JPS59156530A - Cold forging method of high silicon aluminum - Google Patents

Cold forging method of high silicon aluminum

Info

Publication number
JPS59156530A
JPS59156530A JP3041883A JP3041883A JPS59156530A JP S59156530 A JPS59156530 A JP S59156530A JP 3041883 A JP3041883 A JP 3041883A JP 3041883 A JP3041883 A JP 3041883A JP S59156530 A JPS59156530 A JP S59156530A
Authority
JP
Japan
Prior art keywords
cold forging
silicon
hardness
aluminum alloy
silicon aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3041883A
Other languages
Japanese (ja)
Other versions
JPH0262337B2 (en
Inventor
Takeshi Sakuma
剛 佐久間
Nobuaki Hojo
北条 信明
Makoto Otsubo
大坪 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP3041883A priority Critical patent/JPS59156530A/en
Publication of JPS59156530A publication Critical patent/JPS59156530A/en
Publication of JPH0262337B2 publication Critical patent/JPH0262337B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To enable cold forging and to improve wear resistance, internal quality and dimensional accuracy by annealing an aluminum alloy incorporated with a prescribed ratio of silicon thereby adjusting the hardness to a prescribed value or below. CONSTITUTION:A high silicon aluminum alloy contg. 15-20% silicon is annealed and a blank material adjusted to have <=70HRF hardness is obtd. Such blank material is charged into the die of a cold forging device and is molded under pressure by a punch. The product having excellent wear resistance, internal quality and dimensional accuracy is obtd. by the above-mentioned method.

Description

【発明の詳細な説明】 本発明は内燃機関用のシリンダ、或いはピストンなどの
アルミニウム合金からなる製品の冷間鍛造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cold forging products made of aluminum alloy, such as cylinders or pistons for internal combustion engines.

一般に、内燃機関用又はクーラ用の部品を製造するには
、鍛造用のアルミニウム合金素材(JIS4032合金
)を素材とし、これを冷間鍛造している。しかしながら
斯る素材は成形性が良いという反面、製品となった場合
の耐摩耗性に劣るという欠点がある。
Generally, in order to manufacture parts for internal combustion engines or coolers, an aluminum alloy material for forging (JIS 4032 alloy) is used as a material and this is cold forged. However, although such materials have good moldability, they have the disadvantage of poor abrasion resistance when made into products.

こ−のため最近ではシリンダなどを成形する素材として
高硅素アルミニウム合金を用い、耐摩耗性を向上するよ
うにしているが、一般に高硅素アルミニウム合金氷材は
伸び率が低いため、冷間鍛造には適さないとされ、この
ため鋳造成いは熱間鍛造によって成形している。
For this reason, high-silicon aluminum alloys have recently been used as materials for forming cylinders, etc. to improve wear resistance, but high-silicon aluminum alloy ice materials generally have a low elongation rate, so they are not suitable for cold forging. is considered unsuitable, and for this reason, cast products are formed by hot forging.

しかしながら、金型゛によって鋳造する場合には内部品
質は良いが生産性が悪く、加工代が多(なるという問題
があり、またダイカスト鋳造による場合は生産性及び寸
法精度は良いがガスを巻き込み、熱処理が出来ないとい
う問題がある。また、熱間鍛造による場合は内部品質及
び生産性は良いが、加熱する為酸化層が形成′され、更
に熱膨張等により寸法精度が悪(なるという問題がある
However, when casting with a mold, the internal quality is good, but productivity is poor, and there are problems such as high machining costs.Also, when die casting is used, productivity and dimensional accuracy are good, but gas is involved. There is also the problem that heat treatment cannot be performed.In addition, although internal quality and productivity are good when hot forging is used, an oxidized layer is formed due to heating, and there is also the problem of poor dimensional accuracy due to thermal expansion, etc. be.

本発明は高硅素アルミニウム合金であっても、硅素の含
有割合を特定の範囲内とすることで、冷間鍛造に必要な
伸びを得られるという知見に基いてなしたものであり、
その目的とする処は、製品の内部品質及び寸法精度に優
れ、且つ生産性も良好な高硅素アルミニウム合金の冷間
鍛造方法を提供するにある。
The present invention was made based on the knowledge that even in high-silicon aluminum alloys, by keeping the silicon content within a specific range, the elongation required for cold forging can be obtained.
The objective is to provide a method for cold forging high-silicon aluminum alloys that provides a product with excellent internal quality and dimensional accuracy and good productivity.

上記の目的を達成するため本発明は先ず、素材としての
高硅素アルミニウム合金の硅素の含有割合を15〜20
%とし、この素材を焼鈍することで硬度をHRF70以
下とし、次いで該素材をダイとパンチとの間で加圧成形
するようにしたことをその要旨としている。
In order to achieve the above object, the present invention first aims to increase the silicon content of a high silicon aluminum alloy as a material from 15 to 20.
%, the material is annealed to have a hardness of HRF 70 or less, and then the material is pressure-formed between a die and a punch.

以下に本発明の実施の一例を添付図面に基いて説明する
An example of the implementation of the present invention will be described below based on the accompanying drawings.

第1図及び第2図は本発明に係る冷間鍛造方法の概略を
説明した図であり、第1図A及び第2図AK示すように
、ダイ1内のノックアウトピン2上に素材3をセットし
、次りでこの素材3を第1図B及び第2図Bに示すよう
にダイ1とパンチ4との間で加圧成形し、第1図C及び
第2図Cに示すように゛シリンダなどの製品5を得る。
1 and 2 are views explaining the outline of the cold forging method according to the present invention, and as shown in FIG. 1A and FIG. 2AK, a material 3 is placed on a knockout pin 2 in a die 1. The material 3 is then pressure-formed between the die 1 and the punch 4 as shown in FIGS. 1B and 2B, and then as shown in FIGS. 1C and 2C.゛Product 5 such as a cylinder is obtained.

ここで、上記素材3の含有割合は、硅素51−15〜2
0%、マグネシウムを0.45〜0.65%、銅を4〜
5%、残部をアルミニウムとしたものであり、且つ焼鈍
により硬度をHRF70以下としたものであ、る。斯る
素材3は第3図の実線aに示すように硬度をHRF70
以下とすることにより、冷間鍛造可能範囲である5チ以
工の伸びが得られることが分かる。ここで電3図の破線
すは従来の鍛造用アルミニウム合金(JIS  403
2合金)の硬度と伸び率を示すものであり、本発明に用
いる素材3は従来の素材に比べ若干成形性は劣るが、従
来の素材は耐摩耗性において劣るため、シリンダ等に適
用するには前記した如く問題がある。
Here, the content ratio of the material 3 is silicon 51-15 to 2
0%, magnesium 0.45~0.65%, copper 4~
5%, the balance being aluminum, and the hardness was reduced to HRF 70 or less by annealing. Such material 3 has a hardness of HRF70 as shown by the solid line a in FIG.
It can be seen that by setting the following, an elongation of more than 5 cm, which is the range that can be cold forged, can be obtained. Here, the broken line in the electric diagram indicates the conventional forging aluminum alloy (JIS 403
Material 3 used in the present invention has slightly inferior formability compared to conventional materials, but since conventional materials have inferior wear resistance, it is difficult to apply it to cylinders etc. As mentioned above, there are problems.

また、第4図は本発明方法の実施に用いる高硅素アルミ
ニウム合金素材の硬度と成形応力との関係を示したグラ
フであり、このグラフからも明らかなよ51C1硬度が
HRF70以上では成形応力が急激に増加し、材料は塑
性変形に耐えられず、製品の一部にクラック等の欠陥を
生じる。また硬度が高くなる程、パンチの寿命も短(な
る。したがって素材の硬度は前記第3図に基いた理由と
ともにHRF70以下とするのが適当である。
Furthermore, Fig. 4 is a graph showing the relationship between the hardness and forming stress of the high-silicon aluminum alloy material used in the method of the present invention, and it is clear from this graph that when the 51C1 hardness is HRF70 or higher, the forming stress increases rapidly. The material cannot withstand plastic deformation and defects such as cracks occur in some parts of the product. Furthermore, the higher the hardness, the shorter the life of the punch. Therefore, it is appropriate that the hardness of the material is HRF 70 or less for the reason based on FIG. 3 above.

また、次表は高硅素アルミニウム合金の焼鈍、後の硬度
と機械的強度との関係をを示したものである。
The following table shows the relationship between hardness and mechanical strength after annealing of high silicon aluminum alloys.

〔表〕〔table〕

この〔表〕からも明らかなように硬度をHRF70以上
とするど伸び率が極端に落ち、冷間鍛造ができなくなる
As is clear from this table, when the hardness is increased to HRF70 or higher, the elongation rate drops extremely and cold forging becomes impossible.

更に、硅素の含有割合を15チ以下とすると、初晶硅素
の析出が少なくなり、耐摩耗性が悪(なるので、耐摩耗
性を必要とする部品には使えなくなり、また硅素の含有
割合を20チ以上とすると、初晶硅素の析出量が多いた
め、素材表面における硅素の表面積が増え、このため耐
摩耗性は向上するが変形しない初晶硅素により、塑性変
形能が劣り冷間鍛造が困難となる。したがって硅素の含
有割合は一15〜20%とするのが適当である。
Furthermore, if the silicon content is less than 15 inches, the precipitation of primary silicon will be reduced, resulting in poor wear resistance, making it unusable for parts that require wear resistance. If it is 20 inches or more, the amount of primary silicon precipitated is large, so the surface area of silicon on the material surface increases, which improves wear resistance, but primary silicon does not deform, resulting in poor plastic deformability and cold forging. Therefore, it is appropriate that the silicon content be 15 to 20%.

次に具体的な実験例を述べる。Next, a specific experimental example will be described.

〔実験例〕[Experiment example]

硅素15〜18%、マグネシウム0.45〜0.65チ
銅4〜5%を含有する高硅素アルミニウム合金を焼鈍し
、硬度が1(RF67で外径50+mn、厚さ13咽の
素材を得た。そしてこの素材を第1図に示す如き冷間鍛
造装置のダイに装入し、アルミボンデ等で潤滑し、パン
チを250 ton冷間鍛造プレスで下動させ、1.2
秒にて成形する。この成形によって得られた外径50咽
、内径43+nm二長さ38■のカップ状中間品は、初
晶硅素の変化もなく、内径真円度0.03 am、内径
円筒度0.1咽で、熱間鍛造に比べ倍以上の高精度が得
られた。そして斯るカップ状の中間品の底部を切断しシ
リンダーとした。
A high-silicon aluminum alloy containing 15-18% silicon, 0.45-0.65% magnesium, and 4-5% copper was annealed to obtain a material with a hardness of 1 (RF67, outer diameter 50+mm, thickness 13mm). Then, this material was charged into a die of a cold forging machine as shown in Fig. 1, lubricated with an aluminum bonder, etc., and the punch was moved down in a 250 ton cold forging press to form a die of 1.2
Form in seconds. The cup-shaped intermediate product obtained by this molding has an outer diameter of 50mm, an inner diameter of 43+nm, and a length of 38mm, with no change in primary silicon, an inner diameter of 0.03 am, and an inner diameter of 0.1mm. , more than twice the accuracy was obtained compared to hot forging. The bottom of the cup-shaped intermediate product was then cut to form a cylinder.

以上の説明で明らかなように本発明によれば、高硅素ア
ルミニウム合金の硅素の含有割合を15〜20チ・とじ
、この合金を焼鈍することで硬度をHRF70以下とし
、この硬度1−IRF70以下とじた高硅素アルミニウ
ム合金を素材としたので冷間鍛造を行なうことが可能と
なり、また冷間鍛造によって成形することで、耐摩耗性
に優れるとともに内部品質及び寸法精度が良好な製品が
得られ、更に生産性も向上し得る等多くの効果を有する
As is clear from the above description, according to the present invention, the silicon content of the high-silicon aluminum alloy is increased to 15 to 20 inches, and the alloy is annealed to have a hardness of HRF70 or less, and this hardness is 1-IRF70 or less. Since the material is made of a closed high-silicon aluminum alloy, it is possible to perform cold forging, and by forming by cold forging, a product with excellent wear resistance and good internal quality and dimensional accuracy can be obtained. Furthermore, it has many effects such as improving productivity.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明方法の実施例を示すものであり、第1図A
乃至C及び第2図A乃至Cは本発明方法による冷間鍛造
方法の概略を説明した図、第3図は硬度と伸び率との関
係を示し、たグラフ、第4図は硬度の成形応力との関係
を示したグラフである。 尚、図面中、1はグイ、2はノックアウト、3は素材、
4はパンチ、5は製品である。 特許 出 願人    本田技研工業株式会社代理人 
弁理士   下  1) 容一部間   弁理士   
  大   橋   邦   部同   苅理士   
  小   山       窮策1′図 第2図 (A)     (B)     (C)第3図   
 − 第4図 pL良(HRF)
The drawings show an embodiment of the method of the present invention, and FIG.
Figures 2A to C and 2A to C are diagrams explaining the outline of the cold forging method according to the present invention, Figure 3 is a graph showing the relationship between hardness and elongation, and Figure 4 is a graph showing the relationship between hardness and forming stress. This is a graph showing the relationship between In addition, in the drawing, 1 is Gui, 2 is Knockout, 3 is Material,
4 is a punch, and 5 is a product. Patent applicant Honda Motor Co., Ltd. agent
Patent Attorney Part 2 1) Part 1 Patent Attorney
Kuni Ohashi, Physician
Koyama Contingency Plan 1' Figure 2 (A) (B) (C) Figure 3
- Figure 4 pL good (HRF)

Claims (1)

【特許請求の範囲】[Claims] 素材をダイ内に装入しパンチで加圧成形するものにおい
て、該素材として硅素を15〜20%含有するアルミニ
ウム合金を焼鈍し、その硬度をHRF70以下にして冷
間鍛造により成形することを特徴とする高硅素アルミニ
ウム合金の冷間鍛造方法。
A material is charged into a die and press-formed with a punch, characterized in that the material is an aluminum alloy containing 15 to 20% silicon and is annealed to a hardness of HRF 70 or less and formed by cold forging. Cold forging method for high silicon aluminum alloy.
JP3041883A 1983-02-25 1983-02-25 Cold forging method of high silicon aluminum Granted JPS59156530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3041883A JPS59156530A (en) 1983-02-25 1983-02-25 Cold forging method of high silicon aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3041883A JPS59156530A (en) 1983-02-25 1983-02-25 Cold forging method of high silicon aluminum

Publications (2)

Publication Number Publication Date
JPS59156530A true JPS59156530A (en) 1984-09-05
JPH0262337B2 JPH0262337B2 (en) 1990-12-25

Family

ID=12303397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3041883A Granted JPS59156530A (en) 1983-02-25 1983-02-25 Cold forging method of high silicon aluminum

Country Status (1)

Country Link
JP (1) JPS59156530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246425A (en) * 2000-03-03 2001-09-11 Kyushu Sanei Kinzoku Kogyo Kk Protruded part forming apparatus for metal sheet, manufacturing method for metal external case and metal external case using the method
KR100357977B1 (en) * 2000-04-26 2002-10-25 주식회사 코우 Auto transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246425A (en) * 2000-03-03 2001-09-11 Kyushu Sanei Kinzoku Kogyo Kk Protruded part forming apparatus for metal sheet, manufacturing method for metal external case and metal external case using the method
KR100357977B1 (en) * 2000-04-26 2002-10-25 주식회사 코우 Auto transmission

Also Published As

Publication number Publication date
JPH0262337B2 (en) 1990-12-25

Similar Documents

Publication Publication Date Title
US4023613A (en) Method of making a composite metal casting
US5057274A (en) Die cast heat treated aluminum silicon based alloys and method for producing the same
JP4080111B2 (en) Manufacturing method of aluminum alloy billet for forging
KR101511884B1 (en) Punch for cold backward extrusion forging, cold backward extrusion forging device, production method of shaped member for brake piston, production method of brake piston and production method of closed-end cylindrical forged product
WO2003010429A1 (en) Forged piston for internal combustion engine and manfacturing method thereof
US2024285A (en) Method of making pistons
US4421570A (en) Making molds for continuous casting
JPH11309518A (en) High speed deep drawing method of metallic thin plate
CN1282517C (en) Manufacturing method of electrode cap used for welding automobile coated steel plate
US4889557A (en) Aluminium alloy having an excellent forgiability
JPS59156530A (en) Cold forging method of high silicon aluminum
CA1196552A (en) Making a mold for continuous casting
JP2007007693A (en) Working process for aluminum alloy
RU2231739C2 (en) Method for manufacture of conical envelopes of shaped-charge projectiles
JP5588884B2 (en) Magnesium alloy forged piston manufacturing method and magnesium alloy forged piston
US2759257A (en) Process for forging cast iron and the like
JP2022119601A (en) Aluminium alloy plate processing method
JP2002254127A (en) Method for manufacturing reducer
JP2518980B2 (en) Method for drilling precision aluminum alloy product with holes
GB2174320A (en) Mould for continuous casting
US2480426A (en) Method of making precision molds
SU1547910A1 (en) Specimen for simulating the process of pressure heat treatment of metals
JPS60131945A (en) High-strength aluminum alloy having superior heat resistance
RU2036047C1 (en) Method of making piston mainly for interval combustion engines
US2096513A (en) Upset piston