JPS59153420A - Defect current breaking system - Google Patents

Defect current breaking system

Info

Publication number
JPS59153420A
JPS59153420A JP2694683A JP2694683A JPS59153420A JP S59153420 A JPS59153420 A JP S59153420A JP 2694683 A JP2694683 A JP 2694683A JP 2694683 A JP2694683 A JP 2694683A JP S59153420 A JPS59153420 A JP S59153420A
Authority
JP
Japan
Prior art keywords
phase
current
fault
zero
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2694683A
Other languages
Japanese (ja)
Other versions
JPH0350488B2 (en
Inventor
有働 宗幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2694683A priority Critical patent/JPS59153420A/en
Publication of JPS59153420A publication Critical patent/JPS59153420A/en
Publication of JPH0350488B2 publication Critical patent/JPH0350488B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Keying Circuit Devices (AREA)
  • Protection Of Generators And Motors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、故障電流しゃ新方式、特に電力系統の接地事
故時、送電線に流れる電流が′電流零点または零点近傍
に達せず、正または負の片極性に偏移したま\の状態(
以下電流偏移と称す)になった場合、これを解消し、し
2や断器によシ故障1/、■の除去を司能ならしめる故
障電流しゃ新方式に関するものである7、 〔発明の技術的背景〕 電力系統に事故が発生した場合に故障点及び送電線の各
相に流れる電流は一般に交流電流の他に直流電流の重畳
されたものとなる。故障区間の送電線に流れる典型的な
電流波形を第1図に示す。図において時間toにて事故
が発生し、tlにて保護継電装置から引きはすしの指令
がしゃ断器に出され、t2にて電流しゃ断が完了する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a fault current interruption method, particularly when a grounding fault occurs in a power system, the current flowing through a power transmission line does not reach the current zero point or the vicinity of the zero point, and becomes positive or negative. The state remains unipolar (
This invention relates to a new fault current isolation method that eliminates fault current deviation (hereinafter referred to as current deviation) and eliminates fault current deviation (1/) and (2) using a disconnector. [Technical Background] When an accident occurs in a power system, the current that flows through the failure point and each phase of the power transmission line is generally a superimposition of alternating current and direct current. Figure 1 shows a typical current waveform flowing through the transmission line in the faulty section. In the figure, an accident occurs at time to, a command to disconnect is issued from the protective relay device to the breaker at time tl, and the current interruption is completed at t2.

しかしながら発電機、送電系統その他の運転状態や系統
事故の様相によっては、系統事故直後の送電線電流波形
が電流零点に達することなく、片極性に偏移したまま数
サイクル程度継続することがあシうる。
However, depending on the operating conditions of the generator, power transmission system, etc., and the nature of the system fault, the transmission line current waveform immediately after a system fault may continue for several cycles without reaching the current zero point and remain unipolar. sell.

この様相を第2図に示す。This aspect is shown in FIG.

一方、しゃ断器は接点開極後、直流が零点に達しだ時に
しゃ断が完了する。ところでしゃ断器はその種類により
定まる所定の有効消弧時間があるので、電流をしゃ断す
るためには前記電流零点が有効消弧時間の中に少くとも
一回は存在する必要がある。従って、前述第2図に示す
ような電流偏移現象が発生する場合、この状態ではしゃ
断不能であり、そのままでは電流零点に達する直前まで
しゃ断器の引きはずし指令を引延ばす必要が生じ、系統
のj(A渡安定度上好”ましくない。
On the other hand, the circuit breaker completes the circuit breaker when the DC reaches the zero point after the contacts are opened. By the way, since a breaker has a predetermined effective arc extinguishing time determined by its type, the current zero point must exist at least once during the effective arc extinguishing time in order to interrupt the current. Therefore, when a current deviation phenomenon as shown in Fig. 2 occurs, it is impossible to shut off the circuit in this state, and it becomes necessary to postpone the breaker trip command until just before the current reaches the zero point, and the system j (A-cross stability is not good.

電流偏移の発生する条件は系統構成、発電機負荷状態、
故障種類によシ種々異なるが、検討の結果、−線接地、
あるいは二線接地事故の非故障相に非常に大きな1E流
偏移が発生することがあることが最近判明した。
The conditions for current deviation to occur are the system configuration, generator load condition,
Although it varies depending on the type of failure, as a result of examination, - line grounding,
Alternatively, it has recently been found that a very large 1E flow shift may occur in the non-fault phase of a two-wire grounding accident.

第3図(、)は発電機1がY△接続の昇圧変圧器2を介
し、送電線3全通し大きな電力網4に電力を供給する一
般の系統図であシ、第3図(b)は送電線3に一線接地
故障が生じた時の等価回路である。
Figure 3 (,) is a general system diagram in which a generator 1 supplies power to a large power grid 4 through a power transmission line 3 through a step-up transformer 2 with a Y△ connection, and Figure 3 (b) is This is an equivalent circuit when a line ground fault occurs in the power transmission line 3.

第3図(b)において故NA 電流の正相分ifは逆相
分、零相分と等しい。この電流は故障点より発電機・則
及び系統(il+の正相インピーダンス5−1及び5−
2の逆数に比例してそれぞれ8−1.8〜2で示される
’llj流に分流する。逆相回路においては同様に逆相
インピーダンス6−1.6−2に反比例して分流し電流
8−3.8−4となる。また、零相回路では零相インピ
ーダンス7−1.7−2に反比例して分流し電流8−5
.8−6となる。正相、逆相、零相回路における故障電
流の分流の割合が等しければ一線接地による故障電流の
影響は非故障相電流には現れない。しかし、第3図(、
)のようにY△接続の昇圧変圧器2がある場合、零相回
路は変圧器の短絡インピーダンスで短絡され、零相イン
ピーダンス7−1には発電機1の零相インピーダンスは
含まれなく、正相インピーダンス5−1、逆相インピー
ダンス6−1に比べ小さい。故障点が変圧器2の高圧端
子に近い場合はこの傾向が著しい。一方、送電線3の零
相インピーダンスは正相、逆相インピーダンスよp太き
いから、系統側の零相インピーダンス7−2は正相、逆
相インピーダンス5−2.6−2より大きい。従って故
障電流のうち故障点より発電機側に流れる零相電流8−
5は正相分8−1、逆相分8−3よりかなり大きくなる
場合がある。このような場合、故障電流が非故障相に流
れ、非故障相に零流偏位を生ずることがある。
In FIG. 3(b), the positive phase component if of the late NA current is equal to the negative phase component and the zero phase component. This current flows from the fault point to the generator, the system and the positive sequence impedances 5-1 and 5- of il+.
It is divided into 'llj flows shown by 8-1.8 to 2 in proportion to the reciprocal of 2. Similarly, in the negative phase circuit, the shunt current becomes 8-3.8-4 in inverse proportion to the negative phase impedance 6-1.6-2. In addition, in the zero-phase circuit, the shunt current 8-5 is inversely proportional to the zero-phase impedance 7-1.7-2.
.. It becomes 8-6. If the ratio of fault current division in the positive-phase, negative-phase, and zero-phase circuits is equal, the effect of the fault current due to single-wire grounding will not appear on the non-fault phase current. However, Fig. 3 (,
), when there is a Y△-connected step-up transformer 2, the zero-phase circuit is short-circuited by the short-circuit impedance of the transformer, and the zero-phase impedance 7-1 does not include the zero-phase impedance of the generator 1; It is smaller than the phase impedance 5-1 and the negative phase impedance 6-1. This tendency is remarkable when the failure point is close to the high voltage terminal of the transformer 2. On the other hand, since the zero-sequence impedance of the power transmission line 3 is p thicker than the positive-sequence and negative-sequence impedances, the grid-side zero-sequence impedance 7-2 is larger than the positive-sequence and negative-sequence impedances 5-2, 6-2. Therefore, among the fault currents, the zero-sequence current 8- flows from the fault point to the generator side.
5 may be considerably larger than the positive phase portion 8-1 and the negative phase portion 8-3. In such a case, the fault current may flow to the non-faulty phase, causing a zero current excursion in the non-faulty phase.

一般に接地故障による故障相における電流偏位は、第3
図(a)の系統では発電機1の運転状態が極端な進み力
率運転の場合に現れ、この様な運転は通常あり得ないか
ら殆んど問題にならない。しかし上記の様に発電機側の
零相電流の分流8−5が正相、逆相分に比し多い場合、
遅れ力率となる定格力率運転時に非故障相に第2図のよ
うな極めてかこくな電流偏イtL、が現れることが判明
し問題となっている。
Generally, the current excursion in the faulty phase due to a ground fault is
In the system shown in Figure (a), this appears when the operating state of the generator 1 is extremely leading power factor operation, and since such operation is normally impossible, it hardly causes any problems. However, as mentioned above, if the number of zero-sequence current branches 8-5 on the generator side is larger than the positive and negative phase parts,
It has been found that during rated power factor operation with a lagging power factor, an extremely large current bias tL as shown in FIG. 2 appears in the non-faulty phase, which has become a problem.

1だ二線接地故障においても上記説明のような故障電流
の零相分の分流の割合が正相分、逆相分の分流割合に比
し大きい場合は、発電機1が遅れ力率運転の場合に、非
故障相に電流偏移が生ずる場合があり問題と々っている
Even in the case of a single-wire or two-wire grounding fault, if the proportion of the zero-sequence branch of the fault current is larger than the proportion of the positive-phase and negative-phase parts, as explained above, the generator 1 is delayed in power factor operation. In some cases, current deviation may occur in the non-faulty phase, which is a serious problem.

〔背量技術の問題点〕[Problems with weight technology]

本現象は最近発′眠機の大型化と運転の特殊条件により
クローズアップしたもので、従来技術としての対策はあ
捷シ知られていない。一般的な方法としては、例えば酸
1jφ:相にrに流偏移が発生し易い発電機の進み力率
運転を避け、強め励磁運転とするととが採用されている
が、上記の強め励磁運転時に発生する非故障相電流偏移
の問題解決にはならない。接地故障時の非故障相電流偏
移の原因が、故障点よシ発電機側の零相インピーダンス
が、正相、逆相インピーダンスに比し小さいだめ、故障
電流の零相分が多く発電機側に流れるだめであることか
ら、系統側にジグザグ接続の変圧器を設置し、系統側の
零相インピーダンスを下げ、発電機側に分流する故障電
流の零相分を減らす方式が提案されている。この方法は
、非故障相に発生する電流偏移を減らすのに有効である
が、ジグザグ接続変圧器の追加などコスト的に不利であ
る。
This phenomenon has recently come into focus due to the increase in the size of sleep generators and the special operating conditions, and there are no known countermeasures in the prior art. As a general method, for example, acid 1jφ: Avoids leading power factor operation of the generator, which tends to cause a flow shift in the r phase, and performs strong excitation operation, but the above strong excitation operation This does not solve the problem of non-fault phase current deviations that sometimes occur. The reason for the non-fault phase current deviation at the time of a ground fault is that the zero-sequence impedance on the generator side is smaller than the positive-sequence and negative-sequence impedances, and the zero-sequence component of the fault current is large on the generator side. Therefore, a method has been proposed in which a zigzag-connected transformer is installed on the grid side to lower the zero-sequence impedance on the grid side and reduce the zero-sequence component of the fault current that is shunted to the generator side. Although this method is effective in reducing the current deviation occurring in the non-faulty phase, it is disadvantageous in terms of cost due to the addition of a zigzag connection transformer.

なお、−線接地故障においては、従来単相再閉路と呼ば
れ、故障相1相のみの送電線両端のしゃ断器を開放し、
一定時間抜再閉路する方式が採用されてきだが、送電線
電圧の高圧化に伴ない、−線開放中に故障点アークが消
滅せず、この方式が適用できなくガリ、非故障相を含む
三相しゃ断が必要となる場合が増加している。
In addition, in the case of a - line grounding fault, conventionally called single-phase reclosing, the circuit breakers at both ends of the transmission line of only one failed phase are opened,
A method of disconnecting and reclosing for a certain period of time has been adopted, but as the voltage of power transmission lines increases, the arc at the fault point does not disappear while the - line is open, and this method cannot be applied. The number of cases in which phase isolation is required is increasing.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解決することを目的としてなされ
たものであり、接地故障時に発生する電流偏移を解決し
、有効に故障区間を除去し得る故障電流しゃ新方式を提
供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and aims to provide a new fault current isolation method that can solve the current deviation that occurs at the time of a ground fault and effectively eliminate the fault section. It is said that

〔発明の概装〕[Outline of the invention]

本発明では非故障相に発生ず−る可能性のある庫1流偏
移は故障相の送電線両端をしゃ断することにより消滅す
ることに着目し、先ず故障相両端のしゃ断器をしゃ断し
、接地故障が除去されて後、非故障相をしゃ断しようと
するものである。
In the present invention, we focus on the fact that the first flow deviation that may occur in the non-faulty phase disappears by cutting off both ends of the transmission line of the faulty phase, and first, we cut off the circuit breakers at both ends of the faulty phase. After the ground fault has been removed, the attempt is made to cut off the non-fault phases.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して実施例を説明する。第4図は本発明
とそれを適用する系統の基本的構成図である。送電線3
の両端に設置されたしゃ断器9A−1’+ 9A−2,
9A−3、及び9B−1,9B−2、9B −Jは箇別
にしゃ断可能なもので、しゃ断選択制御装置]、 I 
A 、 11 Bによりしゃ断が制御される。しセ断器
9A、9Bの開閉状態は、情報伝送装置10A、10B
によシ情報伝送路12を通してUいに相手側に送られ、
その情報を相手側のしゃ断選択制御装置]、IA、]、
、IBに入力する。
Examples will be described below with reference to the drawings. FIG. 4 is a basic configuration diagram of the present invention and a system to which it is applied. power transmission line 3
breaker 9A-1'+ 9A-2 installed at both ends of
I
Shutoff is controlled by A and 11B. The open/closed state of the disconnectors 9A and 9B is determined by the information transmission devices 10A and 10B.
The information is immediately sent to the other party through the information transmission line 12,
The information is transmitted to the other party's cutoff selection control device], IA, ],
, input to IB.

第5図はしゃ断選択制御装置11Aの詳細構成を示すも
のである。なおIIBも自端要素と相手端要素が入れ替
るだけでIIAと同じ原理の構成と々る。IIAにおい
てC相しゃ断器9人−1の引き外しコイル14A−1は
、C相接地故障検出継電器のa接点13A−1a、、自
端す、C相し中断器のb接点9A−2b 、9A−3b
と相手端す。
FIG. 5 shows the detailed configuration of the cutoff selection control device 11A. Note that IIB also has a configuration based on the same principle as IIA, just by replacing the own end element and the opposite end element. In IIA, the tripping coil 14A-1 of the C-phase breaker 9-1 has the A-contact 13A-1a of the C-phase grounding fault detection relay, the self-end, the B-contact 9A-2b of the C-phase interrupter, 9A-3b
and the other end.

C相しゃ断器す接点信号に相当する9B−2b。9B-2b corresponds to the C-phase breaker contact signal.

913−3bt−ri列にしたもの、C相接地故障検出
継電器のb接点13人−3bとb相自端及び相手端しゃ
断器のb接点、9A−2b 、9B−2bを直列にしだ
もの、及びb相接地故障検出継電器のb接点13A−2
bとC相自端及び相手端しゃ断器のb接点9A−3b 
、9B−3bを直列にしたものがいずれかで励磁される
。なお、b相、C相の引きはずしコイル14A−2,1
4A−3は上記C相の場合の各接点の相対応をずらした
回路によシ励磁される。
913-3bt-ri array, B contact 13-3b of C phase grounding fault detection relay, B contact of B phase own end and opposite end breaker, 9A-2b, 9B-2b are connected in series. , and b contact 13A-2 of the b-phase grounding fault detection relay.
B contact 9A-3b of B and C phase own end and opposite end breaker
, 9B-3b in series is excited by either one. In addition, the tripping coils 14A-2, 1 of the b-phase and C-phase
4A-3 is excited by a circuit in which the phase correspondence of each contact point in the case of the C phase is shifted.

今、接地故障が生じた場合、1線接地’1 2#J接地
を問わず、通常運転状態で電流偏移の問題がほとんどな
い故障相は各相の接地故障検出継電器13のa接点によ
シ自端、相手端とも遅れなくしゃ断される。電流偏移の
可能性の大きい1線接地の非故障相は、例えばC相接地
の場合、両端のC相しゃ断器9A’−1,9B−1がし
ゃ断され故障除去された後、b相しゃ断器は13A−3
b。
Now, if a grounding fault occurs, regardless of whether it is 1-wire grounding, '1' or 2#J grounding, the faulty phase that has almost no current deviation problem under normal operating conditions will be detected by the a contact of the grounding fault detection relay 13 of each phase. Both the own end and the other end are cut off without delay. For example, in the case of C-phase grounding, the non-faulty single-wire grounded phase with a large possibility of current deviation is connected to the B-phase after the C-phase circuit breakers 9A'-1 and 9B-1 at both ends are cut off and the fault is removed. The breaker is 13A-3
b.

9A−1b、9B−1bの接点を通し引きはずしコイル
14A−2が励磁ジれ、またC相しゃ断器は1.3’A
−2b、9A−1b、9B−1bt通して1.4 A 
−3が励磁されしゃ断される。
The tripping coil 14A-2 is energized through the contacts of 9A-1b and 9B-1b, and the C-phase breaker is energized at 1.3'A.
-2b, 9A-1b, 1.4 A through 9B-1bt
-3 is energized and cut off.

また2線接地の非故障相は、例えばす、c相接池の場合
、両端す、C相しゃ断器9A−2,9B−2,9A−:
3.9 B−3がしゃ断され故障除去された後、C相し
ゃ断器は9A−2b 、9A−3b、9B−2b、9B
−3bを通し引きはずしコイル14A−1が励磁されし
ゃ断される。いずれの場合も接地故障が完全に除去され
電流偏移が消滅してから非故障相がしゃ断されるので問
題はない。
In addition, the non-faulty phases of two-wire grounding are, for example, in the case of a C-phase connected pond, C-phase circuit breakers 9A-2, 9B-2, 9A-:
3.9 After B-3 is cut off and the fault is cleared, the C-phase breaker is 9A-2b, 9A-3b, 9B-2b, 9B
-3b, the tripping coil 14A-1 is energized and cut off. In either case, there is no problem because the non-fault phase is cut off after the ground fault is completely removed and the current deviation disappears.

第6図は他の実施例である。図において、送電線電流は
電流変成器16A−1116A−2゜16A−3を介し
電流零点検出器15A−1゜15A−2,15A−3に
入力される。第6図にはしゃ断選択制御装置の変形例も
併記しであるが、故障相については自相の接地故障検出
継電器のa接点で引きはずしコイルを励磁し、しゃ断す
ることは第5図の例と同じである。非故障相では、すで
にいずれかのしゃ断器がしゃ断され、9A−1、b 、
9A−2b 、9A−Jbのいずれかが閉じ、かつ故障
しゃ断により電流偏移が減り、自相の電b1シが零点を
通ることにより閉じる電流零点検出器の接点15A−1
a、15A−2a、15A−38が閉じることを条件に
して対応するし中断器の引きはずし回路14A−1,1
4A−2,14A−3を励磁し、しゃ断を行なうもので
ある。しゃ断に際し、故障相は直ちにしゃ断しているの
で非故障相しゃ断が多少遅れても過渡安定度に対する悪
影響は無い。
FIG. 6 shows another embodiment. In the figure, transmission line current is input to current zero point detectors 15A-1, 15A-2 and 15A-3 via current transformers 16A-1116A-2 and 16A-3. Although a modified example of the cutoff selection control device is also shown in Fig. 6, for the fault phase, the tripping coil is excited and cut off by the a contact of the ground fault detection relay of the own phase, and the example shown in Fig. 5 is the same as In the non-fault phase, one of the circuit breakers has already been disconnected, and 9A-1, b,
Current zero point detector contact 15A-1 closes when either 9A-2b or 9A-Jb closes and the current deviation decreases due to fault cutoff, and the current phase current b1 passes through the zero point.
a, 15A-2a, and 15A-38 are closed, and interrupter trip circuits 14A-1, 1
4A-2 and 14A-3 are excited and cut off. When shutting off, the faulty phase is immediately shut off, so even if there is some delay in shutting off the non-faulty phase, there is no adverse effect on transient stability.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば接地故障時に電流偏
移の危険のない故障相を先行しゃ断し2、電流偏移の危
険の大きい非故障相は、故障相しゃ断により電流偏移が
消滅した後にしゃ断するものであるため、かこくな電流
偏移によるしゃ断不能を効宋的に除去できる。
As explained above, according to the present invention, in the event of a ground fault, the faulty phase with no risk of current deviation is cut off in advance 2, and the current deviation of the non-faulty phases with a large risk of current deviation is eliminated by the faulty phase cutoff. Since it is shut off later, it is possible to effectively eliminate the inability to shut off due to large current deviations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は故障時の送電線電流波形図、第2図はかこくな
電流偏移を伴なう′)+を流波形図、第3図(a)は送
電系統図、第3図(b)は1線接地故障時の等価図 図Vよ他の実施例構成図である。 I・・・発’i’lf、機、      2・・・外圧
変圧器、3・・送′市絹11     4・・・市−力
!ib、5・・11−相インピーダンス、 6・・・便用インピーダンス、 7・・・零相インピーダンス、 8・・・酸1洋市、流の正相分、9・・・遮断器、10
・・・情報伝送装置、 11・・・しゃ断選択制御装置、 12・・・伝送路、 13・・・接地故障相検出継電器、 14・・・しゃ断器引きはずしコイル、15・・・電流
零点検出器、16・・・電流変成器。 (7317)代理人弁理士  則 近 憲 佑(ほか1
名) 第1図 第2図 第4図 第5図 第6図
Figure 1 is a transmission line current waveform diagram at the time of a fault, Figure 2 is a transmission line current waveform diagram with a small current deviation, Figure 3(a) is a power transmission system diagram, and Figure 3(a) is a transmission line current waveform diagram. b) is an equivalent diagram V showing a configuration diagram of another embodiment when a one-wire grounding failure occurs. I...I'lf, Machine, 2...Outside voltage transformer, 3...Shipping'Ichikinu 11 4...City! ib, 5...11-phase impedance, 6... convenient impedance, 7... zero-sequence impedance, 8... acid 1, positive phase of flow, 9... circuit breaker, 10
... Information transmission device, 11... Cutoff selection control device, 12... Transmission line, 13... Ground failure phase detection relay, 14... Breaker trip coil, 15... Current zero point detection 16...Current transformer. (7317) Representative Patent Attorney Noriyuki Chika (and 1 others)
Figure 1 Figure 2 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 発電機がY△結線を有する昇圧変圧器を介して送電線に
接続される電力系統における地絡故障時の故障電流しゃ
新方式において、送電線故障区間の故障相両端しゃ断器
を先行しゃ断し、接地故障が除去された後、非故障相を
しゃ断することを特徴とする故障電流しゃ新方式。
In a new method for breaking fault current at the time of a ground fault in a power system in which a generator is connected to a power transmission line via a step-up transformer having a Y△ connection, a breaker at both ends of a faulty phase in a faulty section of a power transmission line is cut off in advance, A new fault current isolation method characterized by cutting off non-fault phases after the ground fault has been removed.
JP2694683A 1983-02-22 1983-02-22 Defect current breaking system Granted JPS59153420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2694683A JPS59153420A (en) 1983-02-22 1983-02-22 Defect current breaking system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2694683A JPS59153420A (en) 1983-02-22 1983-02-22 Defect current breaking system

Publications (2)

Publication Number Publication Date
JPS59153420A true JPS59153420A (en) 1984-09-01
JPH0350488B2 JPH0350488B2 (en) 1991-08-01

Family

ID=12207316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2694683A Granted JPS59153420A (en) 1983-02-22 1983-02-22 Defect current breaking system

Country Status (1)

Country Link
JP (1) JPS59153420A (en)

Also Published As

Publication number Publication date
JPH0350488B2 (en) 1991-08-01

Similar Documents

Publication Publication Date Title
JPH04112619A (en) Distribution line interrupting method, interrupter and using method thereof
JPS6084919A (en) Protecting relay
CN111693890A (en) System and method for processing single-phase earth fault of power distribution network
CN113949049B (en) Self-adaptive single-phase reclosing method for 220kV power transmission line
JPS59153420A (en) Defect current breaking system
Codling et al. Adaptive relaying. A new direction in power system protection
JPS605727A (en) Defect current breaking system
Dusang A ground fault protection method for ungrounded systems
JP2799065B2 (en) Reclosing method of current differential protection relay
JP2003209925A (en) System for preventing zero-point transition current interrupting accident and method therefor
Dai et al. Mechanism and solution of zero-sequence directional protection maloperation caused by broken line faults in multi-circuit transmission lines on the same tower
JPH0327716A (en) Method and apparatus for reclosing of transmission system
JPS6242448B2 (en)
JP2916148B2 (en) Line selection relay
JPH0112510Y2 (en)
CN112290508A (en) Device for preventing CT secondary circuit ground connection leads to protection maloperation
JPH0236727A (en) High speed separation/recovery system of distribution line fault
JPS5846524A (en) Power circuit
JPS6231563B2 (en)
JPH0210654B2 (en)
JPS61293116A (en) Ground fault protector
JPS62166735A (en) Private power source changer
JPH0474808B2 (en)
JPS6013420A (en) Ground-fault protecting device of power distribution system
JPS61251416A (en) Ground-fault protector