JPS59154763A - Negative pole material for lithic secondary cell - Google Patents

Negative pole material for lithic secondary cell

Info

Publication number
JPS59154763A
JPS59154763A JP58028974A JP2897483A JPS59154763A JP S59154763 A JPS59154763 A JP S59154763A JP 58028974 A JP58028974 A JP 58028974A JP 2897483 A JP2897483 A JP 2897483A JP S59154763 A JPS59154763 A JP S59154763A
Authority
JP
Japan
Prior art keywords
lithium
polymer
negative pole
negative electrode
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58028974A
Other languages
Japanese (ja)
Inventor
Motoyuki Suzuki
基之 鈴木
Toshiichi Fujii
藤井 敏一
Hiroshi Hayashi
博史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP58028974A priority Critical patent/JPS59154763A/en
Publication of JPS59154763A publication Critical patent/JPS59154763A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To secure a negative pole material for a lithic secondary cell aiming at safety and improvements in the charging and discharging characteristics of a battery, by forming the negative pole material with lithium contained in a pyrolytic products of an allyl acetylene polymer. CONSTITUTION:An allyl acetylene copolymer expressed in a chemical formula (X is of H, a halogen group and a cyano group, A is of an alkyl group, an allyl group, etc., n is of 0-5, and m is of the number that molecular weight in a polymer becomes above 5,000) is made up in to a filmy form, a woven fablic form or the like. This copolymer is decomposed by heat whereby such a product as being porous and excellent in conductivity is secured. With this product set down to an electrode material, about 0.1-40g of lithium is contained in the pyrolytic product per 100g, and a negative pole material for a lithic secondary cell is formed up. Using this negative pole material, good reversibility in the charging and discharging cycles of the lithic secondary cell can be secured.

Description

【発明の詳細な説明】 本発明はリチウム二次電池用負極材に関する。[Detailed description of the invention] The present invention relates to a negative electrode material for lithium secondary batteries.

最近LSIをはじめとする電子技術の発展はめざましく
、各種機器の飛躍的な小型化、軽量化が図られ、高エネ
ルギー密度が得られ、しかも放電電圧が高いリチウム電
池の需要はますます高まっている。しかし実用化されて
いるリチウム電池は一次電池であり、二次電池の開発が
注目されている。
Recent advances in electronic technology, including LSI, have led to dramatic miniaturization and weight reduction of various devices, and the demand for lithium batteries with high energy density and high discharge voltage is increasing. . However, the lithium batteries that are in practical use are primary batteries, and the development of secondary batteries is attracting attention.

二次電池において正極活物質は遷移金属酸化物や硫化物
が有望視されているが、負極活物質がリチウム金属なの
で充電時にデン十ライトなどの問題が発生し、安定した
性能の二次電池が得られていない。
Transition metal oxides and sulfides are considered to be promising positive electrode active materials in secondary batteries, but since the negative electrode active material is lithium metal, problems such as densitolite occur during charging, making it difficult for secondary batteries to have stable performance. Not obtained.

ない。またポリアセチレンやポリフエニ1/ンなどの合
成高分子を負極活物質とする方法が提案されているが、
合成が極めて困難であったり空気中で不安定で取扱いが
厄介などの問題がある。
do not have. In addition, methods have been proposed in which synthetic polymers such as polyacetylene and polyphenylene are used as negative electrode active materials.
It has problems such as being extremely difficult to synthesize, unstable in air, and difficult to handle.

本発明者らはこれらの問題を解消することを目的に鋭意
検旧した結果、本発明に到達した。すなわち本発明はア
リールアセチレン重合体の熱分解生成物にリチウムを含
有してなるリチウム二次電池用負極材である。
The present inventors conducted extensive research with the aim of solving these problems, and as a result, they arrived at the present invention. That is, the present invention is a negative electrode material for a lithium secondary battery, which contains lithium in a thermal decomposition product of an arylacetylene polymer.

本発明におけるアリールアセチレン重合体の熱分解生成
物において、アリールアセチレン重合体としては一般式 6式中、XはH1ハロケン基またはシアノ基、Aはアル
キル基、アリール基、アルコキシ基、アリールオキシ基
、ニトロ基、シアノ基、アミノ基またはハロゲン基、n
は0〜5の整数τmは重合体の分子量が5000以上に
なる数である1、)で示される重合体があげられる。
In the thermal decomposition product of the arylacetylene polymer in the present invention, the arylacetylene polymer has the general formula 6, where X is a H1 halokene group or a cyano group, A is an alkyl group, an aryl group, an alkoxy group, an aryloxy group, Nitro group, cyano group, amino group or halogen group, n
is an integer of 0 to 5 and τm is a number such that the molecular weight of the polymer is 5000 or more.

一般式(1)において、Xのハロゲン基としては、”+
 Br、 lがあげられる。Aにおけるアルキル基とし
ては炭素数1〜18、好ましくは1〜4の直鎖または側
鎖を有するアルキル基たとえばメチル基。
In general formula (1), the halogen group of X is “+
Br, l can be mentioned. The alkyl group in A is an alkyl group having a straight or side chain having 1 to 18 carbon atoms, preferably 1 to 4 carbon atoms, such as a methyl group.

イソプロピル基、ブチル基などがあげられる。Aにおけ
るアリール基としてはフェニル基、ナフチである)など
の少なくとも一個の基で置換された基があげられる。こ
のアルキル基としては先に述Aにおけるアルコキシ基お
よびアリールオキシ基としては先に述べたAにおけるア
ルキル基およびアリール基からのアルコキシ基ならびに
アリールオキシ基があげられる。Aにおけるハロゲン基
としてはCI、 Br、 Iがあげられる。nは0〜5
の整数、好ましくは0または1の整数である。mは分子
量が5000以上になる数、好ましくは1万〜]、 O
O万になる数である。分子量が5000未満ではフィル
ムとしての強度が不足する。
Examples include isopropyl group and butyl group. Examples of the aryl group in A include groups substituted with at least one group such as phenyl group and naphthyl group. Examples of the alkyl group include the alkoxy group in A mentioned above, and examples of the aryloxy group include the alkoxy group and aryloxy group from the alkyl group and aryl group in A mentioned above. Examples of the halogen group in A include CI, Br, and I. n is 0 to 5
, preferably an integer of 0 or 1. m is a number such that the molecular weight is 5000 or more, preferably 10,000~], O
The number is 00,000. When the molecular weight is less than 5,000, the strength as a film is insufficient.

一般式(1)で示される重合体を得るのに用いられる単
量体としては下記の単量体があげられる。これらの単量
体は併用してもよい。
Examples of monomers used to obtain the polymer represented by general formula (1) include the following monomers. These monomers may be used in combination.

〔1〕フエニルアセチレン類 〔2〕アルキルフエニルアセチレン類 〔3〕ハロケノフエニルアセチレン類 〔4〕ンアノフエニルアセチレン類 など こオ[らの単)W体のうち好ましいものはフェニルアセ
チト′、ン類、アルキルフェニルアセチレン類およびハ
ロケンフェニルアセチレン類であり、とくに好ましいも
のはフェニルアセチレン、2−メチフェニルアセチレン
および2−プロモー1−フェニルアセチレンである。
[1] Phenyl acetylenes [2] Alkyl phenylacetylenes [3] Halochenophenyl acetylenes [4] Anophenyl acetylenes, etc. Among the W forms of [ra], the preferred one is phenylacetate. ', n-s, alkylphenylacetylenes and halokenphenylacetylenes, and particularly preferred are phenylacetylene, 2-methyphenylacetylene and 2-promo-1-phenylacetylene.

重合体はポリマーブゝレテイン(Polymer Bu
lletin ) 2 、823−827 、1980
記載の方法で得られるものを利用することができる。す
なわちポリマーは周期律表第久族遷移金属カルボニルと
有機ハロゲン化合物との易合物を光照射して得られる触
媒を用いてモノマーを重合することによって得ることが
できる。上記重合の詳細については特願昭55−181
090号明細書に記載されている。得られたアリールア
セチレンポリマーの数平均分子量は滲透工法によれば通
常5000以」−1好ましくは1万〜100万である。
The polymer is Polymer Bu
lletin) 2, 823-827, 1980
Those obtained by the method described can be used. That is, the polymer can be obtained by polymerizing monomers using a catalyst obtained by irradiating a compound of a transition metal carbonyl from Group 1 of the periodic table with an organic halogen compound. For details of the above polymerization, please refer to Japanese Patent Application No. 55-181.
It is described in the specification of No. 090. The number average molecular weight of the obtained arylacetylene polymer is usually 5,000 or more, preferably 10,000 to 1,000,000, according to the percolation method.

また、その固有粘度はトルエン中、30℃で測定した場
合、通常01〜10de/g、好ましくは03〜5de
/9である。
In addition, its intrinsic viscosity is usually 01 to 10 de/g, preferably 03 to 5 de/g when measured in toluene at 30°C.
/9.

またアリールアセチレンポリマーの電気的特性は、体積
抵抗率〔25℃)で評価した場合、通常IO”8〜10
15Ωcmであり、また機械的強度は引張り強度で評価
した場合、通常500〜2000kF/cm2である。
Furthermore, the electrical properties of arylacetylene polymers are usually IO"8 to 10 when evaluated by volume resistivity [25°C].
15 Ωcm, and the mechanical strength is usually 500 to 2000 kF/cm 2 when evaluated by tensile strength.

アリールアセチレン重合体の形態はとくに限定されない
が、通常、粉末状、フィルム状、ンート造する方法とし
ては、通常、該重合体を不活性ガス雰囲気下で加熱、熱
処理する方法からげられる。
Although the form of the arylacetylene polymer is not particularly limited, the method for producing it into a powder, film, or sheet is usually a method of heating and heat-treating the polymer in an inert gas atmosphere.

加熱温度は通常100〜1000℃、好ましくは300
〜850℃、加熱時間は通常1〜50時間、好ましくは
2〜20時間である。また不活性ガス、たとえば窒素ガ
ス雰囲気下、段階的に加熱、熱処理する方法。
The heating temperature is usually 100 to 1000°C, preferably 300°C.
~850°C, and the heating time is usually 1 to 50 hours, preferably 2 to 20 hours. Also, a method of heating and heat treatment in stages under an inert gas atmosphere, such as nitrogen gas.

たとえば100〜400℃で05〜10時間加熱、熱処
理し1次いで600〜900℃で1〜10時間加熱、熱
処理する方法も行うことができる。
For example, a method of heating and heat treating at 100 to 400°C for 05 to 10 hours and then heating and heat treating at 600 to 900°C for 1 to 10 hours can also be performed.

アリールアセチレン重合体は熱分解により、通常減量す
る。減量はアリールアセチレン重合体の種類によって異
なるが1ことえば2−クロロ−1−フェニルアセチレン
の場合は該重合体に対シテ通常20〜50重里%、とく
に25〜40重量%である。
Arylacetylene polymers usually lose weight due to thermal decomposition. Although the weight loss varies depending on the type of arylacetylene polymer, for example, in the case of 2-chloro-1-phenylacetylene, it is usually 20 to 50% by weight, particularly 25 to 40% by weight based on the weight of the polymer.

得られtこアリールアセチレン重合体の熱分解生成物は
通常、光沢のある黒色の物質である。熱分解生成物の形
状は原料アリールアセチレン重合体の形状に依存し、た
とえばフィルム状のアリールアセチレン重合体からはフ
ィルム状の熱分解生成物が得られ、繊維状のアリールア
セチレン重合体からは繊維状の熱分解生成物が得られる
。このア有することができ、電極材料としてすぐれた性
質をもっている。
The resulting thermal decomposition product of the arylacetylene polymer is usually a shiny black material. The shape of the pyrolysis product depends on the shape of the raw material arylacetylene polymer; for example, a film-like arylacetylene polymer yields a film-like pyrolysis product, while a fibrous arylacetylene polymer yields a fibrous pyrolysis product. pyrolysis products are obtained. It has this property and has excellent properties as an electrode material.

アリールアセチレン重合体の熱分解生成物にリチウムを
含有させるに際し、熱分解生成物に対するリチウムの量
は熱分解生成物1002当り、通常O1〜40g、好ま
しくは0.2〜18yである。
When incorporating lithium into the thermal decomposition product of the arylacetylene polymer, the amount of lithium in the thermal decomposition product is usually 1 to 40 g of O per 1002 of the thermal decomposition product, preferably 0.2 to 18 y.

アリールアセチレン重合体の熱分解生成物にリチ、ラム
を含有させるに際し、フィルム状、織布状などのアリー
ルアセチレン重合体の熱分解生成物Iτリチウムを含有
させる方法および粉末状のアリールアセチレン重合体の
熱分解生成物と粉末状の合成樹脂(テフロン、ポリエチ
レン、ポリスチレンなと)またはピッチ、タールなどの
石油または石油乾留物とを混合し、混練した後、加熱成
型したものにリチウムを含有させる方法があげられる。
A method for incorporating Iτ lithium, which is a thermal decomposition product of an arylacetylene polymer in the form of a film or a woven fabric, when incorporating lithium or rum into a thermal decomposition product of an arylacetylene polymer, and a method for incorporating lithium, a thermal decomposition product of an arylacetylene polymer in the form of a film or a woven fabric, and a method for incorporating lithium, a thermal decomposition product of an arylacetylene polymer in the form of a powder. Thermal decomposition products and powdered synthetic resins (Teflon, polyethylene, polystyrene, etc.) or petroleum or petroleum dry distillates such as pitch and tar are mixed, kneaded, and then heated and molded to contain lithium. can give.

具体的に含有させる方法としては、電気化学的方法、化
学的方法および物理的方法があげられる。
Specific methods for containing include electrochemical methods, chemical methods, and physical methods.

電気化学的方法としては、アリールアセチレン重合体の
熱分解生成物を正極とし、リチウム箔を負フ化リチウム
、ヒ素フッ化リチウム、リンフッ化リチウム、塩化アル
ミン酸リチウム、ハロゲン化リチウムなど)をプロピレ
ンカーボネート、γ−ブチロラクトンなどのエステル、
ジメトキンエタン、ジメ1〜キシテ1〜ラヒドロフラン
などのエーテル、N−メチルオキサゾリジノンなどのN
−置換オキザゾリジノン、N、N’−ジメチルイミダゾ
リジノンなどのN、N’−置換イミダゾリジノンなどの
有機溶媒に溶解させて得られる電解液を介在させて、正
、負極間に通電(電気容量はアリールアセチレン重合体
の熱分解生成物1g3たり03〜2All)させる方法
があげられる。化学的方法としては熱分解生成物をアル
キルリチウムまたはアリールリチウムのヘキサンなどの
脂肪族炭化水素。
In the electrochemical method, a thermal decomposition product of an arylacetylene polymer is used as a positive electrode, and a lithium foil is used as a negative electrode (lithium fluoride, lithium arsenic fluoride, lithium phosphorus fluoride, lithium chloride aluminate, lithium halide, etc.) as a propylene carbonate. , esters such as γ-butyrolactone,
Ethers such as dimethine ethane, dimethine-1-xyte-1-rahydrofuran, N-methyloxazolidinone, etc.
- Electrolyte obtained by dissolving N,N'-substituted imidazolidinone such as -substituted oxazolidinone, N,N'-dimethylimidazolidinone, etc. in an organic solvent is interposed, and current is passed between the positive and negative electrodes (electrical capacity An example of this method is a method in which the amount of thermal decomposition products of the arylacetylene polymer is 03 to 2 All per 1 g of the thermal decomposition product of the arylacetylene polymer. Chemical methods include thermal decomposition products of alkyllithium or aryllithium with aliphatic hydrocarbons such as hexane.

テトラヒドロフランなどのエーテルなどの有機溶媒溶液
(濃度は通常5〜50谷量%〕に浸漬まjコは含浸する
方法があげられる。浸漬または含浸温度は通常5〜30
℃、時間は通常1〜50時間である。
An example of this method is immersion in an organic solvent solution such as ether such as tetrahydrofuran (concentration is usually 5 to 50% by weight).The immersion or impregnation temperature is usually 5 to 30%.
°C and time is usually 1 to 50 hours.

また物理的方法としては熱分解生成物をリチウムの蒸気
に曝露させる方法があげられる。これらの方法のうちで
好ましいのは電気化学的方法および化学的方法である。
Further, as a physical method, there is a method of exposing the thermal decomposition product to lithium vapor. Preferred among these methods are electrochemical methods and chemical methods.

本発明のリチウム二次電池用負極材は通常、フィルム状
、織布状などのアリールアセチレン重合体の熱分解生成
物に前記の方法でリチウムを含イイさせる方法および粉
末状のアリールアセチレン重合体の熱分解生成物と粉末
状の合成樹脂(テフロン、ポリエチレン、ポリス升しン
など)またはピッチ、タールなどの石油または石油乾留
物とを混合し、混線しjこ後、加熱成型したものに前記
の方法でリチウムを含有させる方法により得ること力≦
できる。
The negative electrode material for lithium secondary batteries of the present invention is usually prepared by impregnating lithium into a thermal decomposition product of an arylacetylene polymer in the form of a film or a woven fabric by the method described above, or by impregnating lithium with the thermal decomposition product of an arylacetylene polymer in the form of a powder. Thermal decomposition products are mixed with powdered synthetic resins (Teflon, polyethylene, polyethylene, etc.) or petroleum or petroleum dry distillates such as pitch and tar, mixed together, and then heated and molded to form the above-mentioned product. The power obtained by the method of containing lithium≦
can.

本発明のリチウム二次電池用負極材を用Ojこ。Using the negative electrode material for lithium secondary batteries of the present invention.

リチウム二次電池の1例を第1図に基いて説明する。図
において(υは正極缶(正極集電体) 、 (2)は集
電用金属製ネット、(3)は正極活物質、(4)は有機
電解液を含有し1こセパレーターまたは電解質の成型体
、(6)は負極活物質(本発明のリチウム二次電池用負
極材) 、(7)は負イα缶(負極集電体)、(8)は
集電用金属ネットである。
An example of a lithium secondary battery will be explained based on FIG. 1. In the figure (υ is a positive electrode can (positive electrode current collector), (2) is a metal net for current collection, (3) is a positive electrode active material, (4) is a separator containing an organic electrolyte, and is a molded separator or electrolyte. (6) is a negative electrode active material (negative electrode material for a lithium secondary battery of the present invention), (7) is a negative α can (negative electrode current collector), and (8) is a metal net for current collection.

(1)の正極集電体としてはステンレス、カーホンなど
の導電体があげられる。(3)の正極活物質としては遷
移金属酸化物(二酸化マンガン、五酸化バナジウム?酸
化モリブデン、酸化銅など)、遷移金属カルコケン化合
物(硫化鉄、硫化チタンなど)などからげられる。正極
活物質は一般に成型体として用いられ、成型体を得る方
法としては正極活物質粉末または正極活物質粉末と合成
樹脂粉末(テフロン、ポリエチレン、ポリスチレンなど
の粉末)とを金型内で加圧、焼結する方法があげられる
。(4)の有機電解液としては前記したリチウム塩(過
塩素酸リチウム他)の前記した有機溶媒(プロピレンカ
ーホネート他)浴液〔リチウム塩の濃度は通M o、x
〜5モル/(1)があげられ、電解質の成型体としては
前記リチウム塩、有機重合体Cnu記アリアリールアセ
チレン重合体リカーボネートなど)および前記有機溶媒
C−プロピレンカーボネート他)からなるものがあげら
れる。(7)の負極集電体としてはステンレス、刀−よ
、パ〜/ちにGであげられる。
Examples of the positive electrode current collector (1) include conductive materials such as stainless steel and carphone. Examples of the positive electrode active material (3) include transition metal oxides (manganese dioxide, vanadium pentoxide, molybdenum oxide, copper oxide, etc.), transition metal chalcokene compounds (iron sulfide, titanium sulfide, etc.), and the like. The positive electrode active material is generally used as a molded body, and the method for obtaining the molded body is to press positive electrode active material powder or positive electrode active material powder and synthetic resin powder (powder of Teflon, polyethylene, polystyrene, etc.) in a mold. One example is sintering. The organic electrolyte (4) is a bath solution of the above-mentioned lithium salt (lithium perchlorate, etc.) in the above-mentioned organic solvent (propylene carbonate, etc.) [the concentration of the lithium salt is the same as M o, x
~5 mol/(1), and the molded electrolyte includes the above-mentioned lithium salt, the organic polymer Cnu (aryl acetylene polymer recarbonate, etc.), and the organic solvent C-propylene carbonate, etc.). It will be done. Examples of the negative electrode current collector in (7) include stainless steel, katana-yo, pa-/chi-g.

次に具体的に本発明の負極材を用いたリチウム二次電池
を説明する。正極缶(1)の底面に集電用金属製ネット
(2)を置き1、その上に正極活物質(成型体)(3)
を圧着する。次に正極活物質(成型体〕(3)上に有機
電解液を含有したセパレーターまたは電解質の成型体(
4)を載置した後、L字状のガスケット(5)を正極缶
(1)の壁面に沿って挿入する。次いで負極活物質(6
)を負極缶(7)に集電用金属製ネットを介在させて密
着させた後、有機電解液を含有したセパレーターまたは
電解質の成型体(4)北に載置し正極缶(1)の開口部
を内方へ折曲し封口する。
Next, a lithium secondary battery using the negative electrode material of the present invention will be specifically explained. A current collecting metal net (2) is placed on the bottom of the positive electrode can (1) 1, and a positive electrode active material (molded body) (3) is placed on top of it.
Crimp. Next, a separator containing an organic electrolyte or a molded electrolyte (
4), insert the L-shaped gasket (5) along the wall of the positive electrode can (1). Next, the negative electrode active material (6
) is brought into close contact with the negative electrode can (7) with a current collecting metal net interposed therebetween, and then placed on the north side of the separator or electrolyte molded body (4) containing an organic electrolyte, and then opened the positive electrode can (1). Fold the part inward and seal it.

本発明のリチウム二次電池用負極材は合成がしやすく充
放電特性がすぐれ、また充電時【こデンドライトなどの
問題が殆んど発生しない負極材であり、この負極イ、J
を使ったリチウム電池は高性能のものである。
The negative electrode material for lithium secondary batteries of the present invention is easy to synthesize and has excellent charge/discharge characteristics, and is a negative electrode material that hardly causes problems such as dendrites during charging.
Lithium batteries using lithium batteries are of high performance.

製造例1 ポリ2−クロロ−1−フェニルアセチレンの粉末489
を電気炉に設けられた石英管中に入れ、窒素ガスを石英
管中に通じながら室温から400℃まで1時間で昇温し
、次に400℃から600℃まで30分間で昇湿し、さ
らに600℃から800℃まで30分間で昇温し、80
0℃で25時間加熱した。その後窒素ガスを通じながら
冷却を行い黒色の粉末状物質であるポリ2−クロロ−1
−フェニルアセチレン重合体の熱分解生成物26.89
得た。このものは空気中で6ケ月間放置しても酸化分解
することなく安定であつrこ。
Production Example 1 Poly 2-chloro-1-phenylacetylene powder 489
was placed in a quartz tube installed in an electric furnace, and while passing nitrogen gas through the quartz tube, the temperature was raised from room temperature to 400°C in 1 hour, then the humidity was raised from 400°C to 600°C in 30 minutes, and then Raise the temperature from 600℃ to 800℃ in 30 minutes, and
Heated at 0°C for 25 hours. After that, it was cooled while passing nitrogen gas, and a black powdery substance, poly-2-chloro-1, was produced.
- Phenylacetylene polymer thermal decomposition products 26.89
Obtained. This material remains stable without oxidative decomposition even if left in the air for 6 months.

この熱分解生成物lOJとポリエチレン粉末1gとを混
合してよく混練した後、金型に入れて300kg/cr
l’Gの圧力下で厚み]、mmのンート(ポリ2−クロ
ロ−1−フェニルアセチレン熱分解生成物の成型体)を
得た。このものの電気伝導度は室温で01Ω−’cm’
であった。
This thermal decomposition product lOJ and 1 g of polyethylene powder were mixed and kneaded well, then put into a mold and heated to 300 kg/cr.
A molded product of poly-2-chloro-1-phenylacetylene thermal decomposition product having a thickness of 1 mm was obtained under a pressure of 1'G. The electrical conductivity of this material is 01Ω-'cm' at room temperature.
Met.

実施例1 製造例1て作成したンート(ポリ2−クロロ−1−フェ
ニルアセチレン重合体の熱分解生成物の成型体)を直径
1cmの円板状に切り出し重量をはかつtこところ50
m&であつtこ。これをステンレス製ネットに圧着し1
こものを正極とし、リチウム箔を負極とし、過酸化リチ
ウムを0.5モノ、し/βの濃度になるように溶解した
プロピレンカーボネート溶液が入ったガラス製容器内に
両極を入れ密封した。
Example 1 The sheet (molded body of thermal decomposition product of poly-2-chloro-1-phenylacetylene polymer) prepared in Production Example 1 was cut into a disk shape with a diameter of 1 cm, and the weight was measured.
m & de attu tko. Crimp this onto a stainless steel net and
The powder was used as a positive electrode, the lithium foil was used as a negative electrode, and both electrodes were placed in a glass container containing a propylene carbonate solution in which lithium peroxide was dissolved to a concentration of 0.5 mono, 2/β, and the electrodes were sealed.

次に0.5 mAの定電流で30時間通電した。その結
果4mlのリチウムが含有した円板状ンート(本発明の
リチウム二次電池用負極材)が得られた。
Next, a constant current of 0.5 mA was applied for 30 hours. As a result, a disc-shaped tube containing 4 ml of lithium (negative electrode material for a lithium secondary battery of the present invention) was obtained.

参考例1 実施例1で得たリチウムを含有した円板状ンート(本発
明のリチウム二次電池用負極材)を負極活物質とし、・
五酸化バナジウムを正極活物質とし、過塩素酸リチウム
のN−メチルオキサゾリジノン溶液を・電解液としてリ
チウム二次電池を組みたてた。0.5mAの定電流で終
止電圧が8.5Vになるまで充電を行った。この充放電
試験を30サイクル行つ1こ結果良好な可逆性を示した
Reference Example 1 The lithium-containing disc-shaped node obtained in Example 1 (negative electrode material for lithium secondary batteries of the present invention) was used as a negative electrode active material,
A lithium secondary battery was assembled using vanadium pentoxide as a positive electrode active material and an N-methyloxazolidinone solution of lithium perchlorate as an electrolyte. Charging was performed at a constant current of 0.5 mA until the final voltage reached 8.5 V. This charge/discharge test was conducted for 30 cycles, and the results showed good reversibility.

実施例2 五酸化バナジウム粉末、アセチレンブラックおよびポリ
エチレン粉末を混合し、よく混練した後、金型に入れて
500kg/cm2Gの圧力下で成型し、厚み1.5n
unの円板(正極活物質の成型体)を得た。
Example 2 Vanadium pentoxide powder, acetylene black and polyethylene powder were mixed and kneaded well, then put into a mold and molded under a pressure of 500 kg/cm2G to a thickness of 1.5 nm.
An un disk (molded body of positive electrode active material) was obtained.

この円板を円筒状のポリエチレン製容器内にあるステン
レス製ネットに圧着した後、6mfのリチウム箔を14
いた。次に05モル/e濃度の過塩素酸リチウムのN−
メチルオキサゾリジノン溶液を含浸させたスポンジ状吸
液シー1− (有機電解液を含有したセパレーター)を
リチウム箔上に載せた。製造例]で作成したシー1〜を
直径1゜2cmの円板状に、切り出し、ステンレス製ネ
ットに圧着した後、前記吸液ソート上に載せポリエチレ
ン製容器の両端をキャップし密封した。〔このときステ
ンレス製ネツI〜およびリチウム箔にそれぞれリード線
をつけておく。)。リチウム箔を負極としポリ2−クロ
ロ−1−フェニル≠4=アセチレン重合体の熱分解生成
物の成型体を正極として0.5mAの定電流で23時間
通電した。その結果リチウム箔が全て消費され前記熱分
解生成物の成型体にリチウムが含有され、負極材が得ら
れた。
After this disk was crimped onto a stainless steel net inside a cylindrical polyethylene container, 6mf lithium foil was
there was. Next, N− of lithium perchlorate with a concentration of 0.5 mol/e
A sponge-like liquid-absorbing sheet 1- (separator containing an organic electrolyte) impregnated with a methyloxazolidinone solution was placed on a lithium foil. The sheets 1 to 1 prepared in [Manufacturing Example] were cut out into a disc shape with a diameter of 1.2 cm, and the discs were crimped onto a stainless steel net, placed on the liquid absorbent sort, and both ends of the polyethylene container were sealed with caps. [At this time, attach lead wires to the stainless steel net I and the lithium foil. ). A constant current of 0.5 mA was applied for 23 hours using a lithium foil as a negative electrode and a molded product of a thermal decomposition product of poly2-chloro-1-phenyl≠4=acetylene polymer as a positive electrode. As a result, all of the lithium foil was consumed and lithium was contained in the molded product of the thermal decomposition product, thereby obtaining a negative electrode material.

参考例2 実施例2においてリチウムが含有された熱分解生成物の
成型体を負極活物質とし、参考例1と同様の条件で充放
電試験を30サイクル行った結果、良好な可逆性を示し
た。
Reference Example 2 In Example 2, the molded body of the thermal decomposition product containing lithium was used as the negative electrode active material, and a charge/discharge test was conducted for 30 cycles under the same conditions as in Reference Example 1. As a result, good reversibility was shown. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は断面図である。 3・・・正極活物質、4・・・有機電解液を含有したセ
パレーターまたは電解質の成型体、6・・・負極活物質 碌1図 吟欝幻燥人 二汗化へ 手  続  補  正  書 昭和58年3月31日 特許庁長官若杉和夫殿 1、事件の表示 昭和58年特許願第 28974   号2・ 発明の
名称 リナウ/、二次電池用負極材 3、補正をする者 自   発 5・補正により増加する発明の数 6、補正の対象 明細書の[発明の詳細な説明−1の欄 、−:’−、′1r−′、−°。 7、補正の内容 別紙のとおり (1)  明g’a書第16頁第8行と第9行の間に「
実施例3 製造例1で得たポリ2−クロロ−1−7エニルアセナレ
/の熱分解生成物(以下PPCA−Bという。)0.9
7とポリエチレン微粉末(PPCA−B負極利用結着材
)01gと2混合しよく混練した。混練物0.1 gを
金型に入れて約60′Cに加熱し一′がら500kq/
CAG の圧力下で成型し直径10mm 、厚みQ、7
mff1の円板状成型体を作成した。円板状成型体をス
パンレス製ネy l’に圧屈した。 次に電解二酸化マンガン粉末0.35g、アセチレンブ
ラック0.059J:)よびテフロン粉末0.19を7
昆合し、よく7昆に東1−て作成し/i= ’1−み1
 mmのシートを直径20朋の円板状に2枚きり出しス
テンレス製不、トに→ノ゛ンドイ、チ型に圧着しt:。 its、約0.15!7のリチウム箔をステンレス製不
、j・に圧着しl:。 ステンレス製不71”にそれぞれ圧着されt:P P 
CA−B成型体、二酸化マンガン成型体およびりJラム
箔8電解液(1モル/召濃度のLi C104プロピレ
ンカーボネート7容液)が25m1入った力′ラス机(
内容積50πt)に浸(−2密栓した(この時のステン
レス製不、トにそれぞれリード線をつけておく。)。こ
の様にして作成しt:を池を・アルゴン雰囲気下のドラ
イボ、クス内に設置し以下の試験を行りっt:。 リチウム箔を負極とし、二酸化マンガンを・正極として
北斗電工◇狼社製充放電装置HJ −201を使って0
.5mA定電流で20時間放電した〔1、]/Mno2
間放電時間、20時間(]、 OmA、b ) )。次
にPPCA−Bを負極とし、リチウ1.企含有した二酸
化マンガンを正極として前記装置を使っで0.5111
A定電流(゛5時間充電しP P CA −I)にリナ
ウ/、を含有させ本発明の負極+、Iを得た。、つづい
てリチウムを含有した]、’ i〕CA−1’iを負極
とし、前記二酸化マンガンを・141分と!−て充放電
(0,5mA定電流)をくり返し充放電′l′1′性を
・測定(−t:。その結果は表−1に示すごとく本発明
の肖極材は充放電効率が高く、シかもΣ−′ンドライト
の問題が発生ぜず、充放電過程で破壊する二どの−いす
くれた二次電;也用負極刊て゛あった。 日 タトは実施例3ど同様に実、施し充放電特性を測定しt
:。 1) I) CA−13負極材用結着削:テフロン微杓
末 0.04朋電 解 液       ゛1モル/4
.農度のLi1)F6N−メチルオキサシリ/ノン/ テトラヒドロフラン(容積比 ]/] C見合7容削7容7夜 ■、i/MnO2間放電時間  :30時間(15mA
、 l+ )得られた結果は表−2に示すごとく本発明
の負極材は充放電効率が高く、シかもチン1゛ライトの
問題が発生ぜず、充放電過程で破壊−することの−゛い
すぐれた二欠電池用負極材て゛あった。 表−2 比較例1 実施例3においてPPCA、−Hの代わりにグラフアイ
l−を用いて実施例3ど同じ条件下で充放電1特性企測
定しt:。得られた結果は表−3に示−1(。 表−3 表−3に示すごとくグラファイトにリチウムを含有させ
t:負極材は充放電効率が大変低く。 しかも充放電過程で次第に破壊した。」を挿入−1−る
FIG. 1 is a sectional view. 3... Positive electrode active material, 4... Separator or electrolyte molded body containing an organic electrolyte, 6... Negative electrode active material 1 figure March 31, 1958 Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office 1. Indication of the case Patent Application No. 28974 of 1989 2. Name of the invention RINAU/, Negative electrode material for secondary batteries 3. Spontaneous amendment by the person making the amendment 5. Amendment The number of inventions increases by 6, [Detailed Description of the Invention-1 column of the specification to be amended, -:'-, '1r-', -°. 7. Contents of the amendment As shown in the attached sheet (1) Between lines 8 and 9 of page 16 of Book Ming G'a, ``
Example 3 Thermal decomposition product of poly-2-chloro-1-7 enyl acenale obtained in Production Example 1 (hereinafter referred to as PPCA-B) 0.9
7 and 01 g of polyethylene fine powder (Binder using PPCA-B negative electrode) were mixed and kneaded well. Put 0.1 g of the kneaded material into a mold, heat it to about 60'C, and heat it to 500 kq/1'.
Molded under CAG pressure, diameter 10mm, thickness Q, 7
A disc-shaped molded body of mff1 was created. The disk-shaped molded body was compressed into a spanless nail. Next, 0.35 g of electrolytic manganese dioxide powder, 0.059 J of acetylene black:) and 0.19 Teflon powder were added to
Combine and create 7 kon and east 1-/i='1-mi1
Cut out two discs of 20 mm in diameter and press them onto a stainless steel foil in the shape of a square. Its, about 0.15!7 lithium foil is crimped onto a stainless steel plate. Each is crimped to a stainless steel non-71” t:P P
The CA-B molded body, the manganese dioxide molded body, and a power lath machine containing 25 ml of an electrolyte solution (7 volumes of Li C104 propylene carbonate with a concentration of 1 mol/min)
(inner volume 50πt) (inner volume 50πt) (-2 sealed (at this time, attach a lead wire to each of the stainless steel tubes). The following tests were conducted using a Hokuto Denko ◇Rokusha charge/discharge device HJ-201 with lithium foil as the negative electrode and manganese dioxide as the positive electrode.
.. Discharged at 5mA constant current for 20 hours [1,]/Mno2
Inter-discharge time, 20 hours (], OmA,b)). Next, PPCA-B was used as the negative electrode, and Lithium 1. 0.5111 using the above device as a positive electrode containing manganese dioxide.
A constant current (charged for 5 hours, P CA -I) was made to contain Linau/, to obtain negative electrodes + and I of the present invention. , followed by containing lithium],' i] CA-1'i was used as a negative electrode, and the manganese dioxide was heated for 141 minutes! The charging and discharging characteristics were measured by repeating charging and discharging (0.5 mA constant current) (-t:).The results are shown in Table 1. However, the problem of the Σ-'nd light did not occur, and there was a negative electrode for the second, weaker secondary voltage that would be destroyed during the charging and discharging process. Measure the charge/discharge characteristics
:. 1) I) Bonding and cutting for CA-13 negative electrode material: Teflon powder 0.04 mm electrolytic solution ゛1 mol/4
.. Agricultural Li1) F6N-methyloxacyl/non/tetrahydrofuran (volume ratio)/] C match 7 volume 7 night ■, i/MnO2 discharge time: 30 hours (15 mA
As shown in Table 2, the results obtained show that the negative electrode material of the present invention has high charge/discharge efficiency, does not cause the problem of light oxidation, and is less likely to be destroyed during the charge/discharge process. There was an excellent negative electrode material for dielectric batteries. Table 2 Comparative Example 1 Charging and discharging characteristics were measured under the same conditions as in Example 3 using Grapheye l- instead of PPCA and -H. The obtained results are shown in Table 3. Table 3 As shown in Table 3, the negative electrode material containing lithium had very low charging and discharging efficiency. Moreover, it gradually broke during the charging and discharging process. ” Insert -1-ru.

Claims (1)

【特許請求の範囲】[Claims] 1、アリールアセチレン重合体の熱分解生成物にリチウ
ムを含有してなるリチウム二次電池用負極材。
1. A negative electrode material for a lithium secondary battery containing lithium in a thermal decomposition product of an arylacetylene polymer.
JP58028974A 1983-02-22 1983-02-22 Negative pole material for lithic secondary cell Pending JPS59154763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58028974A JPS59154763A (en) 1983-02-22 1983-02-22 Negative pole material for lithic secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028974A JPS59154763A (en) 1983-02-22 1983-02-22 Negative pole material for lithic secondary cell

Publications (1)

Publication Number Publication Date
JPS59154763A true JPS59154763A (en) 1984-09-03

Family

ID=12263387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028974A Pending JPS59154763A (en) 1983-02-22 1983-02-22 Negative pole material for lithic secondary cell

Country Status (1)

Country Link
JP (1) JPS59154763A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277157A (en) * 1985-05-31 1986-12-08 Sanyo Chem Ind Ltd Secondary cell
JPS6290863A (en) * 1985-05-10 1987-04-25 Asahi Chem Ind Co Ltd Secondary cell
JPS62271371A (en) * 1986-05-16 1987-11-25 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPS62290075A (en) * 1986-06-10 1987-12-16 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPS6481167A (en) * 1987-09-19 1989-03-27 Sharp Kk Manufacture of electrode for battery
JPH01307157A (en) * 1988-06-03 1989-12-12 Sharp Corp Manufacture of electrode for battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290863A (en) * 1985-05-10 1987-04-25 Asahi Chem Ind Co Ltd Secondary cell
JPH0424831B2 (en) * 1985-05-10 1992-04-28 Asahi Chemical Ind
JPS61277157A (en) * 1985-05-31 1986-12-08 Sanyo Chem Ind Ltd Secondary cell
JPH0568835B2 (en) * 1985-05-31 1993-09-29 Sanyo Chemical Ind Ltd
JPS62271371A (en) * 1986-05-16 1987-11-25 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPS62290075A (en) * 1986-06-10 1987-12-16 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPS6481167A (en) * 1987-09-19 1989-03-27 Sharp Kk Manufacture of electrode for battery
JPH01307157A (en) * 1988-06-03 1989-12-12 Sharp Corp Manufacture of electrode for battery

Similar Documents

Publication Publication Date Title
CA1296766C (en) Secondary battery
US5176969A (en) Electrode for secondary battery
KR100851969B1 (en) Anode active material, method of preparing the same, anode and lithium battery containing the material
JP7086410B2 (en) Negative electrode and method for manufacturing the negative electrode
CN109565035B (en) Method for manufacturing an electrode comprising a polymer electrolyte and electrode obtained thereby
US5851504A (en) Carbon based electrodes
JP5103965B2 (en) Polymer compound, polymer compound / carbon material composite and production method thereof, electrode and production method thereof, and secondary battery
EP2437336A2 (en) Positive electrode active material, and positive electrode and lithium secondary battery comprising same
JP2020526897A (en) Composite solid electrolyte membrane for all-solid-state battery and all-solid-state battery containing it
WO1998040923A1 (en) Nonaqueous electrolyte battery and charging method therefor
EP2167228B1 (en) Lithium fluoropolymer and fluoro-organic batteries
JPS60235372A (en) Secondary battery
KR20200089642A (en) Negative electrode and secondary battery comprising the negative electrode
JP4751502B2 (en) Polymer battery
JPS59154763A (en) Negative pole material for lithic secondary cell
JP7451009B2 (en) Manufacturing method of negative electrode for all-solid battery
WO2001011706A1 (en) Polymeric solid electrolyte and lithium secondary cell using the same
JP2003109594A (en) Electrode material, manufacturing method of the same, electrode for battery using the same, and battery using the electrode
JP2003229019A (en) Composition for electrolyte, electrolyte and its manufacturing method, and battery
JPS5875779A (en) Solid electrolyte cell
JP2002110233A (en) Non-aqueous electrolyte secondary battery
US20210273226A1 (en) Secondary battery using radical polymer in an electrode
JP4524818B2 (en) Negative electrode material for lithium ion battery and lithium ion secondary battery using the same
JPH03163752A (en) Electrode
JPH10233207A (en) Negative electrode for lithium secondary cell