JPS59156033A - Variable delay equalizer - Google Patents

Variable delay equalizer

Info

Publication number
JPS59156033A
JPS59156033A JP3122383A JP3122383A JPS59156033A JP S59156033 A JPS59156033 A JP S59156033A JP 3122383 A JP3122383 A JP 3122383A JP 3122383 A JP3122383 A JP 3122383A JP S59156033 A JPS59156033 A JP S59156033A
Authority
JP
Japan
Prior art keywords
delay
coefficient
amplitude
section
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3122383A
Other languages
Japanese (ja)
Other versions
JPH023339B2 (en
Inventor
Kazuo Saito
和夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3122383A priority Critical patent/JPS59156033A/en
Priority to AU24530/84A priority patent/AU568117B2/en
Priority to US06/580,729 priority patent/US4730342A/en
Priority to GB08404826A priority patent/GB2135857B/en
Priority to DE3407057A priority patent/DE3407057A1/en
Publication of JPS59156033A publication Critical patent/JPS59156033A/en
Publication of JPH023339B2 publication Critical patent/JPH023339B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • H04B3/14Control of transmission; Equalising characterised by the equalising network used
    • H04B3/146Control of transmission; Equalising characterised by the equalising network used using phase-frequency equalisers
    • H04B3/148Control of transmission; Equalising characterised by the equalising network used using phase-frequency equalisers variable equalisers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Filters And Equalizers (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To decrease change in amplitude even when an amount of delay is changed by connecting a delay section and an amplitude correcting section in cascade and setting a weight coefficient value at the amplitude correcting section to a square of the weight coefficient value of the delay section so as to correct an amplitude distortion generated at the delay section by the amplitude correcting section. CONSTITUTION:The amount of delay of delay lines 3, 4 of the delay section 10 is set respectively to T, 2T and the amount of delay of delay lines 13, 14 of the amplitude correcting section 20 is set respectively 2T, 4T being two times those of the amounts T, 2T. Suppose that no signal delay exists other than coefficient weight circuits 7, 17a, 17b and a fixed attenuator 15, no time delay exists other than the delay lines, and let the coefficient of the coefficient weight circuit 7 be (l), and the coefficient combining the coefficients of the circuits 17a, 17b and the fixed attenuator 15 be (k), then the overall amplitude characteristic is the addition of the amplitude characteristics of the delay section 10 and the amplitude correcting section 20. The coefficient weight circuits 7, 17a, 17b are interlocked mutually and have the same coefficient (l), then the relation of k=l<2>/2 is obtained when the coefficient of the fixed attenuator is 0.5. Thus, the term in which the amplitude is changed against frequencies in the range of l<1/2 becomes very small. Then, only the amount of delay is changed without amplitude change.

Description

【発明の詳細な説明】 この発F!Aは一般的には可変遅延等化器に関し、よシ
特定的にはトランスパーサルフィルタ理論を利用したl
変遅延等化器に関する。
[Detailed description of the invention] This release F! A generally relates to variable delay equalizers, and more specifically to l using transversal filter theory.
Regarding variable delay equalizer.

第1図はこの発明の背景となるT i) MA通信の一
例を示す概念図である。TL)MA通信は、たとえば衛
星通信に利用され、そのような衛星通信システムは複数
の地球局ES、ES、・・・と共通の通信衛星C8を含
む。地球局ESは、送信装置TRAと受信装置REAを
含む。送信装置’f RAに含まれる変調器へ(OL)
によって変調された信号は等化器EQLおよび送信器T
Rを介して、アンテナAEから通信#Mcsのアンテナ
ASに向けて送られる。その信号は衛星内で周波数g模
され、他の地球局ES−に送られる。同様に、他の地球
局ES−からの信号が、通信衛星C8全通して、地球局
ESのアンテナAEで受信され、受信信号は受信装置R
EAに与えられる。受信装置REAは、受信器ME、等
化器止器L全通して、復調器DENで4!調される。地
球局ESの送信器7rRおよび受信器REならびに、通
信衛星の父値糸および送信系は、それぞれ、&幅歪およ
び/筐たは群遅延歪を生じることが知られている。特に
、通信衛星C8に含まれる高出力増幅器(図示せず)は
サイズ、価格および安定性などを理由にして、かなり飽
和した状態で使用している。そのために、この高出力増
幅器においてAM−PM変換が発生し、第2図の線Aで
示すような位相変化を生じる。
FIG. 1 is a conceptual diagram showing an example of T i) MA communication which is the background of this invention. TL) MA communication is used, for example, in satellite communication, such a satellite communication system comprising a plurality of earth stations ES, ES, . . . and a common communication satellite C8. The earth station ES includes a transmitting device TRA and a receiving device REA. To the modulator included in the transmitter'f RA (OL)
The signal modulated by equalizer EQL and transmitter T
It is sent from antenna AE to antenna AS of communication #Mcs via R. The signal is frequency-modulated within the satellite and sent to another earth station ES-. Similarly, a signal from another earth station ES- is received by the antenna AE of the earth station ES through the communication satellite C8, and the received signal is transmitted to the receiving device R.
Given to EA. The receiving device REA passes through the receiver ME, the equalizer stopper L, and the demodulator DEN with 4! will be adjusted. It is known that the transmitter 7rR and receiver RE of the earth station ES and the transmission line and transmission system of the communication satellite produce &width distortion and/case or group delay distortion, respectively. In particular, the high-power amplifier (not shown) included in the communication satellite C8 is used in a highly saturated state due to size, cost, stability, and other reasons. Therefore, AM-PM conversion occurs in this high-power amplifier, resulting in a phase change as shown by line A in FIG.

なお、第2図において線Bは出カンベルを示T0上述の
ような位相変化は群遅延歪となる。
Incidentally, in FIG. 2, the line B indicates the outgoing camber T0.The above-mentioned phase change results in group delay distortion.

これらの振幅歪や群遅延歪を、てれぞれ送信系EQLに
よって、振幅等化しあるいは遅延量等化を行なう。この
ような等止器f>QLは、従来より、一般に、第3図に
示すように、ll8fl定振幅等化器FAE、画定遅延
等止器FDEならびに可変等化器MEを含んで僧灰され
ている。実際の振1陥歪りるいは群遅延歪の量により、
固定振幅等化器FAEあるいは(ロ)疋遅延等化感FL
)Eのいずれか一方または両方とも省略される4杏がめ
る。
These amplitude distortions and group delay distortions are each subjected to amplitude equalization or delay amount equalization by transmission system EQL. Conventionally, such an equalizer f>QL is generally constructed to include an 118fl constant amplitude equalizer FAE, a defined delay equalizer FDE, and a variable equalizer ME, as shown in FIG. ing. Depending on the actual amount of distortion or group delay distortion,
Fixed amplitude equalizer FAE or (b) delay equalization sense FL
) Either or both of E is omitted.

この発明の背景となるT 1) M A通信システムで
信号 は、−友達用を開始すると、それ以後試験−を送受信し
て上述のような振幅特性や群遅延特性を測定し、それに
よって最適等化型を測定することは不可能である。なぜ
なら、そのような通信システムは時分割で行なわれその
ために1つの地球局がI!l!I線を占有する時間が極
めて短いためである。
T1) In the MA communication system, which is the background of this invention, the signal is transmitted and received after the start of the test, and the amplitude characteristics and group delay characteristics as described above are measured. It is impossible to measure the transformation type. This is because such communication systems are time-divided so that one earth station is connected to I! l! This is because the time that the I line is occupied is extremely short.

そこで、新しい地球局がそのような通信衛星システムに
加入する場合には、振幅歪や群遅延歪が最小でかりした
がってBER(符号誤ち4)が最小の、最適点を捜す必
要がある。このような目的のために、第3図に示すよう
なげ愛吟止器MEが用いられる。
Therefore, when a new earth station joins such a communications satellite system, it is necessary to search for the optimal point where the amplitude distortion and group delay distortion are minimal, and therefore the BER (sign error 4) is minimal. For this purpose, a blow-off device ME as shown in FIG. 3 is used.

第4図はこの発明の背景となる従来の可変等化器ivl
 Eの一例を示す回路図でるる。第4凶において、入力
端子1から与えられた入力信号は分配器2によって分配
される。@号分配器2は、たとえば公知のハイブリッド
回路などを利用して、各偏りを3つの同じレベルの信号
に分配する。3つの侶すのうちの1つの信号経路には遅
延量Tを封する遅延線3が介挿され、他の1つの経路に
Ii遅延線2Tを有する遅延線4が介挿され、残余の1
つの経路には極性ti転器5が介挿される。極性反転H
85は、公知のトランスあるいはトランジスタなど−c
温成あゎ、5えらh6信号を180・移□する。遅延線
4からの信号と極性反転器5からの信号は、合成器6に
よって合成された後、可変係数荷重回路7に与えられる
。可変係数荷重回路7は極性反転機能を有する2重平衡
ミキサ等で構成されており、そこからの出力信号は遅延
線3からの出力信号(主信号)とともに合成器8で合成
される。
FIG. 4 shows a conventional variable equalizer ivl which is the background of this invention.
This is a circuit diagram showing an example of E. In the fourth case, the input signal applied from the input terminal 1 is distributed by the distributor 2. The @-signal distributor 2 uses, for example, a known hybrid circuit or the like to distribute each bias into three signals of the same level. A delay line 3 that seals the delay amount T is inserted in one of the three signal paths, a delay line 4 having an Ii delay line 2T is inserted in the other signal path, and the remaining 1
A polarity inverter 5 is inserted in one path. Polarity reversal H
85 is a known transformer, transistor, etc.
Onsei Awa, move 5 gills h6 signal 180・□. The signal from the delay line 4 and the signal from the polarity inverter 5 are combined by a combiner 6 and then applied to a variable coefficient loading circuit 7. The variable coefficient loading circuit 7 is composed of a double-balanced mixer having a polarity inversion function, and the output signal therefrom is combined with the output signal (main signal) from the delay line 3 in a combiner 8.

ここで、可変係数荷重回路7以外では信号の減衰はなく
、遅延線3および4以外では時間遅れがないとし、14
8号の遅れを基準(0とする)とすると、出力端子9に
得られる出力信号B(ロ)は、次式(1)で表わされる
Here, it is assumed that there is no signal attenuation except for the variable coefficient loading circuit 7, and that there is no time delay except for the delay lines 3 and 4.
If the delay of No. 8 is used as a reference (0), the output signal B (b) obtained at the output terminal 9 is expressed by the following equation (1).

B(Q))=cnsωt−/Cogω(t+T)+z 
cosω(t−T) Xcos(ωt−π/2 +jan−1(l/2t s inωT))・・・・・
・・(1) この出力信号B(−の振幅の周波数に対する特性GB(
りおよび遅延量の周波数に対する特性τBに)は、それ
ぞれ次式(2)および(3)で与えられる。
B(Q))=cnsωt-/Cogω(t+T)+z
cosω(t-T) Xcos(ωt-π/2 +jan-1(l/2t s inωT))
...(1) The characteristic GB(
The characteristics τB of delay amount and delay amount with respect to frequency are given by the following equations (2) and (3), respectively.

GB(−二 201og((1+2z2)−2z2cos2ωt)・
・・・・・・(2) τB(ロ)=−2iT ・・・・・・・(3) ただし、ωは角周波数で、ω=2πf(fは周波&)で
ある。この振幅特性GBに)と遅延特性τB(→の、係
数lン0のときの、変化特性が第5図に示される。第5
図^は振幅特性を示し、第5図(B)は遅延特性を示し
、それぞれ、係#:、lを大きくしたとき、矢印の方向
に変化する。すなわち、第5図かられかるように、第4
図の例では、係数荷重回路7において係数lを変化させ
れば、遅延量も変化する。しかしながら、この第4図の
例においても、係#、lの変化に応じて遅延量のみなら
ず振幅もまた変化することになり、TDMA通信シス゛
  テムにおける可変等化器としてはその利用が極めて
内錐であった。
GB(-2201og((1+2z2)-2z2cos2ωt)・
(2) τB (b) = -2iT (3) However, ω is the angular frequency, and ω = 2πf (f is the frequency &). The change characteristics of the amplitude characteristic GB) and the delay characteristic τB (→ when the coefficient l is 0 are shown in FIG. 5.
Figure ^ shows the amplitude characteristics, and Figure 5 (B) shows the delay characteristics, which change in the direction of the arrow when the coefficients #: and 1 are increased, respectively. In other words, as shown in Figure 5, the fourth
In the illustrated example, if the coefficient l is changed in the coefficient loading circuit 7, the amount of delay also changes. However, in the example shown in Fig. 4 as well, not only the delay amount but also the amplitude changes as the coefficients # and l change, making it extremely difficult to use it as a variable equalizer in a TDMA communication system. It was a cone.

それゆえに、この発明の主たる目的は、たとえば′1゛
D M A通信システムにおいて有効に利用されるよう
に、遅延量を変化させても振幅の変化が非常に小さくな
るような、町変遅延等化器を提供することである。
Therefore, the main object of the present invention is to develop a variable delay system that can be used effectively in, for example, a '1'' DMA communication system, in which the change in amplitude is extremely small even when the amount of delay is changed. The aim is to provide a means to transform the situation.

この発明は、要約すれば、主信号の絶対遅延量を基準と
したとき一定時間進みの信号と遅れの信号とを異なる極
性で合成して第1の係数を荷重付加する遅延部と、主信
号の絶対遅延量を基準として第2の所定時間進みの信号
と遅れの信号とを合成して第2の係数を荷重付加する振
幅補正部とを含み、この遅延部および振幅補正部を縦続
接続すると共に、振幅補正部における荷重係数値を遅延
部の荷重係数値の2乗信に設定することにより、遅延部
で発生する振幅歪を振幅補正部で補正するようにした、
町変遅延等化器である。
To summarize, the present invention includes a delay unit that combines a signal that is advanced by a certain time and a signal that is delayed with different polarities when the absolute amount of delay of the main signal is used as a reference, and adds a weight with a first coefficient; an amplitude correction section that combines a second predetermined time advance signal and a delay signal based on the absolute delay amount of and adds a second coefficient as a load, and the delay section and the amplitude correction section are connected in cascade. In addition, the amplitude distortion generated in the delay section is corrected by the amplitude correction section by setting the weighting coefficient value in the amplitude correction section to the square product of the loading coefficient value of the delay section.
This is a variable delay equalizer.

この発明の上述の目的およびその他の目的と特徴は区間
を参照して行なう以下の詳細な説明から一層明らかとな
ろう。
The above objects and other objects and features of the invention will become more apparent from the following detailed description with reference to sections.

第6図はこの発明の一実施例としてのTDMA通信シス
テムに用いられる可変遅延等止器を示すブロック図であ
る。第6図において、入力端子lからの信号は、遅延部
10および振幅補正部20を通して出力端子9に与えら
れる。このiT変遅延等化器がたとえば第1図に示すよ
うなTDMA通信システムに用いられるならば、送信系
沈金まれる場合入力端子1は変調器MOLJに接続され
出力端子9は送信器TRK接続され、交信系に含まれる
場合は入力端子1け受信器WEに接続され出力端子9は
復調器υzMK接続されるであろう。
FIG. 6 is a block diagram showing a variable delay equalizer used in a TDMA communication system as an embodiment of the present invention. In FIG. 6, a signal from an input terminal l is applied to an output terminal 9 through a delay section 10 and an amplitude correction section 20. If this iT variable delay equalizer is used, for example, in a TDMA communication system as shown in FIG. , if it is included in a communication system, one input terminal will be connected to the receiver WE, and the output terminal 9 will be connected to the demodulator υzMK.

この第6図において、遅延部lOの構成は第4図00T
変等化器MEと同じであるのでその説明は省略する。一
方、この遅延部lOに縦続接続される振幅補正s20は
、入力信号を3分配する分配器12、この分配出力のう
ち2つの信号をそれぞれ2T。
In this FIG. 6, the configuration of the delay section lO is as shown in FIG. 4 00T.
Since it is the same as the variable equalizer ME, its explanation will be omitted. On the other hand, the amplitude correction s20 cascade-connected to this delay unit 1O includes a divider 12 that divides the input signal into three parts, and two signals of the divided outputs are each 2T.

4Tづつ遅延させる遅延、!13および14、遅延線1
4を通った信号と遅延されなかった信号を合成する合成
器16、この合成出力に係数lをそれぞれ荷重付加する
直列接続された2つの係数荷重回路17a 。
Delay that delays by 4T,! 13 and 14, delay line 1
a combiner 16 that combines the signal passed through 4 and the undelayed signal, and two series-connected coefficient loading circuits 17a that add a coefficient l to each of the combined outputs.

17b1この係数荷重回路(17b)の出力を固定減衰
する固定減衰器15、およびこの固定減衰器15の出力
信号と遅延線13を通った信号を合成し、それを出力端
子9に出力する合成器18によ多構成されている。
17b1 A fixed attenuator 15 that fixedly attenuates the output of this coefficient loading circuit (17b), and a synthesizer that synthesizes the output signal of this fixed attenuator 15 and the signal that has passed through the delay line 13, and outputs it to the output terminal 9. It is composed of 18 parts.

なお、この振幅補正部20の係数荷重回@ 17a %
17bの係数/、/(すなわち/2 )の設定は、遅延
部lOの係数荷重回路7の係&lの設定と連動すなわち
遅延部10にてtt−設定すれば振幅補正部20は自助
的に12に設定されるよう構成されている。
Note that the coefficient loading times of this amplitude correction section 20 @ 17a%
The settings of the coefficients /, / (i.e. /2) of the delay unit 17b are linked with the settings of the coefficient &l of the coefficient loading circuit 7 of the delay unit 10. In other words, if the delay unit 10 sets tt-, the amplitude correction unit 20 automatically adjusts the coefficient 12. is configured to be set to .

ここで、第6図における振幅補正部20の原理、動作を
公知の可変振幅等化器を用いて説明する。
Here, the principle and operation of the amplitude correction section 20 shown in FIG. 6 will be explained using a known variable amplitude equalizer.

第7図はその一例を示す回路図であり、第6図の遅延部
lOに比べて、極性反転器5が省略されている他は、こ
の遅延部lOOものとほぼ同様である。
FIG. 7 is a circuit diagram showing an example thereof, and is substantially the same as the delay section 10 shown in FIG. 6 except that the polarity inverter 5 is omitted.

すなわち、入力端子lからの入力信号は分配器2によっ
て分配される。遅延線4を通った信号は遅延線を通らな
い信号とともに合FJy、器6によって合成され、係数
kを有する可変係数荷重回路7を通って合成器8に与え
られる。このようにして、合成器8において、遅延線3
を通った主信号と可変係数荷重回路7を通った副信号と
が合成され、出力端子91に出力される。
That is, the input signal from the input terminal l is distributed by the distributor 2. The signal passing through the delay line 4 is combined with the signal not passing through the delay line by a combiner 6, and is applied to a combiner 8 through a variable coefficient loading circuit 7 having a coefficient k. In this way, in the synthesizer 8, the delay line 3
The main signal passed through the variable coefficient loading circuit 7 and the sub-signal passed through the variable coefficient loading circuit 7 are combined and output to the output terminal 91.

ここで、係数荷重回路7以外では信号の減衰がなく、遅
延線3および4以外では時間遅れがないとし、主信号の
遅れを基準として0とすると、出力端子9′に導出され
る出力信号A(ホ)は次式(4)で与えられる。
Here, assuming that there is no signal attenuation except for the coefficient loading circuit 7, and that there is no time delay except for the delay lines 3 and 4, and the delay of the main signal is set to 0, the output signal A derived to the output terminal 9' (e) is given by the following equation (4).

A(o)=cos (11t+kcosω(を十T)士
kcosω(t−T) =(1+2kcosωT)cosωt      −・
−・−(4)また、この出力信号Aに)の振1陥の周波
政特牲GA(りは、次式(5)で与えられる。
A(o)=cos (11t+kcosω(t)kcosω(t-T) =(1+2kcosωT)cosωt −・
-.-(4) Also, the frequency characteristic GA (RI) of the output signal A is given by the following equation (5).

GA((=1)=20top(1+2kcosωt) 
   −−(5)しかしながら、遅延特性τAに)は平
担である。この振幅特性GA(−の係数kに対する変化
特性は、第8図に示される。係数kを大きくすれば振幅
は矢印の方向に変化する。すなわち、第7図において、
可変係数荷重回路7の係数kを変化させることによって
、遅延量の変化なしに振幅のみが変化する可変振幅等化
器が得られる。  ・ また、第8図に示すようにこの可変振幅等化器の振幅の
くり返し周期は1/’rであシ、一方、遅延部lOすな
わち第4図の遅延等止器の振幅のくシ返し周期は第5図
(8)で示したように1/2Tである。
GA ((=1)=20top(1+2kcosωt)
--(5) However, the delay characteristic τA) is flat. The change characteristic of this amplitude characteristic GA (-) with respect to the coefficient k is shown in FIG. 8. If the coefficient k is increased, the amplitude changes in the direction of the arrow. That is, in FIG.
By changing the coefficient k of the variable coefficient loading circuit 7, a variable amplitude equalizer in which only the amplitude changes without changing the amount of delay can be obtained.・Also, as shown in FIG. 8, the amplitude repetition period of this variable amplitude equalizer is 1/'r, and on the other hand, the amplitude repetition period of the delay unit lO, that is, the delay equalizer of FIG. The period is 1/2T as shown in FIG. 5(8).

したがって、振幅補正部20の振幅特性のくり返し周期
を1/2にして遅延部10の周期と同じとし、その振幅
極性を逆にすれば遅延部10で発生する振幅歪を振幅補
正部20で補正できることが理解でき次に第6図の動作
について説明する。第6図において、遅延部10の遅延
線3.4はそれぞれ遅延量T、2Tづつ、また振幅補正
部20の遅延線13.14はそれぞれ遅延部10の遅延
量の2倍の2 r、 4Tづつ遅延設定されているもの
さする。
Therefore, if the repetition period of the amplitude characteristic of the amplitude correction section 20 is halved to be the same as the period of the delay section 10, and the amplitude polarity is reversed, the amplitude distortion generated in the delay section 10 can be corrected by the amplitude correction section 20. Now that you understand what can be done, the operation shown in FIG. 6 will be explained. In FIG. 6, the delay lines 3.4 of the delay section 10 have delay amounts T and 2T, respectively, and the delay lines 13.14 of the amplitude correction section 20 have delay amounts of 2 r and 4T, respectively, which are twice the delay amount of the delay section 10. Denotes the delay setting.

この状態において、係数荷重回路17.17a、 17
bおよび固定減衰器15以外は信号の減衰がなく、遅延
線以外は時間遅れがないものとし、係数荷重回路7の係
数を11係数荷重回路17a、 17bと1定減衰器1
5を合わせた係数−をkとすると、遅延s10、振幅補
正部20それぞれの出力信号GB(ロ)、GA(ロ))
は前述の(2)式と(5)式で表わされる。そしてこの
場合、遅延部10と振幅補正部20は縦続接続されてい
るので、総合の振幅特性Gc (cu)はこれら振幅特
性の加算となり下式で表わされる。
In this state, the coefficient loading circuits 17.17a, 17
It is assumed that there is no signal attenuation except for the fixed attenuator 15 and the fixed attenuator 15, and that there is no time delay except for the delay line.
If the coefficient - which is the sum of 5 is k, then the delay s10 and the output signals GB (b) and GA (b) of the amplitude correction section 20, respectively.
is expressed by the above-mentioned equations (2) and (5). In this case, since the delay section 10 and the amplitude correction section 20 are connected in cascade, the overall amplitude characteristic Gc (cu) is the sum of these amplitude characteristics and is expressed by the following formula.

GC(ロ)=GB■)十GA(ロ))        
    ・・・・・(6)=201oP(1+2kco
s2ωT)v’(1+2/2ノー2i2cospfr=
201oyJ[1+2z2)+(4k(1+212)−
2z2)cos2ωT+(4に2(1+272) −8
kz2)cos22ωT−8に212cos32ωT]
・・・・・・・(7) ここで係数荷重回路7.17a、 17bは相互に連動
され、かつ同じ係数lを有し、固定減衰器15は減衰器
6dBすなわち係数0.5を有するとするとk=0.5
X/X/=H となる。これを(7)式に代入すると GCに)=201oyV−[(1+212)+4z2−
j−声2ωτ十+(216−31’)cos22ωT−
2/”cos32ωT]  、     (8)となる
。この(晶従来の(2)式と比べると、z<1//rの
範囲で振幅の周波数に対して変化する項は非常に小さく
なっている。
GC (b) = GB ■) 10 GA (b))
...(6)=201oP(1+2kco
s2ωT)v'(1+2/2no2i2cospfr=
201oyJ[1+2z2)+(4k(1+212)−
2z2) cos2ωT+(4 to 2(1+272) -8
kz2) cos22ωT-8 to 212cos32ωT]
(7) Here, the coefficient loading circuits 7.17a, 17b are interlocked with each other and have the same coefficient l, and the fixed attenuator 15 has an attenuation of 6 dB or a coefficient of 0.5. Then k=0.5
X/X/=H. Substituting this into equation (7) gives GC)=201oyV-[(1+212)+4z2-
j-voice 2ωτ10+(216-31')cos22ωT-
2/”cos32ωT], (8).Compared to the conventional equation (2), the term that changes with the amplitude frequency in the range z<1//r is very small. .

他方、この場合の遅延特性τCに)は遅延部10と振幅
補正部20の加算となるが、振幅補正部20は遅延特性
がないので、総合の遅延特性τC(ハ)は前述の(3)
式で示したτBに)となる。すなわちτC(へ)=τB
(ロ)である。
On the other hand, the delay characteristic τC in this case is the addition of the delay section 10 and the amplitude correction section 20, but since the amplitude correction section 20 has no delay characteristic, the overall delay characteristic τC (c) is the same as the above-mentioned (3).
τB shown in the formula becomes). That is, τC(to) = τB
(b).

第9図は、この第6図の実施例における振幅特性Gc(
ロ)および遅延特性τCに)を示すものである。
FIG. 9 shows the amplitude characteristic Gc(
b) and delay characteristic τC).

なお、この第9図はi>00場合の変化を示しているが
t<0になると、(3)式のτBに)すなわちτC(り
は符号が反転し、遅延量の進み、遅れが基準値に対して
反対となる。また、(8)式のGcに)は、!<0とな
ってもlの絶対値が等しければ同じf+&となる。
Note that this Fig. 9 shows the change when i > 00, but when t < 0, the sign of τB in equation (3), that is, τC, is reversed, and the advance of the delay amount and the delay become the standard. It is opposite to the value. Also, for Gc in equation (8)), ! Even if <0, if the absolute values of l are equal, the same f+& will result.

すなわちlが+側から一側筐で変化すると9$10図に
示すように遅延は矢印のように反転して変化するが、振
幅特性(JCに)は第9181(5)の特性をくシ返す
だけである。
In other words, when l changes from the + side to one side, the delay changes as shown in the arrow in Figure 9, but the amplitude characteristic (to JC) changes from the characteristic of No. 9181 (5). Just give it back.

以上の説明により第6図実施例が振幅変イリなしに遅延
量のみを変化させることができる。ということが理解さ
れよう。したがって、このような口f変遅延等化器がT
DMA通信システムの町父等化器として利用されれば、
群遅延歪によるBERの劣化分のみを独立して等化する
ことができるので、従来のもののように振幅と遅延部が
一諸に変化してしまう場合に比べて、最適点を捜し出す
ための操作が極めて簡単に行なえる。
As explained above, the embodiment of FIG. 6 can change only the delay amount without changing the amplitude. That will be understood. Therefore, such a variable delay equalizer has T
If used as a Machichi equalizer in a DMA communication system,
Since only the degradation in BER due to group delay distortion can be equalized independently, it is easier to operate to find the optimal point than in the conventional case where the amplitude and delay part vary all at once. is extremely easy to do.

なお、上記実施例においては係数荷重回路7.17a、
 17bは極性反転を含む2重平衡ミキサ等で1成した
が、用途により、可変範囲が限定される場合、極性反転
を含まない可変減衰器等で構成することもできる。また
、極性反転器5も180°移相器に限らず180°合成
器、分配器や90°合成器分配器を利用することもでき
る。たとえば合成器6に180°合成器を配置すること
により、極性反転器5と合成器60機能を持たせてもよ
く、同様に合成器6の入力側と分配器2出力側にそれぞ
れ90゜合成器、分配器を用いてもよい。
In addition, in the above embodiment, the coefficient loading circuit 7.17a,
17b is constructed with a double balanced mixer or the like that includes polarity inversion, but if the variable range is limited depending on the application, it may also be constructed with a variable attenuator or the like that does not include polarity inversion. Further, the polarity inverter 5 is not limited to a 180° phase shifter, but may also be a 180° combiner, a divider, or a 90° combiner/divider. For example, by arranging a 180° combiner in the combiner 6, the functions of the polarity inverter 5 and the combiner 60 may be provided.Similarly, the input side of the combiner 6 and the output side of the distributor 2 can each have a 90° combiner. A container or distributor may be used.

また係数荷重回路7.17a、 17bおよび固定減衰
器151d合成器8.18に入力される信号の振幅を一
定北率になるようにすればよく、その挿入位置は要求を
満たす限り任意の位置でよく、例えば固定減衰器15け
、分配器12と合成器16の間にそれぞれ設けることも
できる。
In addition, the amplitude of the signal input to the coefficient loading circuits 7.17a, 17b and the fixed attenuator 151d combiner 8.18 may be made to have a constant northing ratio, and the insertion position may be any position as long as the requirements are met. Often, for example, 15 fixed attenuators can be provided between the distributor 12 and the combiner 16.

第11図〜第14図はこの発明の他の実施例を示すもの
である。
11 to 14 show other embodiments of the present invention.

第6図実施例では遅延部10と振幅補正部20が、それ
ぞれ1段であったが、第11図に示すよう虻、それぞれ
を2段または1段縦続接続し、係数荷重回路を連動する
ことも可能である。
In the embodiment shown in FIG. 6, the delay section 10 and the amplitude correction section 20 each have one stage, but as shown in FIG. is also possible.

また、第12図に示すように、n段の遅延部10と1段
、)ヤ幅補正イ。。、よっ□1成。、振、補正部20内
の固定減衰器15を振幅特性最小となる値に設定するこ
とにより、係数荷重回路の連動補償が可能である。なお
、この第12図は1段の振幅補正部20であるが、m段
の振幅補正部20でも固定減衰器15の値を設定するだ
けで同様である。これらの第11図、第12図の実施例
は可変遅延等化器の可変範囲を広げる手段としても有効
である。
Further, as shown in FIG. 12, an n-stage delay section 10 and a one-stage) Y width correction a. . , Yo□1sei. By setting the fixed attenuator 15 in the vibration correction section 20 to a value that minimizes the amplitude characteristics, interlock compensation of the coefficient loading circuit is possible. Although FIG. 12 shows the one-stage amplitude correction section 20, the same applies to the m-stage amplitude correction section 20 by simply setting the value of the fixed attenuator 15. The embodiments shown in FIGS. 11 and 12 are also effective as means for widening the variable range of the variable delay equalizer.

第6図実施例では入力信号を分配した後に遅延線を設け
たが、第13図に示すように分配器2.12と遅延線3
.13を交互に設けることも口■能である。
In the embodiment shown in FIG. 6, a delay line is provided after distributing the input signal, but as shown in FIG.
.. It is also possible to provide 13 alternately.

また、第14図のように遅延線3.4.13.14、極
性反転器5、合成器6を2段またはn段の構成とするこ
ともできる。ここで31.32  は固定減衰器で、3
2は31の二乗倍に設定されており (33)〜(40
)は遅延線である。
Further, as shown in FIG. 14, the delay line 3.4.13.14, polarity inverter 5, and synthesizer 6 can be configured in two stages or in n stages. Here 31.32 is a fixed attenuator and 3
2 is set to the square of 31, and (33) to (40
) is a delay line.

以上のように、この発明によれば遅延部と振幅補正部を
縦続接続し、遅延部で発生する振幅歪を振幅補正部で補
正するようにしたので、振幅特性が変前することなく所
望の遅延量に可変設定することができ、また、遅延部お
よび振幅補正部の係数荷重回路を連動させるようにすれ
ば、遅延量の調整が容易で精度の高い=’T父遅延等化
器がより安価に侍られる。
As described above, according to the present invention, the delay section and the amplitude correction section are connected in cascade, and the amplitude distortion generated in the delay section is corrected by the amplitude correction section, so that the desired amplitude characteristic can be maintained without changing. The amount of delay can be set variably, and if the coefficient loading circuits of the delay section and amplitude correction section are linked, the amount of delay can be easily adjusted and the delay equalizer with high accuracy can be set. It can be served cheaply.

【図面の簡単な説明】[Brief explanation of drawings]

第1図けTDMA衛星通信システムの概念を示す概念図
、第2図は通信衛星に含まれる高出力増幅器の特性を示
す特性図、第3図はTDMA衛星通信システムに用いら
れる等化器の一例を示すブロック図、第4図は従来の可
変遅延等化器の一例を示す回路図、第5図は第4図の振
幅および遅延特性を示す特性図、第6図はこの発明の一
実施例による可変遅延等化器の回路図、第7図は可変振
・嘔等止器の一例を示す回路図、第8図は第7図の振幅
特性を示す特性図、第9図および第10図は第6図実施
例の振幅および遅延特性を示す特性図、第11図〜第1
4図はこの発明のその他の実施例を示f −y’ oツ
ク図(!27路図)である。 IA中、2.12は分配器、3.4.13.14は遅延
線、5は極性反転器、6.16.8.18は合成器、7
.17a 117b け係数荷重回路、ioは遅延部、
20は振幅補正部である。 なお、図中、同一符号は同一、又は相当部分を示す。 代 理 人  葛  野   イd  −第9図 第10図
Figure 1 is a conceptual diagram showing the concept of a TDMA satellite communication system, Figure 2 is a characteristic diagram showing the characteristics of a high-power amplifier included in a communication satellite, and Figure 3 is an example of an equalizer used in a TDMA satellite communication system. 4 is a circuit diagram showing an example of a conventional variable delay equalizer, FIG. 5 is a characteristic diagram showing the amplitude and delay characteristics of FIG. 4, and FIG. 6 is an embodiment of the present invention. 7 is a circuit diagram showing an example of a variable delay equalizer, FIG. 8 is a characteristic diagram showing the amplitude characteristics of FIG. 7, and FIGS. 9 and 10. FIG. 6 is a characteristic diagram showing the amplitude and delay characteristics of the embodiment, and FIGS.
FIG. 4 is a diagram (!27 diagram) showing another embodiment of the present invention. In IA, 2.12 is a distributor, 3.4.13.14 is a delay line, 5 is a polarity inverter, 6.16.8.18 is a combiner, 7
.. 17a 117b coefficient loading circuit, io is delay section,
20 is an amplitude correction section. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent Id Kuzuno - Figure 9 Figure 10

Claims (1)

【特許請求の範囲】 (1〕主信号を基準としてその進み方向および遅れ方向
にそれぞれ1時間づつ遅延され、かつそのいブれか一方
が極性反転された2つの副信号を合成する合成器と、こ
の合成出力信号に第1の係数を荷重付加する係数荷重回
路と、この係数荷重回路の出力@被と上記主信号を合成
する合成器を有し、上記第1の係数を変化させることに
より遅延量を制御する遅延部、 14g号を基準としてその進み方向および遅れ方向にそ
れぞれ2T時間つつ遅延された2つの副信号を合成する
合成器と、この合成出力に第2の係数を荷重付加する係
数荷重回路と、この係数荷重回路の出力信号と上記主信
号を合成する合成器を有し、上記第2の係数を変化させ
ることにより振幅を制御する振幅補正部を備え、 上記遅延部と振幅補正部を縦続接続すると共に上記第2
の係a:を上記第1の係数の2乗倍に設定したことを特
徴とする可変遅延等化器。 (2)遅延部および振幅補正部の各係数荷重回路は互い
に連切して第12よび第2の係数を荷重付加することを
特徴とする特許請求の範囲第1項記載の可変遅延等化器
[Scope of Claims] (1) A synthesizer that combines two sub-signals that are delayed by one hour each in the leading direction and the lagging direction with respect to the main signal, and one of which has the polarity inverted. , has a coefficient loading circuit that adds a first coefficient to this composite output signal, and a synthesizer that combines the output of this coefficient loading circuit with the main signal, and by changing the first coefficient, A delay unit that controls the amount of delay, a synthesizer that combines two sub-signals that are delayed by 2T time in the leading direction and the backward direction based on No. 14g, and adds a second coefficient as a weight to the combined output. It has a coefficient loading circuit, a synthesizer that combines the output signal of the coefficient loading circuit and the main signal, and an amplitude correction section that controls the amplitude by changing the second coefficient, the delay section and the amplitude The correction section is connected in cascade, and the above-mentioned second
A variable delay equalizer characterized in that the coefficient a: is set to the square of the first coefficient. (2) The variable delay equalizer according to claim 1, wherein the coefficient loading circuits of the delay section and the amplitude correction section are connected to each other and load the twelfth and second coefficients. .
JP3122383A 1983-02-25 1983-02-25 Variable delay equalizer Granted JPS59156033A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3122383A JPS59156033A (en) 1983-02-25 1983-02-25 Variable delay equalizer
AU24530/84A AU568117B2 (en) 1983-02-25 1984-02-13 Variable group delay equalizer
US06/580,729 US4730342A (en) 1983-02-25 1984-02-16 Equalizer circuit for use in communication unit
GB08404826A GB2135857B (en) 1983-02-25 1984-02-24 Equalizer circuit for use in communication unit
DE3407057A DE3407057A1 (en) 1983-02-25 1984-02-27 EQUALIZER FOR A MESSAGE TRANSFER DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3122383A JPS59156033A (en) 1983-02-25 1983-02-25 Variable delay equalizer

Publications (2)

Publication Number Publication Date
JPS59156033A true JPS59156033A (en) 1984-09-05
JPH023339B2 JPH023339B2 (en) 1990-01-23

Family

ID=12325426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3122383A Granted JPS59156033A (en) 1983-02-25 1983-02-25 Variable delay equalizer

Country Status (1)

Country Link
JP (1) JPS59156033A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7549632B2 (en) 2003-06-10 2009-06-23 Sanyo Electric Co., Ltd. Paper feed tray and printer furnished with the tray

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417288A (en) * 1987-07-13 1989-01-20 Hitachi Ltd Magnetic bubble memory device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417288A (en) * 1987-07-13 1989-01-20 Hitachi Ltd Magnetic bubble memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7549632B2 (en) 2003-06-10 2009-06-23 Sanyo Electric Co., Ltd. Paper feed tray and printer furnished with the tray

Also Published As

Publication number Publication date
JPH023339B2 (en) 1990-01-23

Similar Documents

Publication Publication Date Title
US9490963B2 (en) Signal cancellation using feedforward and feedback paths
US3973089A (en) Adaptive hybrid circuit
US20140169236A1 (en) Feed forward signal cancellation
JPS60236529A (en) Quasi-testing device of interference due to plural transmission lines
CN111771345A (en) System and method for configurable hybrid self-interference cancellation
US7092684B2 (en) Method and apparatus for reducing interfering signals in a transmitter
US6539202B1 (en) Interference canceling device
US4491808A (en) Equalizer circuit for use in communication unit
US20060198429A1 (en) Isolating circuit of transmitting and receiving paths in same frequency carrier
US8340619B1 (en) Phase synchronization of phased array or multiple receiver/transmitter systems
US4266201A (en) Method and apparatus using first and second parallel channels, one of which includes an inverter, for producing an electrical signal with an improved on/off ratio
JPS59156033A (en) Variable delay equalizer
JPH09116459A (en) Device for eliminating interference between transmission and reception
US3660785A (en) Transversal equalizer
US3609663A (en) Predetection signal-processing system
CN111431484A (en) Image frequency suppression mixer
JP2534648B2 (en) Amplitude equalizer
US20240146246A1 (en) Isolator
US20230093885A1 (en) Harmonic Reduction with Filtering
JPH03219711A (en) Image cancel mixer
JPS5879322A (en) Variable equalizer
JPS5879323A (en) Equalizing circuit for communication equipment
Boyarintsev Synthesis of resistive matching devices of demodulators of amplitude-modulated signals with adjusted amplitudes in extreme states using a three-pole nonlinear element
JPH05145305A (en) Antenna multicoupler
SU42610A1 (en) Device for receiving telegraph signals