO2 and 0.5-3.0%>=1 kind of Na2O and K2O. A welding wire contg. <=40ppm nitrogen and <=100ppm oxygen is used. A weld metal having excellent low temp. toughness is obtd. if submerged arc welding is performed by using the above-mentioned flux and wire.

Description

【発明の詳細な説明】 本発明は潜弧溶接方法に関し、詳細にはNb、、vの1
種又は2種を含有する低温用鋼の潜弧溶接方法であって
、特に母材希釈度の大きい両面一層溶接や溶接後熱処理
を施す場合等におい、でも低温靭性の良好な溶接部を得
ることのできる潜弧溶接方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a submerged arc welding method.
A submerged arc welding method for low-temperature service steel containing 1 or 2 types, which provides a welded part with good low-temperature toughness, especially when double-sided single-layer welding with a high base metal dilution or post-weld heat treatment is performed. The present invention relates to a submerged arc welding method that allows for

従来Nl)、V含有鋼板に対しては、溶接金属をTI−
B系にすることによシ、溶接金属の組織を微細化する手
段で低温靭性を確保するとじう方法が一般に採用されて
いた。しかしこの方法においては、母材の希釈が非常に
太き(Nb、Vが溶接金属中に多量に添加される両面一
層溶接や強度および靭性を向上させる目的で添加される
MOがワイヤ、母材、フラックス等から溶接金属中に添
加された場合、溶接によって熱影響を受けない原質部の
靭性は高水準を確保でき名ものの、次層の溶接やセカン
ドサイドの溶接によって熱影響を受ける再加熱部の靭性
は析出硬化によって急激に劣化する。そのため、溶接金
属の靭性は均一なものではなく、衝撃試験片の採取位置
によって大きく変化し、溶接継手の均一性ひいては構造
物の安全性溶接後熱処理(S R、Temper 、 
QT等)を施した場合も、同様の理由によって溶接金属
の靭性は急激に劣化する。さらに近年は、構造物が脆性
破壊し、重大事故を引き起とさないよう従来よシもより
安全性を考慮した規格を採用されるような場合も多々あ
シ、従来から採用されていたシャルピー衝撃試験におけ
る吸収エネルギー値の規格だけでなく、例えば衝撃試験
片の脆性破面率50チ以下(昼下破面特性と言う)また
はCOD試験によるδC≦0.25+nmというような
規格も併せて採用され始めている。この破面特性および
COD特性の規格は、従来の吸収エネルギー値規格に比
べ、はるかに過酷な規格であシ、吸収エネルギー値が余
裕をもって規格を満足しているものでも、他の規格を満
足できない場合が多かった。特にNb、■含有鋼板を使
用する場合は、その傾向が顕著である。
For conventional Nl) and V-containing steel sheets, weld metal is TI-
Generally, a method was adopted in which low-temperature toughness was ensured by making the structure of the weld metal finer by making it B-based. However, in this method, the dilution of the base metal is extremely large (large amounts of Nb and V are added to the weld metal for double-sided welding, and MO added for the purpose of improving strength and toughness is added to the wire and base metal). When added to weld metal from flux, etc., it is possible to maintain a high level of toughness in the raw material that is not affected by heat during welding, but reheating that is affected by heat by welding the next layer or second side The toughness of the weld metal deteriorates rapidly due to precipitation hardening.Therefore, the toughness of the weld metal is not uniform and varies greatly depending on the location where the impact test piece is taken, which affects the uniformity of the welded joint and the safety of the structure after welding heat treatment. (SR, Temper,
(QT, etc.), the toughness of the weld metal deteriorates rapidly for the same reason. Furthermore, in recent years, standards that take safety into account are often adopted to prevent structures from becoming brittle and causing serious accidents. In addition to the standards for absorbed energy values in impact tests, we also adopt standards such as, for example, brittle fracture ratio of impact test pieces of 50 inches or less (referred to as daytime fracture characteristics) or δC≦0.25+nm in COD tests. It's starting to happen. These standards for fracture surface properties and COD properties are much stricter than the conventional standards for absorbed energy values, and even if the absorbed energy value satisfies the standards with a margin, it may not satisfy other standards. There were many cases. This tendency is particularly noticeable when using a steel plate containing Nb and (2).

そこで本発明者等は上記問題について研究を重ね、殊に
溶接金属中の酸素含有量及び窒素含有量に着目して実験
を進めた。即ち第1図は溶接金属中の窒素含有量と一6
0℃におけるδ0値(COD特性値)との関係を示す一
グラフで溶接金属中の酸素含有量は150〜170PI
IInとし、溶接部分には後熱処理(応力除去焼鈍)を
施している。グラフに示される通シ、窒素含有量が35
p戸以下において良好なCOD特性が得られておシ破面
特性も良好であった。
Therefore, the inventors of the present invention have conducted repeated studies on the above-mentioned problem, and conducted experiments focusing on the oxygen content and nitrogen content in the weld metal. That is, Figure 1 shows the nitrogen content in the weld metal and -6
A graph showing the relationship with the δ0 value (COD characteristic value) at 0°C shows that the oxygen content in the weld metal is 150 to 170 PI
IIn is used, and the welded portion is subjected to post-heat treatment (stress relief annealing). As shown in the graph, the nitrogen content is 35
Good COD properties were obtained below p and the fracture surface properties were also good.

一方第2図は溶接金属中の酸素含有量と一60℃におけ
るδ0値の関係を示すグラフで、溶接金属中の窒素含有
量は20〜3011声とし、溶接部分7には後熱処理(
応力除去焼鈍)を譲している。グラフに示される様に、
酸素含有量が180卿以下において良好なC,OD特性
が得られておシ破面特性も良好であった。
On the other hand, Fig. 2 is a graph showing the relationship between the oxygen content in the weld metal and the δ0 value at -60°C.
(stress relief annealing). As shown in the graph,
When the oxygen content was 180% or less, good C and OD properties were obtained, and the fracture surface properties were also good.

本発明は上記知見に基づいてなされたものであって、溶
接金属中の酸素含有量及び窒素含有量を夫々低減させる
ことができる様な潜弧溶接用フラックス並びにワイヤの
成分組成を工夫し、これにより高水準の低温靭性を有す
る溶接金属を与える潜弧溶接方法を提供しようとするも
のである。
The present invention has been made based on the above findings, and has devised a flux for submerged arc welding and a wire composition that can reduce the oxygen content and nitrogen content in the weld metal. The object of the present invention is to provide a submerged arc welding method that provides a weld metal having a higher level of low-temperature toughness.

しかして本発明の潜弧溶接方法とは、下記成分を含み、
且つCa’?、、MgO及びCaOの総和が54〜80
%であると共に、フラックスの嵩密度が0.85〜1.
85 g /c+flである潜弧溶接用フラックスと、
窒素含有量が40四以下であシ、且つ酸素含有量が10
0p−以下であるワイヤを用いて溶接する点に要旨が存
在する。
However, the submerged arc welding method of the present invention includes the following components:
And Ca'? ,, the sum of MgO and CaO is 54 to 80
%, and the bulk density of the flux is 0.85 to 1.
A flux for submerged arc welding that is 85 g/c+fl;
Nitrogen content is 404 or less, and oxygen content is 10
The gist lies in welding using a wire that is 0p or less.

CaP2122〜35% MgO:  22〜38% CaO:   3〜12% A1+Os:  19〜25% 5in2 +   7〜20係 Na、OlK、!001種又は2種;合計で0.5〜3
.0% 本発明者等はまず始めに潜弧溶接用フラックスの成分組
成を特定することによって溶接金属中の酸素含有量及び
窒素含有量を低減させようとした。
CaP2122-35% MgO: 22-38% CaO: 3-12% A1+Os: 19-25% 5in2 + 7-20 Na, OlK,! 001 or 2 types; 0.5 to 3 in total
.. 0% The present inventors first attempted to reduce the oxygen content and nitrogen content in the weld metal by specifying the composition of flux for submerged arc welding.

即ち潜弧溶接用フラックスは種々の酸化物から構成され
、該フラックスの成分組成を工夫することによって溶接
作条性を満足しつつ溶接金属中の酸素含有量を低減させ
ている。父上記成分組成の工夫と共に、該フラックスの
嵩密度についての適正範囲を定めることによシ溶接金属
中の窒素含有量を低減させることにも成功している。し
かし再加熱によるIbやv等の析出硬化を抑制し低温靭
性の向上を図っているが、前述の通し近年の溶接構造物
に対する安全性の要望は厳しく、潜弧溶接用フラックス
の成分組成を工夫するだけではこれを十分に満足するこ
とができない。そこで本発明者等は上記に加えて溶接用
ワイヤ中の酸素含有量並びに窒素含有量を低減させるこ
とにより前記要望を満足させることに成功した。
That is, flux for submerged arc welding is composed of various oxides, and by modifying the composition of the flux, the oxygen content in the weld metal can be reduced while satisfying welding performance. In addition to devising the above-mentioned component composition, we have also succeeded in reducing the nitrogen content in the weld metal by determining an appropriate range for the bulk density of the flux. However, attempts are made to improve low-temperature toughness by suppressing precipitation hardening of Ib and V due to reheating, but as mentioned above, safety requirements for welded structures in recent years have become stricter, and the composition of flux for submerged arc welding has been improved. This cannot be fully satisfied just by doing so. In addition to the above, the inventors of the present invention succeeded in satisfying the above requirements by reducing the oxygen content and nitrogen content in the welding wire.

以下まず始めに本発明に係る潜弧溶接用フラックスにつ
いて具体的に説明する。
First, the flux for submerged arc welding according to the present invention will be specifically explained below.

Ca1F、! 22〜35q6 CaF2は塩基性成分であって溶接金属中の酸素量を低
下させる効果があると共に、溶融スラグの流動性を調整
し、スラグ−メタ、ル反応を促進させる機能を発揮する
。しかし22チ未満では酸素量低減効果が有効に発揮さ
れず、又ビードが凸形になると共に、ポックマークが発
生し易くなる。
Ca1F,! 22-35q6 CaF2 is a basic component and has the effect of lowering the amount of oxygen in the weld metal, as well as adjusting the fluidity of molten slag and promoting the slag-metal reaction. However, if it is less than 22 inches, the effect of reducing the amount of oxygen is not effectively exhibited, and the bead becomes convex and pock marks are likely to occur.

一方35チを越えるとスラグの流動性が過大になってス
ラグの巻込みを発生し易くなると共にスラグの剥離性が
悪くなる。
On the other hand, if it exceeds 35 inches, the fluidity of the slag becomes excessive, making it easy for the slag to become entangled, and at the same time, the peelability of the slag becomes poor.

MgO+22〜38% MgOは塩基性成分であってスラグ形成剤及び粘性調整
剤としての作用を有すると共に、溶接金属中の酸素量を
低下させる効果がある。22q6未満では塩基度が不足
し、酸素量低”減効果が乏しくなると共に、ビードが蛇
行し易くアンダーカットが多発する。38q6を越える
とビード形状に凹凸が現われ易くポックマークも多発す
る。
MgO+22 to 38% MgO is a basic component that functions as a slag forming agent and a viscosity modifier, and also has the effect of lowering the amount of oxygen in the weld metal. If it is less than 22q6, the basicity will be insufficient and the effect of reducing the amount of oxygen will be poor, and the bead will tend to meander and undercuts will occur frequently. If it exceeds 38q6, irregularities will easily appear in the bead shape and pock marks will occur frequently.

CaO:3〜12% CaOは塩基性成分であってスラグの塩基度、融点及び
粘性を調整する機能を発揮する。3チ未満では塩基度が
不足するばかシでなくスラグの粘性が低下し過ぎてビー
ドが蛇行する。一方12q6を越えるとアークの安定性
が悪くなシ1、スラグ剥離性も劣化する。
CaO: 3-12% CaO is a basic component and functions to adjust the basicity, melting point, and viscosity of the slag. If it is less than 3 inches, the basicity will not be insufficient, but the viscosity of the slag will be too low and the bead will meander. On the other hand, if it exceeds 12q6, the arc stability will be poor and the slag removability will also deteriorate.

その他、CaOの代シにCa CO,を用いCaC0,
−+ CaO+Co2 なる化学反応によって発生するCO2ガスによって、溶
接金属中の窒素ガスの放出を促進させることも有効であ
る。但しこの場合にはCa CQ、をCaOに換算して
3〜12%の範囲となる様に添加しなければ溶接作業性
が悪くなる。
In addition, CaCO, is used as a substitute for CaO, and CaC0,
It is also effective to promote the release of nitrogen gas in the weld metal using CO2 gas generated by the chemical reaction -+CaO+Co2. However, in this case, unless CaCQ is added in a range of 3 to 12% in terms of CaO, welding workability will deteriorate.

AI、0.110〜25・チ Al2O,lは略中性成分であシ、フラックスの塩基度
の低下をできるだけ抑えつつスラグの融点及び粘性を調
整する機能を発揮する。10L16未満ではアンダーカ
ットが生じ易くなる他、スラグ剥離性が低下する。一方
25チを越えると粘性が高くなシ過ぎてスラグの巻込み
が発生し易くなると共にビードが凸形状になシ好ましく
ない。
AI, 0.110-25.Th Al2O,l is a substantially neutral component, and exhibits the function of adjusting the melting point and viscosity of the slag while suppressing a decrease in the basicity of the flux as much as possible. If it is less than 10L16, undercuts tend to occur and slag removability deteriorates. On the other hand, if it exceeds 25 inches, the viscosity is too high, which tends to cause slag to become entangled, and the bead becomes convex, which is undesirable.

Sin、+  7〜20% Sin、は酸性成分であってスラグ生成剤であると共に
、塩基度調整剤及び粘性調整剤としても機能する。しか
し7%未満ではスラグの粘性が不足するためビードが蛇
行し、またアンダーカットを生じる。、一方20チを越
えると塩基度が低下゛し溶接金属中の酸素量が増加して
衝撃値が劣化すると共に、−子ラグ剥離性が劣悪になる
Sin, +7 to 20% Sin, is an acidic component and serves as a slag forming agent, as well as a basicity modifier and a viscosity modifier. However, if it is less than 7%, the viscosity of the slag is insufficient, resulting in meandering beads and undercuts. On the other hand, if it exceeds 20 degrees, the basicity decreases, the amount of oxygen in the weld metal increases, the impact value deteriorates, and the removability of the lug becomes poor.

Na、Oとに、 Oの合計量+0.5〜3.0%Na2
O及びに20は、アークの安定性を高める機能及び粘性
を調整する機能を発揮する。しめユしこれらの合計含有
量が0.5%未満ではアークが不安定になシビードの凹
凸及び蛇行が著しくなる。
For Na and O, total amount of O + 0.5 to 3.0% Na2
O and Ni20 exhibit the function of increasing the stability of the arc and the function of adjusting the viscosity. If the total content of these components is less than 0.5%, the arc will become unstable and the unevenness and meandering of the sheave will become significant.

一方合計含有量が3.0チを越えるとスラグの粘性が低
下し過ぎて作業性が悪くなると共に、フラックスの耐吸
湿性が悪化しポックマークやピット等のガスによる欠陥
が発生し易くなる。
On the other hand, if the total content exceeds 3.0 inches, the viscosity of the slag decreases too much, resulting in poor workability, and the moisture absorption resistance of the flux deteriorates, making gas-induced defects such as pock marks and pits more likely to occur.

CaF、 、MgO及びCaOの合計量154〜80チ
CaF2.MgO及びCaOは前述の通シ溶接金属中の
酸素量低減に効果を発揮するが、溶接作業性に与え汁響
も大きい。即ちCaF2.MgO及びCaOの合計量が
54%未満では塩基度が不十分で溶接金属中の酸素量を
低減できない。一方上記合計量が80チを越えると酸素
量は低下するが、溶接金属の粘性や融点が高くなシ過ぎ
て作業性が悪くなる。
The total amount of CaF, , MgO and CaO is 154 to 80 cm. MgO and CaO are effective in reducing the amount of oxygen in the through-welding metal described above, but they also have a large effect on welding workability. That is, CaF2. If the total amount of MgO and CaO is less than 54%, basicity is insufficient and the amount of oxygen in the weld metal cannot be reduced. On the other hand, if the total amount exceeds 80 g, the amount of oxygen will decrease, but the viscosity and melting point of the weld metal will be too high, resulting in poor workability.

嵩密度:0.85〜1.85g/c艷 フラックスの嵩密度と溶接金属中の窒素量の関係は第3
図に示す通シであシ、嵩密度が大きい程、溶接金属中の
窒素量は低減する傾向にある。嵩密度が0.85 g 
10f1未満では窒素量低減効果が十分ではなく、靭性
改善効果が有効に発揮され難くなるばかシでなく、溶接
中の溶接金属の吹上げがやや多くなる。一方嵩密度が1
= 856/cJを越えると嵩密度が大きくなシ過ぎて
ビード幅が狭くなシ、且つ余盛が高くなシ過ぎて好まし
くない。
Bulk density: 0.85 to 1.85 g/c The relationship between the bulk density of the flux and the amount of nitrogen in the weld metal is the third
As shown in the figure, the larger the bulk density, the lower the amount of nitrogen in the weld metal tends to be. Bulk density is 0.85 g
If it is less than 10 f1, the effect of reducing the amount of nitrogen will not be sufficient, and the effect of improving toughness will not be effectively exhibited, but the weld metal will blow up a little more during welding. On the other hand, the bulk density is 1
If it exceeds = 856/cJ, the bulk density becomes too large, the bead width becomes narrow, and the excess buildup becomes too high, which is not preferable.

上記成分組成の潜弧溶接用フラックスを用いると共に、
溶接用ワイヤ中の酸素含有量及び窒素含有量を夫々下記
の通シ特定した。
In addition to using the flux for submerged arc welding having the above-mentioned composition,
The oxygen content and nitrogen content in the welding wire were specified as follows.

ワイヤ中の窒素含有量:40四以下 前述の通シ(第1図参照)溶接金属中の窒素含有量は3
5111XD以下とする必要があシ、その為には前述の
潜弧溶接用フラックスを用いると共に、ワイヤ中の窒素
含有量を40卿以下に抑えることが必要であることが判
明した。
Nitrogen content in the wire: 404 or below (see Figure 1) Nitrogen content in the weld metal is 3.
5111XD or less, and for that purpose, it was found that it was necessary to use the aforementioned flux for submerged arc welding and to suppress the nitrogen content in the wire to 40% or less.

ワイヤ中の酸素含有量+100pr111以下前述の通
シ(第2図参照)溶接金属中の酸素含有量は180pp
Ill以下とする必要があシ、その為には前述の潜弧溶
接用フラックスを用いると共に、ワイヤ中の酸素含有量
をiooppm以下に抑える必要があることが判明した
。即ち溶接金属中の酸素含有量は溶接中のスラグ−メタ
ル反応によって決定されるため、高塩基性フラックスを
用いて溶接すれば低減できるものの、ワイヤ中の酸素含
有量が非常に高い場合は高塩基性フラックスを用いても
目標とする酸素含有量に到達することができず、従って
ワイヤ中の酸素含有量も同時に規制する必要があった。
Oxygen content in wire + 100pr 111 or less (see Figure 2) Oxygen content in weld metal is 180pp
It was found that it was necessary to keep the oxygen content below Ill, and for that purpose, it was necessary to use the aforementioned flux for submerged arc welding and to suppress the oxygen content in the wire to below iooppm. In other words, the oxygen content in the weld metal is determined by the slag-metal reaction during welding, so it can be reduced by welding with a highly basic flux, but if the oxygen content in the wire is very high, Even with the use of a chemical flux, it was not possible to reach the target oxygen content, so it was necessary to simultaneously control the oxygen content in the wire.

尚上記以外のワイヤの化学成分は、潜弧溶接における母
材の希釈を考慮して下記の範囲とするととが好ましい。
Note that the chemical components of the wire other than those listed above are preferably within the following ranges, taking into account the dilution of the base material during submerged arc welding.

c+”o、o1〜0.20チ 81+0.40%以下 Mn+Q。50〜2.00% N:t+7.5  %以下 Cujl、25−以下 その他、P%B、Nb、v等の不純物はできる限シ低く
する方が好ましい。
c + "o, o1 ~ 0.20 Chi 81 + 0.40% or less Mn + Q. 50 ~ 2.00% N: t + 7.5% or less Cujl, 25 - or less Other impurities such as P% B, Nb, v etc. It is preferable to lower the value.

以上の様な潜弧溶接用フラックス及びワイヤを用いて溶
接することによって、再加熱を受けても析出硬化を起こ
し難い溶接金属を得ることができるので、両面一層溶接
におけるセカンドサイドの溶接や多層盛溶接における次
層の溶接による再加熱あるいは溶接後熱処理による再加
熱を受けた場合でも溶接金属の低温靭性を、高レベルに
保つととができる。
By welding using the flux and wire for submerged arc welding as described above, it is possible to obtain a weld metal that does not easily undergo precipitation hardening even after being reheated. The low-temperature toughness of the weld metal can be maintained at a high level even when it is reheated by welding the next layer during welding or by post-weld heat treatment.

尚上記以外の成分としてBaO成分を加えれば、溶接金
属中の窒素量を低減させることができる。
If a BaO component is added as a component other than the above, the amount of nitrogen in the weld metal can be reduced.

BaO成分110%以下 Ba0%BaC0,、BaF2よシなる群から選択され
る少なくとも1sを、BaOに換算して10チ以下添加
することによシ、溶接金属中の酸素量を低減することが
できる。即ち溶接金属中の窒素量を低下させることによ
って衝撃値は向上するので、窒素量は可及的少ない方が
好ましい。ところで溶接金属中の窒素量とBaO添加量
の間には第4図に示す様な関係があシ、!3aO換算量
が高くなるのに応じて窒素量が減少するが含有量が10
%を越えるとポックマーク発生の原因となる。
BaO content: 110% or less Ba0% By adding at least 1s selected from the group consisting of BaC0, BaF2 and 10% or less in terms of BaO, the amount of oxygen in the weld metal can be reduced. . That is, since the impact value is improved by reducing the amount of nitrogen in the weld metal, it is preferable that the amount of nitrogen be as small as possible. By the way, there is a relationship as shown in Figure 4 between the amount of nitrogen in the weld metal and the amount of BaO added! As the 3aO equivalent amount increases, the nitrogen amount decreases, but the content is 10
If it exceeds %, it will cause pockmarks.

ところで本発明方法によシ得られる溶接金属(再加熱を
受けても析出硬化を起こし難い溶接金属)の好ましい成
分組成を示すと次の通シである。
By the way, the preferred composition of the weld metal obtained by the method of the present invention (weld metal that does not easily undergo precipitation hardening even when reheated) is as follows.

C:  0.05〜0.15チ s1 +  o、4596以下 Mn +  0.75〜1.65 % Ni+3.0チ以下 cut  0,5チ以下 その他、p、s等の不純物はできるだけ低くする方が良
い。
C: 0.05 to 0.15 cm s1 + o, 4596 or less Mn + 0.75 to 1.65% Ni + 3.0 cm or less cut 0.5 cm or less Other impurities such as p and s should be kept as low as possible is good.

本発明は概略以上の様に構成されているので、溶接作業
性を損うことなく、低温靭性(衝撃特性もしくは衝撃性
能破面特性、COD特性等)の優れた溶接金属を得るこ
とができ、LPGタンクや寒冷地向構造物の分野におけ
る工業的価値は大である。
Since the present invention is roughly configured as described above, it is possible to obtain a weld metal with excellent low-temperature toughness (impact properties or impact performance fracture surface properties, COD properties, etc.) without impairing welding workability. It has great industrial value in the field of LPG tanks and structures for cold regions.

以下本発明の実施例について述べる。Examples of the present invention will be described below.

第1表に示すフラックス及び第2表に示すワイヤを用い
て、第3表に示す鋼板の両面一層潜弧溶接を行なった。
Using the flux shown in Table 1 and the wire shown in Table 2, single-layer submerged arc welding was performed on both sides of the steel plates shown in Table 3.

開先形状及び積層状態は第5図に示す通シであシ、又溶
接条件は下記の通シである。
The groove shape and lamination state were as shown in FIG. 5, and the welding conditions were as shown below.

(残部Fe) (溶接条件) ファーストサイド 800A−36V−40CPM セカンドサイド 900A−38V−40CPM 得られた溶接金属から引張試験片1(第6図の2点鎖線
部)並びに衝撃試験片2(第6図の1点鎖線部)を夫々
採取し、引張試験(J工5−z−3111)、衝撃試験
(J工5−Z−3112)及びCOD試験を行なった。
(Remaining Fe) (Welding conditions) First side 800A-36V-40CPM Second side 900A-38V-40CPM Tensile test piece 1 (double-dashed line in Fig. 6) and impact test piece 2 (6th dotted line) were prepared from the obtained weld metal. Each specimen (dotted chain line area in the figure) was sampled and subjected to a tensile test (J Engineering 5-z-3111), an impact test (J Engineering 5-Z-3112), and a COD test.

これらの結果を溶接作業性、溶接金属の化学成分と共に
、第4表(イ)〜に)に示した。
These results are shown in Table 4 (a) to 4) along with the welding workability and the chemical composition of the weld metal.

第4表(イ)〜に)からも明らかな様に、引張強さにつ
いては比較例17〜19及び27〜29と実施例の間に
殆んど差がなく何れも良好な結果が得られているが、衝
撃試験値、脆性破面率及びCOD試験値には顕著な差が
見られる。尚比較例17〜19については供試フラック
スとして本発明から外れたものが使用されておシ、又比
較例27〜29については供試ワイヤとして本発明から
外れたものが使用されている。又比較例9〜16では供
試フラックスの化学成分のいずれかが高すぎるか又は低
すぎる為に溶接作業性が悪く、満足できる溶接部が得ら
れず引張試験や衝撃試験を行なうまでも外い。
As is clear from Table 4 (a) to (b), there is almost no difference in tensile strength between Comparative Examples 17-19 and 27-29 and the examples, and good results were obtained in all of them. However, there are significant differences in impact test values, brittle fracture ratios, and COD test values. In Comparative Examples 17 to 19, a sample flux other than the present invention was used, and in Comparative Examples 27 to 29, a sample wire other than the present invention was used. In addition, in Comparative Examples 9 to 16, either the chemical composition of the test flux was too high or too low, resulting in poor welding workability, and satisfactory welds could not be obtained, and even tensile tests and impact tests failed. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶接金属中の窒素量とC0II特性値との関係
を示すグラフ、第2図は溶接金属中の酸素量とCOD特
性値との関係を示すグラフ、第3図はフラックス嵩密度
と溶接金属中の窒素量との関係を示すグラフ、第4図は
BaO添加量と溶接金属中の窒素量との関係を示すグラ
フ、第5図ば実施例で採用した潜弧溶接試験における開
先形状7及び積層状態を示す断面図、第6図は第5図に
示す潜弧溶接部からの引張試験片及び衝撃試験片の採取
箇所を示す説明図である。 出願人  株式会社神戸製鋼所 q 碇翠41ビーi−Q酪昧嘔 筺 笹翠ぐ区分Q(社)淋キ
Figure 1 is a graph showing the relationship between the nitrogen content in the weld metal and the C0II characteristic value, Figure 2 is a graph showing the relationship between the oxygen content in the weld metal and the COD characteristic value, and Figure 3 is the graph showing the relationship between the flux bulk density and the COD characteristic value. A graph showing the relationship between the amount of nitrogen in the weld metal and a graph showing the relationship between the amount of BaO added and the amount of nitrogen in the weld metal. FIG. 6 is a sectional view showing the shape 7 and the laminated state, and FIG. 6 is an explanatory diagram showing the locations where tensile test pieces and impact test pieces are taken from the submerged arc welded portion shown in FIG. 5. Applicant: Kobe Steel, Ltd. q Ikari Sui 41 B i-Q

Claims (1)

【特許請求の範囲】[Claims] (1)下記成分を含み、且つCaF、、、MgO及びC
aOの総和が54〜80重量係(以下単にチと表示する
)であると共に、フラックスの嵩密度が0.85〜1.
85g/c−である潜弧溶接用7ラツクスと、窒素含有
量が40解以下であシ、且つ酸素含有量が1100pr
I以下であるワイヤを用いて溶接することを特徴とする
潜弧溶接方法。 CaP2122〜35 % MgO+22〜38チ CaO+3〜12eI6 A120a ’  10〜25 q6 Sin2 :   7〜20% Ha、OlK、 Oの1種又は2種:合計で05〜3.
0チ (2、特許請求の範囲第1項において、BaO1BaC
O,、BaF、よシ々る群から選択される1種以上をB
aOに換算して10チ以年含有してなる潜弧溶接用フラ
ックスを用いる潜弧溶接方法。
(1) Contains the following components, and includes CaF, , MgO and C
The sum of aO is 54 to 80 by weight (hereinafter simply referred to as "chi"), and the bulk density of the flux is 0.85 to 1.
7 lux for submerged arc welding which is 85g/c-, nitrogen content is not more than 40%, and oxygen content is 1100pr.
A submerged arc welding method characterized by welding using a wire having a temperature of I or less. CaP2122-35% MgO+22-38% CaO+3-12eI6 A120a' 10-25 q6 Sin2: 7-20% One or two of Ha, OlK, O: 05-3% in total.
0chi (2, in claim 1, BaO1BaC
O, BaF, one or more selected from the group B
A submerged arc welding method using a submerged arc welding flux containing 10 g or more in terms of aO.
JP2969783A 1983-02-23 1983-02-23 Submerged arc welding method Pending JPS59156599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2969783A JPS59156599A (en) 1983-02-23 1983-02-23 Submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2969783A JPS59156599A (en) 1983-02-23 1983-02-23 Submerged arc welding method

Publications (1)

Publication Number Publication Date
JPS59156599A true JPS59156599A (en) 1984-09-05

Family

ID=12283297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2969783A Pending JPS59156599A (en) 1983-02-23 1983-02-23 Submerged arc welding method

Country Status (1)

Country Link
JP (1) JPS59156599A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188628A1 (en) * 2018-03-29 2019-10-03 株式会社神戸製鋼所 Flux for submerged arc welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188628A1 (en) * 2018-03-29 2019-10-03 株式会社神戸製鋼所 Flux for submerged arc welding
JP2019171458A (en) * 2018-03-29 2019-10-10 株式会社神戸製鋼所 Flux for submerged arc welding

Similar Documents

Publication Publication Date Title
US4764224A (en) Baked flux for submerged arc welding
EP0060608B1 (en) Both-side single layer, high speed submerged arc welding process
JPH06328292A (en) Submerged arc welding method for high-strength cr-mo steel
US4338142A (en) Melting flux composition for submerged arc welding
JP2000107885A (en) Bond flux for submerged arc welding
JP4767592B2 (en) Submerged arc welding method for refractory structural steel
JP6437420B2 (en) Firing flux for submerged arc welding of high strength steel
JP3354460B2 (en) Covered arc welding method for high strength steel
JPS59156599A (en) Submerged arc welding method
JPH11170085A (en) Bond flux for submerged arc welding and submerged arc welding method using the same
KR100466205B1 (en) A flux composition for submerged arc welding
WO2006126519A1 (en) Fused flux for submerged arc welding
JPH0378197B2 (en)
JPH0513040B2 (en)
JP2020131221A (en) Baked flux for submerged arc welding for high-strength steel
JPH0985488A (en) Fused flux for submerged arc welding
JPH07171695A (en) Method for submerged arc welding of 960mpa high tensile steel
JPH0825060B2 (en) Low-hydrogen coated arc welding rod
JP3550770B2 (en) Flux for sub-mark welding
JPS59150693A (en) Flux for submerged arc welding
KR100615686B1 (en) A metal cored wire with superior low temperature toughness
JPH0122078B2 (en)
JPS594997A (en) Low hydrogen type coated arc welding electrode
JPH06285679A (en) Highly basic and meltable flux
JPS6352795A (en) Baked flux for submerged arc welding