JPS59153878A - Manufacture of steel product subjected to alloy cementation - Google Patents

Manufacture of steel product subjected to alloy cementation

Info

Publication number
JPS59153878A
JPS59153878A JP2633583A JP2633583A JPS59153878A JP S59153878 A JPS59153878 A JP S59153878A JP 2633583 A JP2633583 A JP 2633583A JP 2633583 A JP2633583 A JP 2633583A JP S59153878 A JPS59153878 A JP S59153878A
Authority
JP
Japan
Prior art keywords
alloy
powder
steel product
treatment
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2633583A
Other languages
Japanese (ja)
Inventor
Hirofumi Makiura
牧浦 宏文
Hisao Fujikawa
尚男 冨士川
Junichiro Murayama
村山 順一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2633583A priority Critical patent/JPS59153878A/en
Publication of JPS59153878A publication Critical patent/JPS59153878A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/52Embedding in a powder mixture, i.e. pack cementation more than one element being diffused in one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/58Embedding in a powder mixture, i.e. pack cementation more than one element being diffused in more than one step

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture the titled product having an alloy layer of a uniform thickness and showing superior corrosion resistance at high temp. by burying a steel product to be treated in a powdered mixture of Ni-Mn alloy powder with Al2O3 powder to form a cementation layer of the alloy and by carrying out chromizing. CONSTITUTION:A steel product to be treated is buried in a powdered mixture of Ni-Mn alloy powder with Al2O3 powder, and it is heated to 1,050-1,300 deg.C which is higher than the m.p. of the alloy in a nonoxidizing atmosphere to form a cementation layer of the Ni-Mn alloy of a uniform thickness on the surface of the steel product. Chromizing is then carried out by a conventional powder packing method to enrich the cementation layer with Cr having a significant effect of improving the resistance to corrosion at high temp. and oxidation due to steam. At this time, the amount of Mn is reduced by the substitution reaction with Cr, thus, sigma-embrittlement is prevented.

Description

【発明の詳細な説明】 本発明は、合金拡散浸透処理鋼製品の製法、特にニッケ
ルーマンガン合金の溶融メッキとクロマイズ処理とを組
合せてなる、合金拡散浸透処理鋼製品の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an alloy diffusion infiltration treated steel product, and more particularly to a method for producing an alloy diffusion infiltration treated steel product by combining hot-dip plating of a nickel-manganese alloy and chromizing treatment.

従来、粉末バック法を用いm製品表面をCr拡散浸透処
理する方法(クロマイズ処理)は知られている。
Conventionally, a method of performing Cr diffusion and penetration treatment on the surface of m products using a powder bag method (chromization treatment) is known.

しかし、焼却炉のように燃焼一体止が頻繁に繰り返され
るような場合、高温腐食、例えば燃焼ガスによる腐食あ
るいは熔融塩による腐食に対するすぐれた抵抗性を示す
ばかりでなく、拡散浸透処理により得た被膜の密着性が
極めて良好な材料が強く要求される。
However, in cases where combustion stops are frequently repeated, such as in incinerators, coatings obtained by diffusion infiltration treatment not only exhibit excellent resistance to high-temperature corrosion, such as corrosion caused by combustion gas or corrosion caused by molten salt. There is a strong demand for materials with extremely good adhesion.

ところで通當のクロマイズ処理では使用時にクロマイズ
ド層にσ層が析出し、いわゆるσ脆化を生じる。このよ
うなσ脆化を防止するために従来技術にあっても、Cr
およびNiの合金で鋼表面を被覆することが提案されて
いる。例えば、鋼表面にNi−Cr合金、Ni−Cr−
Fe合金またはNi、 Cr、 Fe混合粉末を溶射、
浸漬あるいは粘着剤とともに混合塗布した後、焼鈍し、
Ni、 CrおよびFeを鋼表面に拡散させることを特
徴とする処理方法(特開昭55−85665号)、およ
び耐熱合金表面に予めNi粉末をバインダーと混合して
塗布した後、焼き付けし、さらにクロムを化学気相蒸着
法により被覆することを特徴とする処理方法(特開昭5
5−82772号)などである。
By the way, in the usual chromizing treatment, a σ layer is precipitated in the chromized layer during use, resulting in so-called σ embrittlement. In order to prevent such σ embrittlement, even in the conventional technology, Cr
It has been proposed to coat the steel surface with an alloy of Ni and Ni. For example, Ni-Cr alloy, Ni-Cr-
Spraying Fe alloy or Ni, Cr, Fe mixed powder,
After dipping or applying a mixture with adhesive, annealing is performed.
A treatment method characterized by diffusing Ni, Cr and Fe on the steel surface (Japanese Patent Application Laid-open No. 55-85665), and a method in which Ni powder is mixed with a binder and applied to the surface of the heat-resistant alloy in advance, then baked, and then A treatment method characterized by coating chromium by chemical vapor deposition (Japanese Unexamined Patent Publication No. 5
No. 5-82772).

しかし、これらはいずれも、Ni粉末をバインダーもし
くは熔射などの方法で被覆し、焼き付けた後、クロマイ
ズ処理を行う方法である。このような方法で得られる被
膜は鋼表面との合金化が不十分で、密着性が悪く、使用
途中で剥離することがある。また、粉末をバインダ塗布
もしくは熔射し、その後焼鈍し拡散させるだけでは、被
覆層はかなり多孔質となり、ガス腐食および溶融塩によ
る腐食に対しては、十分な保護被膜としては役立たない
However, in both of these methods, Ni powder is coated with a binder or by a method such as spraying, baked, and then chromized. The coating obtained by such a method is insufficiently alloyed with the steel surface, has poor adhesion, and may peel off during use. Also, simply coating or spraying the powder with a binder followed by annealing and diffusion results in a coating that is quite porous and does not serve as a sufficient protective coating against gas corrosion and molten salt corrosion.

かくして、本発明者らは先に耐高温腐食性にすぐれ、か
つ密着性の良い拡散浸透層を形成すべくクロマイズ処理
に先立って被処理鋼製品をニッケルーマンガン溶融浴中
に浸漬してニッケルーマンガン熔融メッキ層を設&Jる
方法を開示した(特願昭57−59632号)。
Thus, the present inventors first immersed the steel product to be treated in a nickel-manganese molten bath to form a nickel-manganese molten bath prior to chromizing treatment in order to form a diffusion permeation layer with excellent high-temperature corrosion resistance and good adhesion. A method for forming a manganese melt-plated layer was disclosed (Japanese Patent Application No. 57-59632).

しかしながら、上述の方法のようにニッケルーマンガン
の熔融合金浴中へ鋼製品を浸漬する方法では、大形鋼製
品の場合、鋼製品各部の温度が均一になるのに長時間要
する。ところで、一方、鋼製品表面での熔融合金と鋼と
の反応はきわめて速く起こり、5分を越えると鋼の減肉
が過度に大きくなり好ましくない。しかし、このような
短時間では上述のように鋼製品が複雑な形状である場合
、各部位の温度を均一にすることは困難である。鋼表面
の温度はニッケルーマンガン合金層の生成速度を決める
ので、このように鋼製品の各部位で温度が異なる場合、
その温度が異なる各部位で、ニッケルーマンガン層厚み
が変化することになり、好ましくない。
However, in the method described above in which a steel product is immersed in a nickel-manganese molten alloy bath, in the case of large steel products, it takes a long time for the temperature of each part of the steel product to become uniform. By the way, on the other hand, the reaction between the molten alloy and the steel on the surface of the steel product occurs extremely quickly, and if the reaction time exceeds 5 minutes, the thinning of the steel will become excessively large, which is not preferable. However, in such a short time, if the steel product has a complicated shape as described above, it is difficult to make the temperature uniform in each part. The temperature of the steel surface determines the rate of formation of the nickel-manganese alloy layer, so if the temperature differs in each part of the steel product,
The thickness of the nickel-manganese layer changes at each location where the temperature is different, which is undesirable.

また、前述のように、熔融合金と鋼との反応速度がきわ
めて速いことから、その温容器として鋼、ニッケル合金
など金属製容器を用いた場合、溶損が激しく、実用に耐
えない。したがって、Zr02 、MgOなどセラミッ
クス容器を使用することになる。ところで、ボイラチュ
ーブのごとき、長尺管の処理を行うためには長尺容器が
必要となるが、上述のようなセラミック容器としての長
尺容器は製作がきわめて困難であるばかりでなく、容器
の昇温、降温時の熱応力による破損が起こり易いなど実
用上問題がある。
Furthermore, as mentioned above, the reaction rate between the molten alloy and steel is extremely fast, so if a metal container such as steel or nickel alloy is used as the hot container, it will suffer severe melting damage and will not be practical. Therefore, ceramic containers such as Zr02 and MgO are used. By the way, long containers are required to process long pipes such as boiler tubes, but long containers such as the ceramic containers described above are not only extremely difficult to manufacture, but also There are practical problems such as easy damage due to thermal stress when the temperature rises or falls.

かくして、本発明の目的とするところは、このような欠
点を除いた合金拡散浸透処理m製品の製法を提供するこ
とにあり、かかる目的を実現すべく、鋭意研究を続けた
ところ、アルミナ粉末を使ったいわゆる粉末バック法に
よってもNi、 Mn合金拡散浸透処理が可能であるこ
とを見い出して本発明を完成したものである。
Therefore, the purpose of the present invention is to provide a method for manufacturing alloy diffusion and penetration treated products that eliminates these drawbacks.In order to achieve this purpose, we have continued our intensive research and have found that alumina powder is The present invention was completed by discovering that Ni and Mn alloy diffusion and penetration treatment was also possible by the so-called powder bag method used.

ここに、本発明の要旨とするところは、ニッケルーマン
ガン合金粉末とアルミナ粉末との混合粉末中に被処理鋼
製品を埋設し、非酸化性雰囲気下で1050〜1300
℃に加熱してニッケルーマンガン合金拡散浸透処理層を
(M、次いでクロマイズ処理することを特徴とする、合
金拡散浸透処理鋼製品の製法である。
Here, the gist of the present invention is to embed a steel product to be treated in a mixed powder of nickel-manganese alloy powder and alumina powder, and to heat the product to a temperature of 1050 to 1300 in a non-oxidizing atmosphere.
This is a method for producing an alloy diffusion-infiltration treated steel product, which is characterized by heating the nickel-manganese alloy diffusion-infiltration treatment layer to (M) and then subjecting it to chromization treatment.

本発明に従えば、上述のようにニッケルーマンガン合金
拡散層を鋼製品表面に施すに際し、合金溶融浴を用意す
る必要がなく、単にニッケルーマンガン合金粉末とアル
ミナ粉末との混合粉末中に被処理鋼製品を埋設するだけ
でよい。次いで、非酸化性雰囲気(つまり、不活性ガス
雰囲気あるいは水素ガス雰囲気)下で、上記合金の融点
以上の温度である1050〜1300℃に加熱するので
ある。ニッケルーマンガン合金粉末は融点以上に加熱さ
れる。しかしながら、上記の混合粉末としては溶融相を
形成することがなく、かつ処理後、冷却してからも混合
粉末は塊状体となることばない。
According to the present invention, when applying a nickel-manganese alloy diffusion layer to the surface of a steel product as described above, there is no need to prepare an alloy molten bath, and the layer is simply coated in a mixed powder of nickel-manganese alloy powder and alumina powder. All you need to do is bury the treated steel products. Next, the alloy is heated in a non-oxidizing atmosphere (that is, an inert gas atmosphere or a hydrogen gas atmosphere) to a temperature of 1050 to 1300° C., which is a temperature higher than the melting point of the alloy. The nickel-manganese alloy powder is heated above its melting point. However, the above-mentioned mixed powder does not form a molten phase, and the mixed powder does not form a lump even after being cooled after processing.

上記混合粉末におけるアルミナ(A1203)粉末の割
合は、好ましクハ30〜70%(重量)である。
The proportion of alumina (A1203) powder in the mixed powder is preferably 30 to 70% (by weight).

ただし、これに制限されるものではない。ま゛た、処理
時間は、1050〜1300℃の温度において厚さ5μ
以上の合金層を形成するのに十分な時間であれば制限さ
れないが、例えば、一般には1時間で十分である。
However, it is not limited to this. In addition, the processing time is 5 μm thick at a temperature of 1050 to 1300°C.
Although the time is not limited as long as it is sufficient to form the above alloy layer, for example, one hour is generally sufficient.

アルミナ粉末中のニッケルーマンガン合金粉末を加熱す
る時、合金の溶融温度以上(1050°C以上)の加熱
は必要であるが、一方1300℃を越える温度で処理す
ることは、被処理鋼製品の変形および結晶粒度を粗大化
させること、および処理炉の損耗を大きくするので好ま
しくない。
When heating nickel-manganese alloy powder in alumina powder, it is necessary to heat the alloy to a temperature higher than the melting temperature of the alloy (1050°C or higher), but on the other hand, processing at a temperature exceeding 1300°C is not suitable for treating steel products. This is undesirable because it causes deformation and coarsening of the grain size, and increases wear and tear on the processing furnace.

なお、ここに本発明において合金としてニッケルーマン
ガン合金系を選択したのは、これらは比較的低温度、す
なわち1050〜1300°Cで鋼表面にニッケルーマ
ンガン合金層を生成することが可能であるからである。
The reason why nickel-manganese alloys were selected as alloys in the present invention is that they can form a nickel-manganese alloy layer on the steel surface at relatively low temperatures, i.e., 1050 to 1300°C. It is from.

また、耐高温腐食性、耐水蒸気酸化性改善効果の大きい
Cr量を、クロイズ処理によって富化させる工程におい
てMnはCrと下記に示すような置換反応によって、減
少し、σ脆化は実質上問題なくなるからである。
In addition, in the process of enriching the amount of Cr, which has a large effect on improving high-temperature corrosion resistance and steam oxidation resistance, by cloise treatment, Mn is reduced by the substitution reaction with Cr as shown below, and σ embrittlement is practically a problem. Because it will disappear.

Cr + 2NH4C1−2NH3+CrCl2 + 
H2CrCI 2 + M n   −4MnC12+
Crこのニッケルーマンガン合金の組成は、特に制限さ
れないが、重量%でMn40〜60%、Ni60〜40
%とすることが好ましい。ニッケル40%以上とするこ
とによってその後のクロマイズ処理でCrを35%(重
量)以上に高めても、合金層のσ脆化を防止することが
できる。1050〜1300℃の範囲で処理し、かつ十
分なニッケルーマンガン合金層を確保するためには、N
 440〜60%、Mn60〜40%に限定するのが好
ましい。その後のクロマイズ処理は、従来の粉末パック
処理を1100〜1250°Cで行なうことによって十
分な性能が確保できることから、従来の粉末パック処理
を採用すれば十分である。本発明においては特に制限さ
れない。
Cr + 2NH4C1-2NH3 + CrCl2 +
H2CrCI2+Mn-4MnC12+
CrThe composition of this nickel-manganese alloy is not particularly limited, but in terms of weight% Mn is 40 to 60%, Ni is 60 to 40%.
% is preferable. By setting the nickel content to 40% or more, σ embrittlement of the alloy layer can be prevented even if the Cr content is increased to 35% (weight) or more in the subsequent chromizing treatment. In order to process in the range of 1050 to 1300°C and to ensure a sufficient nickel-manganese alloy layer, N
It is preferable to limit the content to 440 to 60% and Mn to 60 to 40%. For the subsequent chromization treatment, it is sufficient to employ the conventional powder pack treatment, since sufficient performance can be ensured by performing the conventional powder pack treatment at 1100 to 1250°C. There are no particular limitations in the present invention.

このように、本発明にあっては、従来の粉末パ・ツク処
理で十分であるが、必要によりその他の気相蒸着法等適
宜の手段でクロマイズ処理を行なってもよい。
As described above, in the present invention, the conventional powder pack treatment is sufficient, but if necessary, the chromization treatment may be performed by other appropriate means such as a vapor phase deposition method.

また、旧−Mn合金拡散浸透処理後、直ちに行なっても
よく、あるいは室温に冷却後に行なってもよい。欠に、
本発明を実施例によって更に具体的に説明する。
Further, after the prior-Mn alloy diffusion and infiltration treatment, it may be carried out immediately, or it may be carried out after cooling to room temperature. In short,
The present invention will be explained in more detail with reference to Examples.

爽施皿 表1に示す化学組成を有する5TB42鋼(炭素鋼)お
よびS 11 S 347 I+鋼(オーステナイトス
テンレス鋼)を被処理鋼製品としての供試材として用い
た。NiおよびMnの合金組成および処理温度を種々変
化させ、Ni−Mn合金層の厚み分布を測定した。但し
、ニッケルーマンガン合金の浸透処理時のAl2O3の
配合比は(Ni−Mn合金) /A l 203=70
/30 (重量比)とした。
5TB42 steel (carbon steel) and S 11 S 347 I+ steel (austenitic stainless steel) having the chemical compositions shown in Table 1 were used as test materials as treated steel products. The thickness distribution of the Ni--Mn alloy layer was measured while varying the alloy composition of Ni and Mn and the treatment temperature. However, the blending ratio of Al2O3 during the penetration treatment of the nickel-manganese alloy is (Ni-Mn alloy) /A l 203 = 70
/30 (weight ratio).

処理温度1050〜1300°Cの範囲で厚さ5〜80
μmのニッケルーマンガン合金拡散浸透層が均一な厚さ
で得られた。マンガン含量が増大するにつれて同一条件
下では合金層厚が大き(なる傾向がみられた。好ましい
Mn含量は40〜60%であった。なお、処理時間はい
ずれの場合も1時間であった。
Thickness 5-80℃ at processing temperature 1050-1300℃
A nickel-manganese alloy diffusion permeation layer with a uniform thickness of μm was obtained. There was a tendency for the alloy layer thickness to increase under the same conditions as the manganese content increased. The preferred Mn content was 40 to 60%. The treatment time was 1 hour in all cases.

次いで、上述のようにして得られたニッケルーマンガン
合金メッキ鋼製品に、さらに慣用の粉末バック法により
、クロマイズ処理を実施した。これらの処理条件をまと
めて表2に示す。また、処理後さらに溶体化処理を行な
った後の被膜の組成分布を調べるとともに、時効処理(
650℃、1000hr)後の曲げ加工試験、高温腐食
試験を行なった。
Next, the nickel-manganese alloy plated steel product obtained as described above was further subjected to chromization treatment by a conventional powder bag method. These processing conditions are summarized in Table 2. In addition, we investigated the composition distribution of the coating after solution treatment, and also investigated the aging treatment (
A bending test and a high-temperature corrosion test were conducted after 650° C. for 1000 hours.

これらの試験結果については表2に一部まとめて示すが
、それらの結果によればNi−Mn拡散浸透処理を10
50℃以下の温度で行なう場合、Ni−Mn合金層が2
μm以下となる。そのためクロマイジング処理でのFe
の拡散を十分に抑制することが困難で、例えば時効処理
時にσ相が発生し、また曲げ試験でクランりが生しるこ
とが判明した。また、Ni−Mn合金組成で、Mn60
〜70%と高い領域ではクロマイジング処理工程での脱
Mnによっても、残存するMn量は最高20%を越える
。そのため、時効後曲げ試験で拡散層にクラックが発生
することが判明した。なお、高温腐食の試験の結果はい
ずれも良好であった。
Some of these test results are summarized in Table 2, and according to those results, Ni-Mn diffusion infiltration treatment
When carried out at a temperature below 50°C, the Ni-Mn alloy layer is
It becomes less than μm. Therefore, Fe during chromizing treatment
It has been found that it is difficult to sufficiently suppress the diffusion of , for example, σ phase is generated during aging treatment, and cracking occurs during bending tests. In addition, with Ni-Mn alloy composition, Mn60
In the high region of ~70%, the amount of remaining Mn exceeds 20% at most even by removing Mn in the chromizing process. As a result, it was found that cracks occurred in the diffusion layer in the post-aging bending test. The results of the high-temperature corrosion tests were all good.

Claims (1)

【特許請求の範囲】[Claims] ニッケルーマンガン合金粉末とアルミナ粉末との混合粉
末中に被処理鋼製品を埋設し、非酸化性雰囲気下で10
50〜1300℃に加熱してニッケルーマンガン合金拡
散浸透処理層を得、次いでクロマイズ処理することを特
徴とする、合金拡散浸透処理鋼製品の製法。
The steel product to be treated is buried in a mixed powder of nickel-manganese alloy powder and alumina powder, and heated for 10 minutes in a non-oxidizing atmosphere.
A method for producing an alloy diffusion-infiltration treated steel product, which comprises heating to 50 to 1300°C to obtain a nickel-manganese alloy diffusion-infiltration treatment layer, followed by chromizing treatment.
JP2633583A 1983-02-21 1983-02-21 Manufacture of steel product subjected to alloy cementation Pending JPS59153878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2633583A JPS59153878A (en) 1983-02-21 1983-02-21 Manufacture of steel product subjected to alloy cementation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2633583A JPS59153878A (en) 1983-02-21 1983-02-21 Manufacture of steel product subjected to alloy cementation

Publications (1)

Publication Number Publication Date
JPS59153878A true JPS59153878A (en) 1984-09-01

Family

ID=12190560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2633583A Pending JPS59153878A (en) 1983-02-21 1983-02-21 Manufacture of steel product subjected to alloy cementation

Country Status (1)

Country Link
JP (1) JPS59153878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756775A (en) * 2015-11-25 2017-05-31 华东理工大学 A kind of alloy surface forms the preparation method of spinelle coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756775A (en) * 2015-11-25 2017-05-31 华东理工大学 A kind of alloy surface forms the preparation method of spinelle coating

Similar Documents

Publication Publication Date Title
US3999956A (en) Platinum-rhodium-containing high temperature alloy coating
CA1222719A (en) Methods of forming a protective diffusion layer on nickel, cobalt and iron base alloys
JP2534081B2 (en) Method for forming aluminide coating
US3998603A (en) Protective coatings for superalloys
US4326011A (en) Hot corrosion resistant coatings
US6440499B1 (en) Method for producing a slip layer which is resistant to corrosion and oxidation
JPH0344484A (en) Aluminum treated coating for superalloy
US4371570A (en) Hot corrosion resistant coatings
JPS62185865A (en) Manufacture of hot dip aluminized steel sheet having superior corrosion resistance
US3597172A (en) Alloys having an aluminum-diffused surface layer
US2875090A (en) Methods of forming superficial diffusion alloys on metal pieces and especially refractory metal pieces
CA1173305A (en) Surface treatment method of heat-resistant alloy
US3868277A (en) Method of producing a steel product having an oxidation-resistant coating
JPS59153878A (en) Manufacture of steel product subjected to alloy cementation
JPS5934230B2 (en) Metal surface treatment method
US3716398A (en) Impact resistant coatings for nickel-base and cobalt-base superalloys and the like
JPS58177459A (en) Cementation method of nickel-chromium alloy
RU2462535C1 (en) Method of chemical-heat treatment of parts of nickel alloys
JPS58181860A (en) Diffusion and permeation treated steel product and preparation thereof
JPH04323357A (en) Heat resistant structure
JPS6239234B2 (en)
JPS60149762A (en) Coating method by spraying for providing corrosion resistance
SU494440A1 (en) The method of complex chemical heat treatment
JPH0555595B2 (en)
JPS58177457A (en) Cementation method