JPS59154392A - Method of detecting inactivity of fuel cladding tube in water cooled reactor - Google Patents

Method of detecting inactivity of fuel cladding tube in water cooled reactor

Info

Publication number
JPS59154392A
JPS59154392A JP58235230A JP23523083A JPS59154392A JP S59154392 A JPS59154392 A JP S59154392A JP 58235230 A JP58235230 A JP 58235230A JP 23523083 A JP23523083 A JP 23523083A JP S59154392 A JPS59154392 A JP S59154392A
Authority
JP
Japan
Prior art keywords
inspection
cladding tube
fuel
signal
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58235230A
Other languages
Japanese (ja)
Inventor
ライネル・シヤ−ルペンベルク
ギユンテル・ベロ−
ウイルフリ−ト・シユテイント
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Reaktor GmbH
Original Assignee
Brown Boveri Reaktor GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brown Boveri Reaktor GmbH filed Critical Brown Boveri Reaktor GmbH
Publication of JPS59154392A publication Critical patent/JPS59154392A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/06Devices or arrangements for monitoring or testing fuel or fuel elements outside the reactor core, e.g. for burn-up, for contamination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 不発明は、燃料棒被覆管のそれぞれが検査のため二つの
超音波検査ハフ1〜間に設け−られており、これらの燃
料棒被覆管の間をそれぞれ一つの超音波検査ヘッドを備
えたゾンデが辿り抜V)運動させられ、−万の発信検査
−\ノドとしで形成された検査へ゛ノドが被覆管に超音
波を照射し、他方の受信検査ヘッドとして形成された検
査へノドが被覆管から到達する超音波信号を受信し、こ
の際超音波信号のエコ一時間と強度とがこの信号の到達
過程において被覆管壁を介してお主び二つの上H己被a
管の間に存在している水を介してオン1コクラフ上に可
視状態に写像されかつ評価されるようにして行われる、
水冷型原子炉における内部において一つの燃料要素体に
1とめられた燃料棒束を有する燃料被覆管の不能状態を
検出するための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention provides that each of the fuel rod cladding tubes is provided between two ultrasonic inspection huffs 1 for inspection, and one ultrasonic inspection huff 1 is provided between each of these fuel rod cladding tubes. A sonde equipped with a sonic inspection head is moved and - 10,000 transmitting inspection - \ inspection formed as a throat, the throat irradiates ultrasonic waves onto the cladding tube, and the other formed as a receiving inspection head. The inspection node receives the ultrasonic signal arriving from the cladding tube, and at this time, the echo and intensity of the ultrasonic signal are mainly transmitted through the cladding tube wall and the two upper H. covered a
This is done in such a way that the water present between the tubes is mapped to a visible state on one column and evaluated.
The present invention relates to a method for detecting a failure state of a fuel cladding tube having a bundle of fuel rods fixed to one fuel element in a water-cooled nuclear reactor.

このような方法は、Tagungsberichte 
derJahrestagp、r+gKerntech
nik 8 D (80,年度核技術年次会議の年次報
告書)”、827頁以降。
Such a method is
der Jahrestagp, r+gKerntech
Nik 8 D (1980, Annual Report of the Annual Conference on Nuclear Technology), pp. 827 onwards.

ホン化、 Deutsche A、tom?orum連
合会編1発行から公知である。
Honification, Deutsche A, tom? It is publicly known since the orum federation edition 1 publication.

この文献中に記載の技術にあっては、検査ヘットは連続
的に燃料要素の中間空間を案内される。検査ヘッドを担
持しているゾンデを連続的に移動させるやり方にあって
は、発イトされた信号のエコ一時間の変動と純りが生じ
る。オン1クラフ上」−において超音波信号が可視状態
にされ筆tjピ具で文書化される。ゲートとして記録さ
れる一足な評価領域において、被覆管から受信検査ヘッ
トに到達する超音波信号(回転エコーUmlaufec
ho )を直接発1を検査ヘッドから冷却機のみ通って
受信検査ヘッドに到達する信−弓(水信号)から分離し
なければ々らない。、しかU7、このやり方はしばしば
失敗を招く。なぜなら、被覆管および案内管の直径が異
なり、かつ検査ヘッド担持体が可撓性に形成されている
ことから検査ヘッド間の間隔がこれらのヘッドが個々の
被覆管および制御棒のための案内管の傍らを運動する間
に概して著しく変動するからである。
In the technique described in this document, the inspection head is continuously guided through the intermediate space of the fuel element. The continuous movement of the sonde carrying the test head results in echo time fluctuations and fluctuations in the emitted signal. On one hand, the ultrasound signal is made visible and documented with a pencil. Ultrasonic signals (rotating echoes) reaching the receiving inspection head from the cladding tube in the evaluation area recorded as a gate
It is necessary to separate the direct emitting signal 1 from the signal (water signal) which passes only through the cooler from the test head and reaches the receiving test head. , but U7, this approach often leads to failure. Due to the different diameters of the cladding and guide tubes and the flexible design of the test head carrier, the spacing between the test heads is such that these heads can be adjusted to the individual cladding tubes and guide tubes for the control rods. This is because it generally fluctuates significantly while moving alongside the .

これによって音波のエコ一時間が変り、−力の検査ヘン
l’から他方の検査ヘッドへ直接到達する信号(水信号
)が被覆管から受信検査ヘット(回転エコー)に到達す
る信号として表示されるからである。更に、振幅変動が
ゲートの外部に或すはケートの縁部に生じ、その際表示
が行われないか、或いは不完全にしか行われ々い場合、
筆記具による上記の文書化は不適当である。
This changes the echo time of the sound waves, and - the signal reaching directly from the force test head l' to the other test head (water signal) is displayed as the signal reaching the receiving test head from the cladding tube (rotating echo). It is from. Furthermore, if amplitude fluctuations occur outside the gate or at the edges of the gate, and the display is not or only incompletely displayed,
The above documentation using a writing instrument is inappropriate.

この不正確さは後の時点におして文書化したものの評価
に不利な作用を及ばず。
This inaccuracy did not adversely affect the evaluation of what was documented at a later point in time.

こう云ったことから本発明にあっては、冒頭に記載し/
こ様式の方法にあって信号のゾンデ移動路に対するアロ
ケーンヨンを確足しかつ信号の文書化と評価とを改善す
ることである。
For this reason, in the present invention, as stated at the beginning/
The purpose of this method is to ensure signal allocation to the sonde travel path and to improve signal documentation and evaluation.

上記の課題は本発明により、ゾンデの停止の度毎にでシ
トコグラフ像を検出し、記憶させること、および検出を
れ/こ価を燃料要素断面の記憶されているマドす゛ノク
スと比較することによって解決される。
The above-mentioned problem is solved by the present invention by detecting and storing the cytographic image at each stop of the sonde and by comparing the detected value with the stored index of the fuel element cross-section. resolved.

検出の際開号が失われず、ゾンデの歩進的な運動により
信号のエコ一時間変動と純りが排除されるので、正確な
かつ完全な評価が達せられる7、燃料要素マドl)ソク
スの記憶された値との比較は信号のアロケーショ′、/
を容易にする。
Since the open signal is not lost during detection and the stepwise motion of the sonde eliminates temporal fluctuations and purity of the signal, an accurate and complete evaluation is achieved. 7. Fuel element memory. The signal allocation′, /
Make it easier.

特に、ゾンデの移動運動の進渉幅は、正確な・清報をイ
々Jるための十分な数のオシログラフ像を得るには、被
覆管の壁厚の−〜−の寸法である。
In particular, the range of movement of the sonde is approximately the same as the wall thickness of the cladding tube in order to obtain a sufficient number of oscillographic images for accurate reporting.

2 以下に添付した図面に図示した実施例につき本発明を詳
説する。
2 The invention will be explained in detail below with reference to embodiments illustrated in the attached drawings.

第1図から、水冷型原子炉の燃料要素の符号1で示した
部分領域が認められる。符号2で、燃料を図示していな
いタフレットの形で含んでいる燃料棒6の被覆管を示し
た。案内管4は被覆管2よりも大きな外径を持っており
、図示していない制御棒の案内に役立つ。被覆管の間の
In FIG. 1, a subregion designated 1 of a fuel element of a water-cooled nuclear reactor can be seen. Reference numeral 2 designates the cladding of the fuel rod 6, which contains fuel in the form of a tufflet (not shown). The guide tube 4 has a larger outer diameter than the cladding tube 2 and serves to guide a control rod (not shown). between the cladding tubes.

空間および案内管と被覆管の間の空間において歩進的に
ゾンデ5,6が運動している5、この場合ゾンデ5は送
信検査ヘンドアを、この送信検査ヘッドに相対してゾン
デ6が受信検査ヘッド8を担持I〜てbる。可撓性に形
成されたゾンデ5゜乙の道程を破線9で示した。符号A
、B、CおよびDにより、若干の検査ヘッド位置を示し
た。これらの検査ヘッド位置から送信検査ヘッドおよび
受信検査ヘッド7.8の間隔の変化が認められる。歩進
的に行われるゾンデの移動運動が停止する度毎にその都
度の検査位置に相応するオシログラフ像が検出されかつ
記憶される1、これによって、被覆管の壁厚の4分の1
から半分のゾンデの移動運動の進渉幅にあって大多数の
異なる記録が行われる。第2図には三次元の[信号山脈
J i 0.11を象徴的に示した。これらの1イ、4
号山脈」は後に予めテイシタル化された後評価を行う目
的で記憶される。
Sondes 5 and 6 are moving step by step in the space and in the space between the guide tube and the cladding tube. In this case, sonde 5 is moving the transmitter test head door, and sonde 6 is the receiver test head relative to the transmitter test head. The head 8 is carried. The distance of the flexible sonde 5° is indicated by a broken line 9. Code A
, B, C and D indicate some inspection head positions. From these test head positions, changes in the spacing between the transmitting test head and the receiving test head 7.8 can be observed. Each time the stepwise displacement movement of the probe is stopped, an oscillographic image corresponding to the respective examination position is detected and stored1, thereby obtaining a quarter of the wall thickness of the cladding tube.
A large number of different recordings are made in the range of the movement of the sonde from half to half. FIG. 2 symbolically shows the three-dimensional signal mountain range J i 0.11. These 1, 4
The "Mountain Range" is later stored for the purpose of evaluation after it has been quantified in advance.

i41]ち、第2図は記憶装置ユニソI−で見られるタ
イヤクラム内に形成された測足−i−−タシート金示し
ている。クーイヤクラムはゾンデの移動道程12(C依
存して音波のエコ一時間の時間軸線13および本信号も
しくはし廿イクリング信号の強度軸と振幅軸T4f示し
ている。ゾンデ移動道812に沿った縞15間の間隔は
この)゛ンデの進渉幅を示1−7でいる。[信号山脈J
 iO,11は多数の相前後して積層しているオシロク
ツ−5フ像から形成されており、これらのオシロクラフ
像はゾンデが停止している際にその都度検出される。振
幅筒さな、1信号山脈J 1oが本信号の集合(発信検
査ヘソl’ 7の受信検査へ〕l−” 8に対する直接
の経過)であり、[−信号山脈」11は回転信号の集合
(被覆管壁を経て米る信号経過)であることを示してい
る。
i41] FIG. 2 shows the pedestal sheet metal formed within the tire crumb seen in the storage unit Uniso I-. The curve shows the sonde's travel path 12 (C) depending on the time axis of the acoustic wave 13 and the intensity and amplitude axes of the main signal or the corresponding cycle signal T4f. The interval between 1 and 7 indicates the progress width of this index. [Signal Mountains J
iO,11 is formed from a large number of oscilloscope images stacked one after another, and these oscilloscope images are detected each time the sonde is at rest. In the amplitude cylinder, 1 signal mountain range J 1o is the set of main signals (to the reception test of transmission test heso l' 7] l-" 8 is a direct progression), and [-signal range" 11 is the set of rotation signals (The signal progresses through the cladding wall.)

:二つの本信号10間めそれぞれには、各々一つの被覆
管壁手部分のための二つの回転エコー11が示されてい
る。
: Two rotational echoes 11 are shown for each of the two main signals 10, each for one cladding wall section.

検出されかつ記憶された値は同イ、(に記憶された燃料
要素マドIJソクスの値と比較される。正常の値からの
違いは被扮管が故障したことと見なされる。公知の不正
ソースでの評価領域の確定を必要としない。
The detected and stored value is compared with the value of the fuel element IJ stored in the same device. Any deviation from the normal value is considered to be a faulty pipe. Known fraudulent sources. It is not necessary to determine the evaluation area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料要素の一部分の横断面図、第2図は測定グ
イヤクラム 図中符号は 5.6・・・ゾンデ 代理人 江  崎  光  好 代理人 江 崎 光 史 手h’G ’j’jll ilE ’jM O,−、r
。 1・・″(什げ・13月7?−:l 特許庁長官  若4ユJll 夫  殿1、 中件の表
示 昭h」 ダSイ■−持ii’l願第2、マ′−−1″′
)0弓3、 補1にをする者 事(′1との関111   出、願人 ン1  丁]   亡1,7.  □1.1)、□−−
)′ントー  申氏   ・・   ケ−し21.zl
、7i。、1.1.7.2. 2.7 .5、ワ、7ダ
41、代理人 5、袖il−命令のEl附 願、(トの発明華横ダ出願)(の欄 委汗状 吋細書の
怜≠管咲専料1台慶史・な七す図面のaト書。 (内容
に変更なし)7、  hn17−’、の内誓 別紙の通り 512−
Figure 1 is a cross-sectional view of a part of the fuel element, and Figure 2 is a measurement diagram.The code in the diagram is 5.6...Sonde agent: Hikaru Esaki Good agent: Hikaru Esaki Fumiteh'G 'j'jll ilE 'jM O, -, r
. 1...'' (Delivery/13/7?-:l Director General of the Patent Office Young 4 Yu Jll Husband 1, Indication of the middle matter 2nd year, Ma'-- 1″′
) 0 bow 3, supplementary 1 person ('1 connection 111, applicant n 1 cho] death 1, 7. □1.1), □--
)' Mr. Shin Nto... Case 21. zl
, 7i. , 1.1.7.2. 2.7. 5, Wa, 7 da 41, Agent 5, El application for the order, (G's invention Hana Yokoda application) (No change in content) 7, hn17-', as shown in the attached document 512-

Claims (2)

【特許請求の範囲】[Claims] (1)  燃料棒被覆管のそれぞれが検査のため二つの
超音波検査ヘッド間に設けられてお妙、とれらの燃料棒
被覆管の間をそれぞれ一つの超音波検査ヘッドを備えた
ゾンデが通り抜は運 −動させられ、一方の発信検査ヘ
ッドとして形成された検査へ゛ノドが被覆管に超音波を
照射し、他方の受信検査へ゛ノドとして形成づれた検査
ヘソ1〜が被覆管から到達する超音波信号を受信し7、
この際超音波信号のエコ一時間と強度とがこの信号の到
達過程において抜枠管壁を介しておよび二つの上記被e
i管の間に存在している水を介してオンログラフ上に可
視状態に写像されかつ評価されるようにして行われる、
水冷型原子炉における内部において一つの燃料要素体に
まとめられた燃料棒束を有する燃料被覆管の不能状態を
検出するための方法において、ゾンデ(5,6)全歩進
的に運動させること、ゾンデが停止しでいる度毎にオン
ログラフ上を検出(〜、かつこの像′fc記憶させ、検
出された値を燃料要素断面の記憶されたマトリックスと
比較すること全特徴とする、上記検出方法。
(1) Each of the fuel rod cladding tubes is installed between two ultrasonic inspection heads for inspection, and a sonde each equipped with one ultrasonic inspection head passes between these fuel rod cladding tubes. The extractor is moved, and the inspection throat formed as a transmitting inspection head on one side irradiates the cladding tube with ultrasonic waves, and the inspection navel 1~ formed as a throat on the other receiving inspection head reaches from the cladding tube. receive the ultrasonic signal 7;
At this time, the echo time and intensity of the ultrasonic signal are transmitted through the tube wall and the two above-mentioned objects during the arrival process of this signal.
This is done in such a way that the water present between the i-tubes is mapped to a visible state on the ontograph and evaluated.
A method for detecting a failure condition of a fuel cladding tube having a bundle of fuel rods assembled into one fuel element body in a water-cooled nuclear reactor, in which the probes (5, 6) are moved in full steps; The above detection method is characterized in that each time the sonde is stationary, an onlograph is detected (and this image 'fc is stored) and the detected values are compared with a stored matrix of fuel element cross sections.
(2)ゾンデ移動運動の進渉幅全被覆管(2)の壁厚の
4分の1から半分とする、前記%許梢求の範囲第1項に
記載の検出方法。
(2) The detection method according to item 1, wherein the range of the % tolerance requirement is set to be one-quarter to one-half of the wall thickness of the entire cladding tube (2).
JP58235230A 1983-02-17 1983-12-15 Method of detecting inactivity of fuel cladding tube in water cooled reactor Pending JPS59154392A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE33054436 1983-02-17
DE19833305443 DE3305443A1 (en) 1983-02-17 1983-02-17 Method for finding defective fuel rod cladding tubes in water-cooled nuclear reactors

Publications (1)

Publication Number Publication Date
JPS59154392A true JPS59154392A (en) 1984-09-03

Family

ID=6191065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58235230A Pending JPS59154392A (en) 1983-02-17 1983-12-15 Method of detecting inactivity of fuel cladding tube in water cooled reactor

Country Status (3)

Country Link
JP (1) JPS59154392A (en)
DE (1) DE3305443A1 (en)
FR (1) FR2541497B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203043A (en) * 2007-02-19 2008-09-04 Global Nuclear Fuel-Japan Co Ltd Fuel rod breakage identification method by ultrasonic wave, and inspection probe

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3542204A1 (en) * 1985-11-29 1987-06-04 Bbc Reaktor Gmbh METHOD AND DEVICE FOR CHECKING THE DIMENSIONS OF A FUEL ELEMENT FOR CORE REACTORS
US5426678A (en) * 1993-07-16 1995-06-20 General Electric Company Method for ultrasonic inspection of a closely packed array of fuel rods surrounded by a thin-walled metallic channel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313908A (en) * 1976-07-26 1978-02-08 Tanashin Denki Co Accelerator
JPS5797498A (en) * 1980-10-24 1982-06-17 Framatome Sa Method and device for detecting failed fuel element in reactor fuel assembly
JPS57186194A (en) * 1981-04-29 1982-11-16 Bbc Reaktor Gmbh Device for detecting failed fuel rod jacket tube by super sonic , method for estimating super sonic signal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857052A (en) * 1972-04-28 1974-12-24 Rockwell International Corp Inspection and analysis system
DE2605962C2 (en) * 1976-02-14 1982-05-06 Brown Boveri Reaktor GmbH, 6800 Mannheim Device for localizing defective fuel rod cladding tubes of a complete fuel assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313908A (en) * 1976-07-26 1978-02-08 Tanashin Denki Co Accelerator
JPS5797498A (en) * 1980-10-24 1982-06-17 Framatome Sa Method and device for detecting failed fuel element in reactor fuel assembly
JPS57186194A (en) * 1981-04-29 1982-11-16 Bbc Reaktor Gmbh Device for detecting failed fuel rod jacket tube by super sonic , method for estimating super sonic signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203043A (en) * 2007-02-19 2008-09-04 Global Nuclear Fuel-Japan Co Ltd Fuel rod breakage identification method by ultrasonic wave, and inspection probe

Also Published As

Publication number Publication date
DE3305443A1 (en) 1984-08-30
FR2541497A1 (en) 1984-08-24
FR2541497B1 (en) 1987-01-23

Similar Documents

Publication Publication Date Title
US3857052A (en) Inspection and analysis system
US3939697A (en) Method and apparatus for ultrasonic examination
CN105229461B (en) For the device and method of the especially live nondestructive inspection of tubular products
JPS627856B2 (en)
GB2088059A (en) Pig monitors internal surface of pipeline
US3636778A (en) Method and means for dimensional inspection of tubing
US3485087A (en) Ultrasonic inspection apparatus
CN106461618A (en) Improved ultrasound inspection
JPH07502340A (en) How to compress measurement data using an ultrasonic inspection probe
US3678735A (en) Installation for ultrasonic testing
US5596508A (en) High resolution measurement of a thickness using ultrasound
JPH022923A (en) Ultrasonic non-destructive inspector for tube
JPS59154392A (en) Method of detecting inactivity of fuel cladding tube in water cooled reactor
US4307612A (en) Method and means for ultrasonic inspection
JPH03577B2 (en)
GB1192176A (en) Improvements in Testing Apparatus and Methods of Testing
CA1189944A (en) Well logging device
US3299694A (en) Method and apparatus for detecting flaws using ultrasonic helical waves
CN102084246A (en) Improved non-destructive ultrasonic testing with coupling check
US4241609A (en) Tube internal measuring instrument
GB1255870A (en) Method and system for ultrasonic weld inspection
GB1413755A (en) Ultrasonic non-destructive testing of tubes and rods
US4816207A (en) Method for checking the dimensions of a fuel assembly for nuclear reactors
CN115836876A (en) Geometric distortion detection device and method for ultrasonic imaging equipment
US3349609A (en) Ultrasonic pulse echo flaw-detector