JPS59153200A - Method of cleaning off-gas - Google Patents

Method of cleaning off-gas

Info

Publication number
JPS59153200A
JPS59153200A JP58028077A JP2807783A JPS59153200A JP S59153200 A JPS59153200 A JP S59153200A JP 58028077 A JP58028077 A JP 58028077A JP 2807783 A JP2807783 A JP 2807783A JP S59153200 A JPS59153200 A JP S59153200A
Authority
JP
Japan
Prior art keywords
powder
exhaust gas
nox
adsorbed water
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58028077A
Other languages
Japanese (ja)
Inventor
徳永 興公
南波 秀樹
鈴木 伸武
作本 彰久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP58028077A priority Critical patent/JPS59153200A/en
Publication of JPS59153200A publication Critical patent/JPS59153200A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は排ガスを浄化する方法に関する。より詳細に述
べると、本発明は、 NOxおよび/又は802を含む
排ガスに表面に吸着水を有する粉体の存在下に電離性放
射線を照射してすることから成る排ガスを浄化する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying exhaust gas. More specifically, the present invention relates to a method for purifying exhaust gas comprising: irradiating the exhaust gas containing NOx and/or 802 with ionizing radiation in the presence of powder having adsorbed water on its surface.

本発明者等の一部はアルカリ性物質、例えばアンモニア
を添加することによってNOxおよび/またはS02を
固体状生成物として回収する排ガスの浄化法を発明しす
でに特許出願をした。〔特願昭48−106701号(
特公昭50−39377号)1放射線照射排ガス浄化プ
ロセスにおいて排ガスにアルカリ性物質を添加する排ガ
ス調整法”〕っ本発明はこの従来法を更に改良したもの
でおる。
Some of the inventors have already filed a patent application for an exhaust gas purification method in which NOx and/or S02 are recovered as solid products by adding an alkaline substance, such as ammonia. [Patent Application No. 1973-106701 (
Japanese Patent Publication No. 50-39377) 1. Exhaust gas adjustment method by adding alkaline substance to exhaust gas in radiation irradiation exhaust gas purification process"] The present invention is a further improvement of this conventional method.

従って1本発明の主目的は120℃以上という測温にお
いても商い脱銅・脱硫率を維持することによって、筒い
譲度のNOxおよび/またはS02を含む排ガス例えは
石炭燃焼排ガスを効果的に浄化する方法を提供すること
であるつ 本発明に従って、NOxおよび/またはS02を含む排
ガスに表面に吸着水を有する粉体を添加した後論、離性
放射腺を照射することによって排ガスが浄化される。
Therefore, the main purpose of the present invention is to maintain the copper removal and desulfurization rate even at temperatures of 120°C or higher, thereby effectively reducing the exhaust gas containing NOx and/or S02, such as coal combustion exhaust gas. According to the present invention, a powder having adsorbed water on the surface is added to an exhaust gas containing NOx and/or S02, and then the exhaust gas is purified by irradiation with separable radiation glands. Ru.

本発明を実施する際に使用される粉体は100℃におい
て乾燥粉体重量の2.5〜10チの吸着水量を有するも
のが好ましく1例えはホワイトカーボ/(微粉含水シリ
カ)ベントナイト、酸性白土等が例示されるっ 以下1本発明のプロセスの一態様を示す第1図を参照し
て本発明の構成および効果を具体的に解説する。
The powder used in carrying out the present invention is preferably one having an adsorbed water amount of 2.5 to 10 times the dry powder weight at 100°C. Examples include white carbo/(fine hydrated silica) bentonite, acid clay. Hereinafter, the structure and effects of the present invention will be specifically explained with reference to FIG. 1, which shows one aspect of the process of the present invention.

第1図で粉体を添加しない場合、排出源からのNOx 
、 SO□は照射室内に配置した電子線照射装置からの
電子線の作用により、減少するとともに。
In Figure 1, if powder is not added, NOx from the emission source
, SO□ decreases due to the action of the electron beam from the electron beam irradiation device placed inside the irradiation chamber.

NO2や硝酸、硫酸ミストに変化するつこのミストは、
集じん装置で捕集され、排ガス中から除去される。この
ようにしてNOxおよびS02が除去された排ガスは、
ブロワ−により、煙突から大気中に放出される。
This mist changes into NO2, nitric acid, and sulfuric acid mist,
It is collected by a dust collector and removed from the exhaust gas. The exhaust gas from which NOx and S02 have been removed in this way is
A blower releases it into the atmosphere from the chimney.

上述のように、照射容器内で排ガスに電子線が照射され
ると、排ガスの主成分であるN2.02゜N20の混合
気体の放射線化学反応によってo原子・OHラジカル、
H02ラジカルが生成し、これらの化学種によって(排
ガス中のNOxの95%以上をしめる) No、および
S02は酸化され、最終的には硝酸、t!#、酸ミスト
になる(反応1υおよび(卸。
As mentioned above, when the exhaust gas is irradiated with an electron beam in the irradiation container, the radiation chemical reaction of the mixed gas of N2.02°N20, which is the main component of the exhaust gas, produces o atoms and OH radicals.
H02 radicals are generated, and these chemical species oxidize No, which accounts for more than 95% of the NOx in the exhaust gas, and S02, and finally nitric acid, t! #, becomes acid mist (reaction 1υ and (wholesale.

0H1O 802□ S O3−胚−)12 SO4(21反応(
Il、において、前段の酸化過程(No→NO□)の速
度は、非常に大きく、一方後段の酸化過程(NO2→H
N03)の速度は小さい。
0H1O 802□ SO3-embryo-)12 SO4(21 reaction (
In Il, the rate of the first stage oxidation process (No→NO□) is very high, while the second stage oxidation process (NO2→H
The speed of N03) is small.

卯、1図で、照射容器の入口手前に粉体添加口を設け、
粉体添加装置により1表面に吸着水を含む粉体な排ガス
中に設定流速で噴出添加することによって一定濃度の粉
体が分散した排ガスを調整し。
In Figure 1, a powder addition port is installed in front of the entrance of the irradiation container.
A powder addition device sprays and adds powder at a set flow rate to a powder exhaust gas containing adsorbed water on one surface, thereby adjusting the exhaust gas in which a fixed concentration of powder is dispersed.

これに電子線が照射されると1反応+11の速い酸化反
応によって生成するN02が粉体表面の吸着水とすみや
かに反応して硝酸となり、e、着水中に硝酸として同定
することかできる(反応(3))。
When this is irradiated with an electron beam, the N02 generated by the rapid oxidation reaction of 1 reaction + 11 quickly reacts with the adsorbed water on the powder surface to become nitric acid. (3)).

3NO2+ )120−→2HNO3+No  (31
この賜金1皮応(31によって示されるように、 N(
J2の一部はNOとなり、気相中に再放出されるが。
3NO2+ )120-→2HNO3+No (31
This gift 1 skin response (as shown by 31, N(
Some of the J2 becomes NO and is re-emitted into the gas phase.

このNoも、排ガス中にもともと含まれているNOと同
様に電子線照射下で起る反応(1)によって、すみやか
にN(J2に酸化され、吸着水中に固定することができ
る。もちろん1反応11)で生成する硝酸ミストも容易
に吸着水中に固定することかできる。
Like the NO originally contained in the exhaust gas, this No is quickly oxidized to N (J2) by reaction (1) that occurs under electron beam irradiation, and can be fixed in the adsorbed water. The nitric acid mist produced in step 11) can also be easily fixed in the adsorbed water.

一方、反応(2)によって生成する硫酸ミストおよび一
部のS02も粉体表面の吸着水中に硫酸、亜硫酸として
固定することができる。上述の吸着水圧よるN Ox 
、S 02の除去速度は、粉体自身がアルカリ性である
かどうかには無関係で5吸着水の量とともに大きくなる
。[7たがって0本発明の方法はNOxおよびS02を
各々硝酸ミスト、硫酸ミストとしてだけでなく、NO2
およびS02としても排ガス中より除去することができ
る?7)で、脱硝・脱硝に必要な放射縁の低減が可能で
ある。さらにNOx。
On the other hand, the sulfuric acid mist and some S02 generated by reaction (2) can also be fixed as sulfuric acid and sulfurous acid in the adsorbed water on the powder surface. NOx due to adsorption water pressure mentioned above
, S 02 removal rate increases with the amount of adsorbed water, regardless of whether the powder itself is alkaline or not. [7 Therefore, the method of the present invention not only converts NOx and SO2 into nitric acid mist and sulfuric acid mist, respectively, but also converts NOx and SO2 into NO2
And can it be removed from exhaust gas as S02? 7), it is possible to reduce the radiation edge required for denitrification and denitrification. Furthermore, NOx.

S02はミストとしてではな(、吸着水中の硝酸・硫酸
(または亜硫酸)として粉体とともに集じん装置によっ
て完全に除去することができる。上述の吸着水によるN
 Ox + b O2の除去速度は、粉体自身がアルカ
リ性であるかどうかには無関係で、吸着水の量にのみ依
存する。すなわち、除去速度は吸着水の蓋が多いほど太
き(なる。
S02 can be completely removed by a dust collector, not as a mist (but as nitric acid/sulfuric acid (or sulfurous acid) in the adsorbed water) together with the powder.
The removal rate of Ox + b O2 is independent of whether the powder itself is alkaline or not, and depends only on the amount of adsorbed water. In other words, the removal rate increases as the amount of adsorbed water increases.

また、集じん装置で捕集した粉体は粉体精製装置で高濃
度の硝酸・硫酸を含んだ吸着水を一分離したのち、再び
粉体添加装置へ充てんし、再使用することかできる。
In addition, the powder collected by the dust collector can be reused by separating adsorbed water containing high concentrations of nitric acid and sulfuric acid in a powder purification device and then filling it into the powder addition device again.

以下実施例によって本発明を具体的に説明する。EXAMPLES The present invention will be specifically explained below with reference to Examples.

実施例1〜4 No(240ppm)−)120(8%) −〇。(1
2%)−N2(8096)  の混合ガスを120℃で
1.5 Mrad ’fJ1子線照射したのち、250
on” 内容積の容器に51のガラス繊維を充てんし、
それに表1に示した種類の粉体(中性または酸性)IP
を分散させた状態のところを通過させたとぎの、その前
後におけるN02 の濃度を比較した。表1より明かな
ように、いずれの粉体においても粉体との接触後におけ
るNO2濃度は、接触前の半分の値にまで減少した。表
1にあげた粉体の表面の吸着水は5本実験での粉体の温
度100℃においても、25℃における吸着量(乾燥粉
体重量の5係り上)の−9上が保持されていた。
Examples 1 to 4 No (240 ppm) -) 120 (8%) - ○. (1
After irradiating a mixed gas of
51 glass fibers are filled into a container with an internal volume of
and powder (neutral or acidic) IP of the types shown in Table 1.
The concentration of N02 before and after passing through a state where N02 was dispersed was compared. As is clear from Table 1, the NO2 concentration after contact with any of the powders was reduced to half the value before contact. The amount of adsorbed water on the surface of the powder listed in Table 1 was -9 times higher than the adsorption amount at 25°C (5 times higher than the dry powder weight) even at the powder temperature of 100°C in the five experiments. Ta.

表  1 2 ホワイトカーボン(TokusilUR)  18
0    706 ホワイトカーボン(Tokusil
NR)  18 D     70実施例5〜B 石炭燃焼υ1・煙を模擬したNo (6[10ppm)
 −302(100〜1000ppm)1000pp%
)−02(12%)−N2(8D%)の混合ガスを12
0℃で56の内容積の容器に25F/のガラス繊維を充
てんし、それに1ooyのホワイトカーボ:y (To
kusil NR+中性)を分¥J、させたところを通
過させたときの、その前後におけろSO2の濃度を比較
した。その結果を表2に示す。いずれの初綱度の場合に
おいても、SO2象度は、粉体との接触によって、約2
5 o ppm  減少したつこのことは、 Toku
s i l CUなる粉体との接触によってS02 か
除去されることを示している。
Table 1 2 White carbon (TokusilUR) 18
0 706 White Carbon (Tokusil
NR) 18 D 70 Example 5-B Coal combustion υ1・Smoke simulating No. (6[10ppm)
-302 (100-1000ppm) 1000pp%
)-02 (12%)-N2 (8D%) mixed gas at 12
A container with an internal volume of 56°C was filled with 25F glass fiber at 0°C, and 1ooy of white carb:y (To
The concentration of SO2 was compared before and after passing through a place where kusil NR+neutral) was passed for 1 J minutes. The results are shown in Table 2. In any case of primary degree, the SO2 degree is approximately 2
5 o ppm The reason for this decrease is Toku
This shows that S02 is removed by contact with the powder s i l CU.

衣 2 5   100      [1 630050 7600350 8100075O NO(250ppm)H2O(8,4%)−02(12
%)−N2(79,6%)の混合ガス’&120’Cで
O〜3 M rad1゛子線照射したときのNOx 濃
度と0〜3Mrad電子線照射後51のガラス繊維上に
ホワイトカーボン(Tokusil NB +中性)6
1を分散させたものを充てんした2 50 tm3 内
容積の容器内を通過させたときのNOx 9度とを比較
した。表6より明らかなようにh NOx  8度は、
ホワイトカーボン層を通すことfよっていちじるしく減
少した。
Clothing 2 5 100 [1 630050 7600350 8100075O NO (250ppm) H2O (8.4%) -02 (12
%) - N2 (79.6%) mixed gas '&120'C when irradiated with O~3 Mrad 1゛ electron beam and white carbon (Tokusil NB + neutral) 6
The NOx level was compared with 9 degrees when the sample was passed through a container with an internal volume of 250 tm3 filled with a mixture of 1 and 1 dispersed therein. As is clear from Table 6, h NOx 8 degrees is
By passing the white carbon layer, f was significantly reduced.

表6 90250250 10 1.5 202  11O N2(79,6%)の混合ガスを120℃と200℃で
電子線照射したのち、120℃、200℃に温度調節し
た255’のガラス繊維上にホワイトカーボン(Tok
usil NFt +中性)10[154を分散させた
ものを充てんした5tの内容積の容器内を通過させたと
きのNOx・濃度を比較した。表4より明らかなように
、2DO℃という尚い温度においても120℃における
NOx  除去率が維持されていることが判ろう 表4 NOx濃度(ppm) 12 0  550 507 13 1.7  330 322 以上の実施例により本発明に従って耕ガスに吸着水けが
100℃において乾燥粉体車量の2.5〜10%である
粉体を添加して電離性放射線を照射することによって(
イ)脱硝・脱硫効率を高め、従って、必要とされる′a
陥性放射線の縁量を低減せしめるとともに、(ロ)電離
性放射線照射によって生成するミストな完全に捕集する
ことが出来る事が明らかにされた。
Table 6 90250250 10 1.5 202 11O After electron beam irradiation with a mixed gas of N2 (79.6%) at 120°C and 200°C, white carbon was deposited on a 255' glass fiber whose temperature was adjusted to 120°C and 200°C. (Tok
The NOx concentration was compared when the sample was passed through a container with an internal volume of 5 tons filled with a dispersion of usil NFt + neutral) 10[154]. As is clear from Table 4, the NOx removal rate at 120°C is maintained even at a temperature of 2DO°C. In an example, according to the present invention, by adding powder whose adsorbed water content is 2.5 to 10% of the amount of dry powder wheel at 100°C to the plowing gas and irradiating it with ionizing radiation (
b) Improves denitrification and desulfurization efficiency, thus achieving the required 'a
It has been revealed that it is possible to reduce the amount of trapping radiation and (b) completely collect the mist generated by ionizing radiation irradiation.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の方法の一態様乞ボすフローシートである。 The figure is a flow sheet showing one embodiment of the method of the present invention.

Claims (1)

【特許請求の範囲】 1)  NOxおよび/またはS02を含む排ガスに表
面に吸着水を有する粉体を添加し、排ガスおよび当該粉
体共存体で電離性放射線照射することから成る排ガスを
浄化する方法。 2)粉体の吸着水量が100℃において乾燥粉体重量の
2.5〜10チであることを特徴とする特許請求の範囲
第1項の方法。 3)粉体が微粉含水ンリカ、ベントナイトまたは酸性白
土である特許請求の範囲第1項記載の方法。
[Claims] 1) A method for purifying exhaust gas, which comprises adding powder having adsorbed water on the surface to exhaust gas containing NOx and/or S02, and irradiating the exhaust gas and the powder coexisting with ionizing radiation. . 2) The method according to claim 1, wherein the amount of water adsorbed by the powder is 2.5 to 10 inches of the dry powder weight at 100°C. 3) The method according to claim 1, wherein the powder is finely powdered hydrated limestone, bentonite, or acid clay.
JP58028077A 1983-02-22 1983-02-22 Method of cleaning off-gas Pending JPS59153200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58028077A JPS59153200A (en) 1983-02-22 1983-02-22 Method of cleaning off-gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028077A JPS59153200A (en) 1983-02-22 1983-02-22 Method of cleaning off-gas

Publications (1)

Publication Number Publication Date
JPS59153200A true JPS59153200A (en) 1984-09-01

Family

ID=12238705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028077A Pending JPS59153200A (en) 1983-02-22 1983-02-22 Method of cleaning off-gas

Country Status (1)

Country Link
JP (1) JPS59153200A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518636A (en) * 1974-07-09 1976-01-23 Jei Kaningamu Ronarudo

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518636A (en) * 1974-07-09 1976-01-23 Jei Kaningamu Ronarudo

Similar Documents

Publication Publication Date Title
US4081509A (en) Method for removing nitrogen oxides from flue gas by absorption
US4009244A (en) Process for removing oxides of nitrogen and sulfur from exhaust gases
JP2011131213A (en) Method and catalyst/adsorbent for treating exhaust gas containing sulfur compound
DE3382685T2 (en) Method and device for treating chlorine-containing wastewater.
JPS5876127A (en) Removal of nitrogen oxide and sulfur oxide from waste gas
US3721066A (en) Process for recovery of acid gases
ATE26545T1 (en) METHOD AND DEVICE FOR REMOVING SULFUR OXIDES FROM HOT EXHAUST GASES.
DE3766906D1 (en) METHOD AND DEVICE FOR THE SEPARATION OF MERCURY FROM SMOKE GASES AND PROCESS EXHAUST GASES.
JPH0521007B2 (en)
EA200201157A1 (en) METHOD FOR ELIMINATING MERCURY TRACKS IN GASES
JPS6014928A (en) Purification of dirty air
JPS63171621A (en) Method of purifying waste gas
JPH0262297B2 (en)
JPH06319947A (en) Toxicity-removing agent for etching exhaust gas and method for using the same
JPS59153200A (en) Method of cleaning off-gas
JP3504333B2 (en) Method for removing mercury from exhaust gas
US3300280A (en) Catalyst composition and process for the recovery of sulfur compounds from gas mixtures
JPS59222213A (en) Treatment of waste gas
US5211926A (en) Process for extracting of disposing of ammonia or ammonia compounds from dust mixtures
JPS63185431A (en) Removal of silicon hydride and gas treatment apparauts used therein
US4176165A (en) Treatment of alkyl lead-containing gas stream
JPS5934219B2 (en) Method for removing mercury from smelting gas
RU2106905C1 (en) Method of purifying nitrogen monoxide-containing gas
JPS6215245B2 (en)
JPS5515637A (en) Cleaning method of mixed air containing exhaust gas of automobile