JPS59154925A - Optimum control system of plant growing plant - Google Patents
Optimum control system of plant growing plantInfo
- Publication number
- JPS59154925A JPS59154925A JP58029536A JP2953683A JPS59154925A JP S59154925 A JPS59154925 A JP S59154925A JP 58029536 A JP58029536 A JP 58029536A JP 2953683 A JP2953683 A JP 2953683A JP S59154925 A JPS59154925 A JP S59154925A
- Authority
- JP
- Japan
- Prior art keywords
- control
- plant
- temperature
- concentration
- plants
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/25—Greenhouse technology, e.g. cooling systems therefor
Landscapes
- Greenhouses (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は植物育収プラントの環境制御に鍜適制−を導
入することによシ、最適生育榮件が不明な場合にも常に
最大の生長速度を得られる制御システムに関する。[Detailed Description of the Invention] This invention is a control system that can always obtain the maximum growth rate even when optimal growth conditions are unknown, by introducing an appropriate control system into the environmental control of a plant cultivation plant. Regarding.
近年、6室等による植物の人工育成を更に進め賜度、種
変の春ならず、C02#度、照度、水耕液の濃1jj、
pH等、41!物生長に影響を及ぼすあらゆる条件を人
工的に管理し、生産性を飛躍的に高めようとするU+が
行なわれている。In recent years, we have further advanced the artificial cultivation of plants in 6-room rooms, etc., and we have increased the number of seeds, the C02# degree, the illuminance, and the concentration of hydroponic solution.
pH etc. 41! U+ is being carried out to artificially manage all the conditions that affect the growth of plants and dramatically increase productivity.
このための植物生育プラントの環境制御は、一般に、経
験的或いは実鉄的にあらかじめ制御波V最適1直を設定
し、7ラント申の制−欺を谷側にIli走して設定値に
保つというフィードフォワードコントロールを行なうも
のであった。To control the environment of a plant growing plant for this purpose, generally, the optimum control wave V is set in advance empirically or practically, and the control wave of 7 runs is run to the valley side to maintain the set value. It was a feedforward control.
しかし、このシステムは各側tauitごとにそれぞれ
V)敞Lil1値を求め、心安に応じては谷成梃段階に
応じて岐適呟を変えて行く制御プログラムを組まなけれ
ばならないため、新しい品種Qfcめのプラント設計に
は長時間を必妾とし、制却量の増加と共にこの欠点はま
すます大きなものとなる。さらに、最適環境は植物Q成
長時期、各制御il:の相互関係、植物の前歴、栽培扶
助によりても変契1する。例えば、一般に植物の光合成
通観は照度の増加に従って上昇し、陰生植物では約10
klX、陽生植物では約50にノ×で飽和することが
知られている。ところが実際の栽培状態では50ktx
を越えても光合成速度の上昇がりら−れる口これは通常
の栽培伏郭では植物体には必ず陰になぶ部分が存在し、
直射光の当たる部分がすでに飽和していても、陰になっ
ておシ、rh)接的に受光する部分はまだ飽和に迫して
いないためであると考えられる。こOような条件は植物
の生長と共に変化し、そのときそのときの峡母条件を央
験的に予め設定することは不可能である。However, this system requires a control program to determine the V)Lil1 value for each side tauit, and to change the V)Lil1 value depending on the level of tauit depending on the safety level, so a new variety QfC is required. The design of a plant for this purpose requires a long time, and this drawback becomes even greater as the amount of control increases. Furthermore, the optimal environment varies depending on the plant's growth period, the interrelationship of each control, the plant's previous history, and cultivation assistance. For example, in general, the photosynthesis rate of plants increases as the illuminance increases, and for shade plants, the rate of photosynthesis increases by approximately 10
It is known that klX is saturated with Nox to about 50% in solar plants. However, in actual cultivation conditions, 50ktx
The rate of photosynthesis does not increase even if the amount exceeds
This is thought to be because even though the area directly exposed to light is already saturated, the shaded area that directly receives light has not yet reached saturation. These conditions change with the growth of the plant, and it is impossible to preset the primary conditions at any given time.
この発明ね、植物の成長速度すなわち重に冷加の速度は
光@−成速度によって左右されるものであシ、光合成り
C020消費を伴う点に着目し、411Ii物による
CO2の消費速度を常に最大にするように各制御1餘を
制御する。この制御に@通制御の手法を導入することに
よシ栽培植物にとっての最適値を予め知ることなく、自
動的に常に最適値を医りた育成条件の設定が可能となっ
たものである。This invention focuses on the fact that the growth rate of plants, that is, the rate of cooling, is influenced by the rate of light growth, and that photosynthesis involves CO20 consumption. Each control is controlled to the maximum. By introducing the @through control method into this control, it has become possible to automatically set growing conditions that always keep the optimum value in mind, without knowing in advance the optimum value for the cultivated plants.
以下、図面を診照して具体的に説明する○この発明の植
物育成プラント全体の概念図を第1図に、その制御シス
テムの概念図を第2図に示す。A detailed explanation will be given below with reference to the drawings. A conceptual diagram of the entire plant growing plant of this invention is shown in FIG. 1, and a conceptual diagram of its control system is shown in FIG. 2.
プラントの栽培室1は太陽光或いはラング2によって昼
夜の別なくllt@明下に置かれる。自然状態の生育で
は昼間の光合成期間と夜間の呼吸期間V)父代があるが
、夾験によって、昼夜の別たく光合成を行なわせても植
物の成長へO憇影響はないことが知られている。The cultivation room 1 of the plant is placed under light regardless of day or night due to sunlight or rung 2. In natural growth, there is a photosynthesis period during the day and a respiration period at night (V), but it is known from experimental studies that there is no adverse effect on plant growth even if photosynthesis is carried out separately during the day and night. There is.
栽培室中には透明なビニルシート等で作られた同化箱3
が置かれ、その中に仁栽培室中の部分と同様の状態で数
珠の植物が植えられ、扉4がソレノイド5で開閉自在に
取付けられる。6はファンであ如、開扉時には同化箱3
■換気を行ない、その雰囲気を栽培室内と同じに保つと
共に、閉扉時には同化箱3内の状態を均一に′するよう
に働らく。There is an assimilation box 3 made of transparent vinyl sheets in the cultivation room.
is placed therein, beads of plants are planted therein in a state similar to that in the kernel cultivation room, and a door 4 is attached to be openable and closable by a solenoid 5. 6 is a fan, assimilation box 3 when the door is opened.
- It provides ventilation and maintains the same atmosphere as the cultivation room, and works to make the condition inside the assimilation box 3 uniform when the door is closed.
この実施例においては、栽培室内の光合成速度を同化箱
3内のco、1Ikiの変化速度として測定するように
なっておシ、そのための同化箱3内のCO麺変度検出用
センサー7が設けら−れる。In this embodiment, the photosynthesis rate in the cultivation room is measured as the rate of change of CO, 1Iki in the assimilation box 3, and a sensor 7 for detecting CO noodle variation in the assimilation box 3 is provided for this purpose. You can be caught.
8は温度拳湿度V)検出センサー、9は制御用コンピュ
ータ、10は空調装置、11はCO2O2濃度用節用0
2ボンベ、12はインターフェース、13は調光装置で
ある。8 is a temperature and humidity V) detection sensor, 9 is a control computer, 10 is an air conditioner, and 11 is a CO2O2 concentration control sensor.
2 cylinders, 12 an interface, and 13 a light control device.
この制御システムは次のように作動する。This control system operates as follows.
圀えはco2aiの制−は以下のように行なわれる。The control of co2ai is carried out as follows.
C02I!llI度は増加すると共に光合成速度は上昇
し、ある程度以上では飽和することが知られている0制
御の誤動作をさけるため、通常の飽和瞳より大きい上限
籠を予めセットする。また、濃度を変える揚台の濃度間
隔をセットする0まず、−同化箱30加4を開き、77
ン6によシ強制換気して栽培室内と同化箱内の雰囲気を
同じにし、センサー7によ9602111度を測定する
。次いでソレノイド5によシ扉4を閉じ、一定時間、飼
えば3分後のCO2濃度を測定し、その間の濃度減少値
を記憶する。次に、C02ボンベ11を開き、先にセッ
トしたe畝間隔、飼えばs o o ppmたけ栽培室
内のC02I!li度が増加するようC02ガスを数円
する。上記と同様に新しい濃度での濃度減少値を測定し
、先に記憶した濃度減少値と比較する。新しい濃度の方
が減少値が大であれば、COa度の増加によって光合成
速度が増加したことを意味するので、更に1段階C02
訣Uを増して上記と同様の測定を行う。C02I! As the llI degree increases, the photosynthesis rate also increases, and in order to avoid malfunctions in the 0 control, which is known to reach saturation above a certain level, an upper limit cage larger than a normal saturation pupil is set in advance. Also, set the concentration interval of the platform that changes the concentration.0 First, open the -assimilation box 30+4, and
The atmosphere in the cultivation room and the assimilation box were made the same by forced ventilation through the chamber 6, and the temperature was measured at 9602111 degrees using the sensor 7. Next, the door 4 is closed by the solenoid 5, and the CO2 concentration is measured after 3 minutes after being kept for a certain period of time, and the concentration decrease value during that time is memorized. Next, open the C02 cylinder 11, adjust the e-row spacing you set earlier, and grow so many ppm of C02I in the cultivation room! Add a few yen of CO2 gas to increase the li degree. The density reduction value at the new density is measured in the same way as above and compared with the previously stored density reduction value. If the decrease value is larger at the new concentration, it means that the photosynthesis rate has increased due to the increase in COa degree, so one more step CO2
The same measurement as above is carried out by increasing the number of points U.
実際には測定のバラツキが生ずるため、同一濃度で■測
定は成る設定回数(Nえは6回)行い、その測定@Q和
・平均・2乗和を計算し、2回の光合成速度を分散分析
し、その差の有意性を検定する0測定結果■1的を第3
図に示す。In reality, variations in measurements occur, so measurements are performed a set number of times (N is 6 times) at the same concentration, and the measurements @Q sum, average, and sum of squares are calculated, and the photosynthetic rate of the two times is distributed. Analyze and test the significance of the difference 0 measurement results
As shown in the figure.
CO退度が飽和点付近になると、2−)のIII度間の
光合成速度はa o o o ppmと3 s o o
ppmでの測定のように接近し、その差は「有更でな
い」と判断されるので、そのときを最適点として濃度制
御を一時停正し、その#度を一定に保って池の制御量を
最適化するように制御を続ける。When CO regression reaches near the saturation point, the photosynthetic rate between degrees III in 2-) is a o o o ppm and 3 s o o
As if measured in ppm, the difference is judged to be "not significant", so the concentration control is temporarily stopped with that point as the optimum point, and the control amount of the pond is adjusted by keeping the # degree constant. Continue to control to optimize.
池の総ての制御11量を最適化した後、再び池の条件が
変化した下での濃度の最適化を行い、このような最適化
の繰返しによって各制#址の総合的な最適値へと収斂す
る。After optimizing all 11 control quantities for the pond, the concentration is again optimized under changing pond conditions, and by repeating this optimization, the overall optimum value for each control site is reached. and converge.
最適値に到達すれば暫くそ■状態を保持し、植物がある
程度生長したらまた同様の最適化を行う〇
検ωされた光合成速度Q差が「有意」と判断される間は
上記の牛脂を練り返すが、久回の濃度のai算を行い、
それが上限をこえた場合は、条件が不適当とし、この場
合も劃−を停止する。Once the optimum value is reached, the state will be maintained for a while, and once the plants have grown to a certain extent, the same optimization will be carried out again.Knead the above beef tallow until the detected photosynthetic rate Q difference is judged to be "significant". I will return it, but I did the AI calculation of the concentration for a long time,
If it exceeds the upper limit, the conditions are considered inappropriate and the fielding will be stopped in this case as well.
上記の制御手順を第4図来示す。The above control procedure is illustrated in FIG.
他V)的として、気温Q制(財)は以下のように行なわ
れる。Regarding other V), the temperature Q system (goods) is carried out as follows.
気温については照度やCO#1度と異なシ、飽和現象は
見られず、最適曲線を描くことが知られでいる。飽和現
象を示す制御量については、飽和状態を維持すれば多少
Q制御ll量の変動があっても光合成速度の目立った低
下は生じないが、最適曲線を描く制御量は常にそのピー
クを維持するように佃」呻することが必要となる。Regarding temperature, unlike illuminance and CO#1 degrees, no saturation phenomenon is observed, and it is known that an optimal curve is drawn. Regarding controlled variables that exhibit saturation, if the saturated state is maintained, there will be no noticeable decrease in the photosynthetic rate even if there is some variation in the amount of Q control, but controlled variables that draw an optimal curve will always maintain their peak. "Youni Tsukuda" it becomes necessary to moan.
気温制御11Qプログラムも制御1141要因が気温に
なるだけで002濃変制御グ電ダラムとほぼ同じである
。ただし、甑大直が存在するので、分散分析が有意でな
くても制御を続ける点で相違する。The temperature control 11Q program is almost the same as the 002 concentration change control program, except that the control 1141 factor is temperature. However, there is a difference in that control continues even if the analysis of variance is not significant because of the existence of Koshiki Daicho.
そして2つの温度における光合成速度の干均埴を比較し
た場合、前回の光合成速度よシも今回の光合成速度が低
くなっていれば、温度間隔を一〇、5培し、それを次I
Z)−に間隔として採用して制tri1を続行する。こ
のように′して温度間隔があらかじめ設定した最小温度
間隔以下となった場合、そ’7[[を最適温度としてC
O□濃に制−の場合と同様、一時、制御を停止する。向
えば第5図に示す飼(測定の乎均直の与を示す)にオイ
て、6℃間隔の測定によって、20℃よシ26℃の方が
モ均値が小さくなった場合、温度間隔を−0,5@ 、
すなわち3℃下げて23℃で測定する。その結果、26
℃よシ23℃υ方が大きければ、更に3℃づつ下げて光
合成速度を比較してゆく。17℃で20℃のときよシ光
合成速度が低下するので、ここでまた温度間隔を−0,
5@ L、1.5℃上げて18.5℃で測定する。If you compare the photosynthesis rate at two temperatures, and if the current photosynthesis rate is lower than the previous one, then multiply the temperature interval by 10.5 and apply it to the next temperature.
Z)- is used as the interval and the control tri1 is continued. In this way, if the temperature interval becomes less than the preset minimum temperature interval, then
O□As in the case of high control, the control is temporarily stopped. For example, considering the temperature shown in Figure 5 (which shows the uniformity of measurement), if the average value is smaller at 26°C than at 20°C by measuring at 6°C intervals, then the temperature interval -0,5@,
That is, the temperature is lowered by 3°C and measured at 23°C. As a result, 26
If ℃ and 23℃υ are larger, lower the temperature by 3℃ and compare the photosynthesis rates. Since the photosynthesis rate decreases at 17℃ compared to 20℃, here we also change the temperature interval to -0,
5@L, increase the temperature by 1.5°C and measure at 18.5°C.
このような制御測定を繰返して−0.5@の温[間隔が
設定された般小泥度間隔例えば1℃以下となればその@
度はほぼ最a @にあるものとして温度制御を停止し、
次の制御量の制御に移る。プログラムの70−テヤート
を第6図に示すO
誤動作防止として、レリえは温1138℃以上、10℃
以下に設定された場合1条件が不遇自として制御を終了
することは前と同じである0必袈に応じ、制御量を個別
にではなく、複数の制御量を組合ぜて制御することも出
来る。第7図1、温度とCO2#度の複合最適制御を行
なった場合の例を示す0
こ0例では、温度14℃、CO2@度1800ppm
から探索を開始し、第7図のプロットの添字の順に制
御ll量を変化させている。図から明らかなように、1
から2へは温度の会の変化、2から3へはCO2濃度i
iり会の変化であシ、3から4へは温1とco−yの両
方を変化させている。図示の例では13回目で最適点2
0℃、2600 ppmに到達している。By repeating such control measurements, if the temperature [interval is set at -0.5@] is set, e.g., 1℃ or less, then the @
Temperature control is stopped assuming that the temperature is almost at the maximum a@,
Move on to control of the next controlled variable. The program's 70-tayat is shown in Figure 6. To prevent malfunction, the temperature should be 1138℃ or higher, and 10℃.
If the following conditions are set, the control will be terminated as the first condition is unlucky, as before.0 Depending on the necessity, it is also possible to control a combination of multiple control variables instead of controlling them individually. . Figure 7 1 shows an example of combined optimal control of temperature and CO2 degrees.
The search is started from , and the control amount is changed in the order of the subscripts of the plot in FIG. As is clear from the figure, 1
From 2 to 2 is the change in temperature, and from 2 to 3 is the CO2 concentration i
This is due to the change in Irikai, and from 3 to 4 both warm 1 and coy are changed. In the example shown, the optimal point is 2 at the 13th time.
It reached 2600 ppm at 0°C.
このように、CO2濃度の減少速度最大力なわち光合成
速度峡大となるように、ステップ・バイ−ステップに各
制御量を順に制御して行けば、育成する植物Q特性、栽
培条件等に無関係に各制御量を、その相互関係をも考慮
した上での最allに常に保持することが出来るという
極めて顕著な効果を奏するもめである。In this way, if each control amount is controlled in a step-by-step manner so that the rate of decrease in CO2 concentration is maximized, that is, the rate of photosynthesis is maximized, the results will be independent of the plant's Q characteristics, cultivation conditions, etc. This is a conflict that has the extremely remarkable effect of being able to always maintain each control amount at its maximum value, taking into account their mutual relationships.
第1図はこの発明の植物育成プラント全体の執念図、第
2図はそ・の制御システムの執念図、第3図はCOA度
と光合成速度の関係図、第4図はCOP度制御プ彎グラ
ムの70−チャート、第5図は気温と光合成速度の関係
図、第6図は気温制御プログラムの70−チ、ヤード、
第7図は温度と005度の複合制御の温度−濃度図1:
栽培室 2:ランプ 3:同化箱 4:#′ 5:ソレ
ノイド 6:7アン 7 : C02センサ 8:温度
・湿度計 9:制御用コンピータ 10:空調装置 1
1:C02ボンベ特許出願人 新技術開発事業団
出願人代理人 弁理士 佐 藤 文 男第
6 図
臼
α Q
26 3238
温度℃
図
郵
o1!f 郵Figure 1 is a diagram of the entire plant growing plant of this invention, Figure 2 is a diagram of its control system, Figure 3 is a diagram of the relationship between COA degree and photosynthetic rate, and Figure 4 is a diagram of the COP degree control curve. 70-gram chart, Figure 5 is a diagram of the relationship between temperature and photosynthetic rate, Figure 6 is the temperature control program 70-ch, yard,
Figure 7 is a temperature-concentration diagram 1 for combined control of temperature and 005 degrees:
Cultivation room 2: Lamp 3: Assimilation box 4: #' 5: Solenoid 6: 7 Anne 7: C02 sensor 8: Temperature/hygrometer 9: Control computer 10: Air conditioner 1
1: C02 cylinder patent applicant New Technology Development Corporation Applicant agent Patent attorney Fumi Sato Man No.
6 Diagram α Q 26 3238 Temperature ℃ Diagram o1! f mail
Claims (1)
濃度、気温、熱賦等の制御t1mを一定のステップ毎に
変化させる装置、および各側ahの変化ごとにC02濃
度を測定し、級測定値からCO2消費速度を算出する装
置を有し、CO2消費速度が最大となった時点で当核制
御量Q制両を一時停止し、次いで池の制御1を最適化し
、このようにして栽培室0条H〕を植物の成長速度が最
大となるように維持することを特徴とする植物育成プラ
ントの岐適制(財)システム 2)植物の栽培室と同粂汗で栽培された植物体を有し、
上記栽培室との間に開閉自任の扉を設けた同化箱中υC
02消費速敦を検出するこぶを特徴とする特許鯖氷の範
囲第1項の最適制御システム[Claims] 1) A cultivation room for seven plants, a CO2 concentration measuring device, a device for changing the control t1m of the CO2 concentration, temperature, heat application, etc. at every fixed step, and every change in each side ah. It has a device that measures the CO2 concentration and calculates the CO2 consumption rate from the measured value, and when the CO2 consumption rate reaches the maximum, it temporarily stops the nuclear control quantity Q control and then optimizes the pond control 1. 2) A system for plant cultivation plants that is characterized by maintaining the cultivation chamber (0 row H) so that the growth rate of the plants is at its maximum. It has a plant grown on sweat,
Inside the assimilation box υC with a door that can be opened and closed at will between the cultivation room and the above cultivation room
02 Optimum control system for patented mackerel ice range No. 1 featuring a knob for detecting consumption speed
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58029536A JPS59154925A (en) | 1983-02-25 | 1983-02-25 | Optimum control system of plant growing plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58029536A JPS59154925A (en) | 1983-02-25 | 1983-02-25 | Optimum control system of plant growing plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59154925A true JPS59154925A (en) | 1984-09-04 |
JPH0329364B2 JPH0329364B2 (en) | 1991-04-24 |
Family
ID=12278830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58029536A Granted JPS59154925A (en) | 1983-02-25 | 1983-02-25 | Optimum control system of plant growing plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59154925A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170012448A (en) | 2014-06-30 | 2017-02-02 | 파나소닉 아이피 매니지먼트 가부시키가이샤 | Hydroponic method and hydroponic device |
JP2018068205A (en) * | 2016-10-28 | 2018-05-10 | 井関農機株式会社 | Plant cultivation apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4941127A (en) * | 1972-09-07 | 1974-04-17 |
-
1983
- 1983-02-25 JP JP58029536A patent/JPS59154925A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4941127A (en) * | 1972-09-07 | 1974-04-17 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170012448A (en) | 2014-06-30 | 2017-02-02 | 파나소닉 아이피 매니지먼트 가부시키가이샤 | Hydroponic method and hydroponic device |
JP2018068205A (en) * | 2016-10-28 | 2018-05-10 | 井関農機株式会社 | Plant cultivation apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0329364B2 (en) | 1991-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4569150A (en) | Method and apparatus for optimization of growth of plants | |
Thorpe et al. | Responses of apple leaf stomata: a model for single leaves and a whole tree | |
Jones et al. | Pattern of respiration of a perennial ryegrass crop in the field | |
US10599169B2 (en) | System and method for optimizing carbon dioxide delivery to crops during high temperature periods | |
CN117331392B (en) | Environment management system for intelligent greenhouse | |
JPWO2018021142A1 (en) | Carbon dioxide application support device and carbon dioxide application support program | |
CN104996199B (en) | A kind of effective carbon-dioxide fertilizer apparatus and fertilizing method | |
Bailey et al. | Improving the cost effectiveness of greenhouse climate control | |
Prenger et al. | Plant response-based irrigation control system in a greenhouse: system evaluation | |
JPS59154925A (en) | Optimum control system of plant growing plant | |
Shibata et al. | Effect of vertical air flowing on lettuce growing in a plant factory | |
JP6573849B2 (en) | Agricultural house environment controller | |
JP7295565B2 (en) | Growth environment control program, growth environment control method, and growth environment control device | |
Caplan | Optimizing carbon dioxide concentration and daily light integral combination in a multi-level electrically lighted lettuce production system | |
GOTO et al. | Effect of reduced total air pressure on spinach growth | |
ROMDHONAH et al. | Averaging techniques in processing the high time-resolution photosynthesis data of cherry tomato plants for model development | |
Kwon et al. | Development of environmental control system for high-quality shiitake mushroom (Lentinus edodes (Berk.) Sing.) Production | |
Nederhoff et al. | Dynamic model for greenhouse crop photosynthesis: Validation by measurements and application for CO2 optimization | |
KR101772121B1 (en) | Apparatus and Method for controlling plant growth in city farm control system | |
Challa et al. | Micro-Climatic Variations in Naturally Ventilated Polyhouse Under Cucumber Cultivation | |
JPH0576243A (en) | Control device of culture chamber | |
Caporn et al. | A controlled‐environment chamber for measurement of canopy photosynthesis by small stands of lettuce (Lactuca sativa L.) | |
RU2403705C1 (en) | Method of automatic control of temperature-light regime in greenhouse | |
CN108338060A (en) | Plant conservation system, plant maintenance work station and plant maintenance method | |
Hishamuddin et al. | Mushroom house monitoring system using internet of things (IoT) |