JPS59153106A - Key-shape detecting device for cylinder lock - Google Patents

Key-shape detecting device for cylinder lock

Info

Publication number
JPS59153106A
JPS59153106A JP58026933A JP2693383A JPS59153106A JP S59153106 A JPS59153106 A JP S59153106A JP 58026933 A JP58026933 A JP 58026933A JP 2693383 A JP2693383 A JP 2693383A JP S59153106 A JPS59153106 A JP S59153106A
Authority
JP
Japan
Prior art keywords
key
light
signal
light receiving
cylinder lock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58026933A
Other languages
Japanese (ja)
Inventor
Hiroshi Umetsu
寛 梅津
Shinichiro Ishikawa
伸一郎 石川
Koichiro Mitsui
三井 公一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP58026933A priority Critical patent/JPS59153106A/en
Publication of JPS59153106A publication Critical patent/JPS59153106A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2433Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring outlines by shadow casting
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B19/00Keys; Accessories therefor
    • E05B19/0011Key decoders

Abstract

PURPOSE:To read the shape of a key without contact by a non-mechanical way, by providing a light source and a light receiving part at the upper and lower parts of the key to be detected, and using an electric signal, which is generated from the light receiving part in correspondence with the size of the shape of the key as data for assembling a cylinder lock. CONSTITUTION:A key to be detected 3 is inserted in a measuring position. Light is projected from the upper part of the key 3. The projected light, which is transmitted through the key 3, is inputted to a light receiving part 4. The light receiving part 4 sends the received light signals of photoelectric conversion parts of sectors to an analog multiplexer 10. The analog multiplexer 10 selects the received light signal for every sector and sends the signal to an adder 14. To a subtrator 14, a calibrating signal for each corresponding sector and the actuatlly measured received light signal from the key 3 are simultaneously inputted. The deviation signal is sequentially obtained for every sector. An AD converter 15 performs AD conversion of the output of the subtrator 14.

Description

【発明の詳細な説明】 本発明は、シリンダー錠の鍵形状検出装置、特に、シリ
ンダー錠のシリンダー組立ての際に効適なシリンダー錠
片の鍵形状検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a key shape detection device for a cylinder lock, and particularly to a key shape detection device for a cylinder lock piece that is effective when assembling a cylinder lock.

シリンダー錠のシリンダ一部分の自動組立て装置では、
既に山切りされた鍵の溝深さ欠読取り、その溝深さに応
じてシリンダー錠を組立てるやり方をとる。従来の鍵の
溝深さの自動読取りは機械的な方法によ゛つてなされた
。詳述する。
Automatic assembly equipment for a cylinder part of a cylinder lock,
A method is used in which the depth of the groove of a key that has already been cut out is read out, and a cylinder lock is assembled according to the depth of the groove. Traditional automatic keyway depth readings have been made by mechanical methods. Explain in detail.

先ず、溝切りされた鍵を検出機構部に挿入する。First, the grooved key is inserted into the detection mechanism section.

検出機構内では、鍵の挿入にょp1各溝に対応するレバ
ーが前進し、それぞれの溝に接して停止する。レバーは
L字形をしており1角の部分が回転中心になり、短辺が
溝に接する。レバーの短辺と長辺の比を大きく取ってい
るために、拡大されたレバーの長辺をストッパとして溝
深さに対応するビンケ保持するホルダを停止させ、それ
ぞれのビンをシリンダー内に供#する。
In the detection mechanism, when the key is inserted, a lever corresponding to each groove moves forward and stops when it comes into contact with the respective groove. The lever is L-shaped, with one corner serving as the center of rotation, and the short side touching the groove. Since the ratio of the short side to the long side of the lever is large, the enlarged long side of the lever is used as a stopper to stop the holder that holds the bottle corresponding to the groove depth, and each bottle is placed in the cylinder. do.

かかる機械的な方法によれば、レバーが摩耗したり、レ
バーの動きが悪くなることがあり、その際には誤ったシ
リンダ錠の組立てを行う。更に、鍵に切粉が付着したま
ま検出部に挿入すると、誤動作の原因となる。更に、切
粉が検出レバー側に付着すると、切粉が、取れるまで、
不良を作り続けてしまう。
Such mechanical methods may result in lever wear or poor lever movement, which may result in incorrect cylinder lock assembly. Furthermore, if the key is inserted into the detection section with chips still attached to it, it may cause malfunction. Furthermore, if chips adhere to the detection lever side, the process will continue until the chips are removed.
They keep producing defective products.

本発明の目的は、非接触式で且つ非機械的に鍵の形状乞
読取ってなるシリンダー錠剤の鍵形状検出装置ケ提供す
るにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a cylinder tablet key shape detection device that detects the key shape in a non-contact and non-mechanical manner.

本発明の要旨は、以下となる。検出すべき釦1の上下に
光源と受光部乞おく。受光部は鍵の形状の大きさに応じ
て比例する電気信号7発生する構成とする。この電気信
号を取込みシリンダー錠組立てのための情報として利用
する。
The gist of the present invention is as follows. A light source and a light receiving section are placed above and below the button 1 to be detected. The light receiving section is configured to generate an electric signal 7 proportional to the size of the shape of the key. This electrical signal is captured and used as information for assembling the cylinder lock.

更に、本発明では、光源の経時的変化や受光部の経時的
変化乞補正するべ(構成をとる。この構成は、鍵゛を測
定位置に挿入する前に、鍵のない状態で測定ン行い、受
光部馨介してプリセットデータとして取込む構成をなt
oこのプリセットデータは、鍵乞挿入して測定した時点
での測定値との偏差の演算に使用される。偏差結果が正
確な測定値となる。
Furthermore, the present invention takes a configuration in which it is necessary to compensate for changes over time in the light source and changes over time in the light-receiving section.This configuration allows measurement to be performed without a key before inserting the key into the measurement position. , the configuration is to import it as preset data via the light receiving section.
o This preset data is used to calculate the deviation from the measured value when the key is inserted and measured. The deviation result is an accurate measurement value.

以下、図面((より本発明ン詳述する。Hereinafter, the present invention will be explained in more detail in the drawings.

第1図は、本発明の測定系の実施例〉示す一光源1は照
射光源7なす。レンズ2は、光源1からの照射光を平行
光線に変換する。鍵3は、形状検出用の鍵であり、該鍵
3は、照射光a乞その平面部が受けるように配置する(
第3図参照)8受光部4は、鍵3を透逼した光線の検出
を行い、鍵の山切り形状に応じた電気信号を発生する。
FIG. 1 shows an embodiment of the measurement system of the present invention. One light source 1 is an irradiation light source 7. Lens 2 converts the irradiated light from light source 1 into parallel light rays. The key 3 is a key for shape detection, and the key 3 is arranged so that the flat part of the irradiated light a is received (
(See FIG. 3) 8 The light receiving section 4 detects the light beam that passes through the key 3, and generates an electric signal according to the ridge shape of the key.

第2図は、受光部4の斜視図である。受光部4は、多数
の光電変換部40Y持つ。この各光電変換部40は、ス
リット41で区切っている。各光電変換部40は、該変
換部に受光した光の領域の大きさに比例した1つの電気
信号ケ発生する。従って、16個の光電変換部が存在す
れば、16個の電気信号を並列に取出し可能となる。
FIG. 2 is a perspective view of the light receiving section 4. FIG. The light receiving section 4 has a large number of photoelectric conversion sections 40Y. Each photoelectric conversion section 40 is separated by a slit 41. Each photoelectric conversion section 40 generates one electric signal proportional to the size of the area of light received by the conversion section. Therefore, if there are 16 photoelectric conversion units, 16 electrical signals can be extracted in parallel.

第3図は、鍵3を測定位置に位置決めする際の位置決め
装置乞示す。鍵3は矢印方向から挿入し、基準ビン7と
、スプリング6によって支持されたグツシャ5との間に
挿入し、固定する。基準ビン7は固定しておジ、スプリ
ング6の抑圧によりプッシャー5で鍵が固定する。測定
では、この鍵3の平面部に平行光線を照射する。測定が
終了すれば、鍵3はこの位置から排除され、次の測定用
の鍵が自動的に挿入し位置決めされる。以下、同様とな
る。
FIG. 3 shows a positioning device for positioning the key 3 in the measuring position. The key 3 is inserted from the direction of the arrow, inserted between the reference bottle 7 and the pusher 5 supported by the spring 6, and fixed. The reference bottle 7 is fixed and the key is fixed by the pusher 5 due to the compression of the spring 6. In the measurement, a parallel light beam is irradiated onto the flat surface of the key 3. When the measurement is completed, the key 3 is removed from this position, and a key for the next measurement is automatically inserted and positioned. The same applies below.

第4図は、受光部4と第3図で位置決めされた@13と
の位置関係を示す図である。この図では基準ビン7、グ
ツシャー5は照射面から省略した。
FIG. 4 is a diagram showing the positional relationship between the light receiving section 4 and @13 positioned in FIG. 3. In this figure, the reference bottle 7 and gutsher 5 are omitted from the irradiation surface.

省略理由は、基準ビン7、プッシャー5は透明体で形成
してもよいためである。非透明体の時には、該ビン7、
プッシャー5はパターンとして光電部に透影する。但し
、鍵3と光電面との大きさによっては不用物として排除
できる。
The reason for this omission is that the reference bottle 7 and the pusher 5 may be made of transparent material. When the object is non-transparent, the bottle 7,
The pusher 5 projects onto the photoelectric section as a pattern. However, depending on the size of the key 3 and the photocathode, they can be removed as unnecessary items.

さて、第4図で各光電部40は、その光電面上に照射し
た鍵形状の面積に応じた電気信号を発生する。例えば、
16個に区分された光電部40を持つ場合には、16個
の区分から16個のその区分内の照射領域対応の信号2
発生する。図では、鍵3の存在部分は黒色(透影光なし
で、斜線で示す)、その他の部分は白色(透影光あり)
で示しである。
Now, in FIG. 4, each photoelectric section 40 generates an electric signal corresponding to the area of the key shape irradiated onto its photocathode. for example,
When the photoelectric section 40 is divided into 16 sections, signals 2 corresponding to the irradiation area within the 16 sections are generated from the 16 sections.
Occur. In the figure, the part where key 3 is present is black (without transparent light, indicated by diagonal lines), and the other parts are white (with transparent light)
It is shown by .

各区分内は、その区分の形状、特に山切りの状態に応じ
た電気信号乞発生する。従って、この16個の区分から
の16個の信号は各山切V(それ以外の部分乞当然含む
)を示すことになり、シリンダー錠糺立でのためのデー
タとなる。尚、16個は一例であり、鍵の大きさ、山切
りの数やその大きさ、及び組立て上の精度等の要因をも
とに適切な値が設定できる。Jul]ち、16個は、い
わゆるサンプル点であり、32個、64個、或いは8個
程度のものまで禅々可能である。
Electrical signals are generated within each section depending on the shape of the section, especially the state of the mountain cut. Therefore, the 16 signals from these 16 sections indicate each mountain cut V (other portions are included, of course), and serve as data for cylinder lock assembly. Note that 16 is just an example, and an appropriate value can be set based on factors such as the size of the key, the number and size of the ridges, and the accuracy of assembly. The 16 points are so-called sample points, and it is possible to set as many as 32, 64, or even 8 points.

第5図は、受光部4からの信号を取出して処理する電気
回路の実施例を示す。受光部4は、区分数に応じた数の
信号ン出方する。アナログマルチプレクサ】0は、この
区分数の信号をアナログ的に選択し、1区分毎に出方す
る。従って、例えは16個の区分数であれば、16#J
cD区分毎の16479の信号は、アナログマルチプレ
クサ1oによって直列に変換乞受け、直列に接がる16
個の信号となる。
FIG. 5 shows an embodiment of an electric circuit that extracts and processes signals from the light receiving section 4. As shown in FIG. The light receiving section 4 outputs a number of signals corresponding to the number of divisions. Analog multiplexer 0 selects this number of divisions of signals in an analog manner and outputs them for each division. Therefore, for example, if the number of sections is 16, 16#J
The 16479 signals for each cD section are converted into series by an analog multiplexer 1o, and the 16479 signals are connected in series.
signal.

アナログマルチプレクサ1oは、デマルチプレクサ11
か加算器14かに選択的にその出力を送る。デマルチプ
レクサ11、サンプルホールド回路12、アナログマル
チプレクサ13は、校正用信号を得る回路馨形成する。
Analog multiplexer 1o is demultiplexer 11
or adder 14. The demultiplexer 11, sample hold circuit 12, and analog multiplexer 13 form a circuit for obtaining a calibration signal.

即ち、m3乞測定位置に挿入しない状態下で、光を受光
部4に照射する。受光部4の各区分毎の信号はアナログ
マルチゾレク? 10 K取込まれ、このアナログマル
チプレクサ]0では各区分毎にその区分の受光信号を選
択し、デマルチプレクサ11に送る。デマルチプレクサ
11は、時分割で送られてくるアナログマルチプレクサ
10の区分内の受光信号ケデマルチし、サンプルホール
ド回路12に選択して出力する。サンプルホールド回路
12は、区分数のサンプルボールド要素2持ち、デマル
チプレクサ11のデマルチ出方である各区分内の受光信
号を対応するサンプルボールド安素にサンプルしホール
ドする。全区分数のデマルチが終了し、対応サンプルホ
ールド要素に格納を終了した時点で補正用信号の収集は
終了となる。
That is, the light receiving section 4 is irradiated with light without being inserted into the m3 measurement position. Is the signal for each section of the light receiving section 4 analog multi-Zorek? 10 K are taken in, and this analog multiplexer] 0 selects the received light signal for each division and sends it to the demultiplexer 11. The demultiplexer 11 demultiplexes the received light signals within the divisions of the analog multiplexer 10 that are sent in a time-division manner, and selects and outputs them to the sample and hold circuit 12 . The sample and hold circuit 12 has two sample bold elements corresponding to the number of sections, and samples and holds the received light signal in each section, which is the demultiplexed output of the demultiplexer 11, into a corresponding sample bold element. Collection of correction signals ends when demultiplexing of all the number of sections is completed and storage in the corresponding sample-hold elements is completed.

校正用信号の収集終了後、被検出用鍵3を測定位置に挿
入する。この挿入して位置決め後、光乞鍵3の上部から
照射する。この照射により鍵3を介して透過テる光は、
受光部4.に入射する。受光部4は、各区分の光電変換
部の受光信号をアナログマルチプレクサ1oに送る。ア
ナログマルチプレクサ10は、1g分毎に受光信号を選
択し、加算器】4に送る8この時、デマルチプレクサ1
1の入力は切離しておく。従って、デマルチプレクサ1
1には鍵3を挿入して測定した1′光信号は入力しない
After the calibration signal has been collected, the detection key 3 is inserted into the measurement position. After this insertion and positioning, irradiation is applied from the top of the light-seeking key 3. The light transmitted through the key 3 by this irradiation is
Light receiving section 4. incident on . The light receiving section 4 sends the light receiving signals of the photoelectric conversion sections of each section to the analog multiplexer 1o. The analog multiplexer 10 selects the received light signal every 1g and sends it to the adder ]4.8 At this time, the demultiplexer 1
Separate input 1. Therefore, demultiplexer 1
The 1' optical signal measured by inserting the key 3 into 1 is not input.

一方、アナログマルチプレクサ13の走査速度は、鍵3
を挿入した時のアナログマルチプレクサ1oの走査速度
と一致させてお(。且つアナログマルチプレクサ10と
13とは同一動作タイミングで動作させる。
On the other hand, the scanning speed of the analog multiplexer 13 is
The scanning speed of the analog multiplexer 1o is set to match the scanning speed of the analog multiplexer 1o when the analog multiplexer 1o is inserted.

この禍成とすることによって、減算器14には、対応す
る区分相互の校正用信号と鍵3からの実測した受光信号
とが同時に入力する。減算器14は、受光信号から校正
用信号と乞減算(その逆でも可)しXその偏差信号馨得
る。この偏差信号は、校正用信号2差し引いた値であり
、光源の劣化や受光部4の劣化等の影響7受けない値と
なる。
As a result of this failure, the mutual calibration signals of the corresponding sections and the actually measured light reception signal from the key 3 are input to the subtracter 14 at the same time. The subtracter 14 subtracts the calibration signal from the received light signal (or vice versa) to obtain a deviation signal. This deviation signal is a value obtained by subtracting the calibration signal 2, and is a value that is not affected by deterioration of the light source, deterioration of the light receiving section 4, etc.

かくして、減算器14は、区分毎に次々に偏差信号を侍
、その出力は、AD変換器】5に入力する。
Thus, the subtracter 14 outputs the deviation signal one after another for each section, and its output is input to the AD converter 5.

AD変換器15は、減算器14の出力をAD変換する。The AD converter 15 performs AD conversion on the output of the subtracter 14.

第6図は、シリンダー錠組立て装置の制御系の実施例図
である。マイクロコンピュータ16は、プログラム−4
ROM(メモリ)に内蔵しておく、該ROMの内容に従
って作動する。更に、マイクロコンピュータ16は、R
AM (メモリ)を持ち、該RAMには、被検体として
の鍵対応のデータぞ格納する。
FIG. 6 is an embodiment of the control system of the cylinder lock assembly device. The microcomputer 16 runs the program-4
It is stored in a ROM (memory) and operates according to the contents of the ROM. Furthermore, the microcomputer 16
It has an AM (memory), and the data corresponding to the key as the object to be examined is stored in the RAM.

この鍵対応のデータとは、第5しIK示した回路の出力
であるAD変換器15の出力である。
This key-corresponding data is the output of the AD converter 15, which is the output of the circuit shown in the fifth IK.

このRAMへのAI)変換器15のデータの格納手順は
以下となる。マイクロコンピュータ16は、AD変換器
15のAD変換出力乞区分対応に取込む。従って、16
個の区分であれば、16個の区分対応の受光データケ得
る。この区分対応の受光データは、上記RAMに格納す
る。
The procedure for storing data of the AI converter 15 in this RAM is as follows. The microcomputer 16 inputs the AD conversion output of the AD converter 15 into corresponding categories. Therefore, 16
If there are 16 divisions, received light data corresponding to 16 divisions can be obtained. The received light data corresponding to this classification is stored in the RAM.

鍵3は一釉類と限定されず、一般に複数種類乞なす。従
って、前述した受光データを各鍵毎に得、その受光デー
タケ鍵対応のRAMの領域に格納する。
Key 3 is not limited to one type of glaze, but generally includes multiple types. Therefore, the aforementioned light reception data is obtained for each key, and the light reception data is stored in the area of the RAM corresponding to the key.

このRAMに格納した受光データは、シリング−錠組立
て時に、鍵対応に読出し、DA変換器17を介して出力
する。この出力信号をシリンダー錠組立て装置の制御部
18がラッチし、出力伺号の大きさに応じたシリンダー
錠の組立てを行う。尚、鍵対応の受光データは区分対応
化しており、制御部18も各区分対応毎の組立て方を行
う。従って、DA変換器17からの出力は、区分を示す
表示部とその区分の受光の割合ケ示す信号との2つの種
類より成る。勿論、送出順序によって区分を表示する如
きやり方ヶ採用してもよい。尚、受光区分と制御部18
での組立ての際の制御単位区分とは必ずしも一致しない
場合がある。例えば、受光区分が16個で組立ての制御
単位区分が8個とか、又はその逆とかの事例が存在しう
る。その際には、両者が整合するような補正(補完)手
段をマイクロコンピュータ17内で行う必要がある。
The received light data stored in this RAM is read out in correspondence with the key when assembling the shilling-lock, and is outputted via the DA converter 17. The control section 18 of the cylinder lock assembling device latches this output signal, and assembles a cylinder lock according to the size of the output code. Incidentally, the received light data corresponding to the keys is classified into categories, and the control unit 18 also assembles the light reception data corresponding to each category. Therefore, the output from the DA converter 17 consists of two types: a display section indicating the division and a signal indicating the proportion of light reception in that division. Of course, a method such as displaying the classification according to the sending order may also be adopted. In addition, the light receiving section and the control section 18
may not necessarily match the control unit classification during assembly. For example, there may be a case where there are 16 light receiving sections and 8 assembly control unit sections, or vice versa. In this case, it is necessary to perform correction (complement) means within the microcomputer 17 so that the two match.

尚、スリット41の大きさは小さい方が精度向上に寄与
する。CCD’&使用すれば、スリットは不用であり1
全碩域を精度よく測定できる。更にレンズ2ン排して、
棒状光源7用いてもよい。
Note that a smaller size of the slit 41 contributes to improved accuracy. If you use CCD'&, slit is unnecessary and 1
Entire area can be measured with high accuracy. Furthermore, I removed two lenses,
A rod-shaped light source 7 may also be used.

本発明によれば、非接触形の形状検出を行うことができ
たため、高精度で長寿命の形状検出装置乞提供できた。
According to the present invention, since non-contact shape detection can be performed, a highly accurate and long-life shape detection device can be provided.

更に、誤差補正用の信号を得、この信号によって実測信
号を校−正したため精度が高い検出が可能となった。
Furthermore, a signal for error correction was obtained, and the actually measured signal was calibrated using this signal, making it possible to perform highly accurate detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定系を示す図、第2図は受光部の余
1視図、第3図は鍵位置決め図、第4図は受光部の検出
事例を示す図、第5図は受光部から信号処理の回路図、
第6図はシリンダー1錠組立て装置の制御系を示す図で
ある。 1・・・光源、2・・・レンズ、3・・・鍵1.4・・
・受光部、40・・・光電変換部、41・・・スリット
。 竹許 出 願人   日立電子エンジニアリング株式会
社代世人弁理十  汁  本−正  宙 第1図 第2図 第3図     第4図 − 4041’+リ 41 第5図 第6図
Fig. 1 is a diagram showing the measurement system of the present invention, Fig. 2 is a perspective view of the light receiving part, Fig. 3 is a key positioning diagram, Fig. 4 is a diagram showing an example of detection of the light receiving part, and Fig. 5 is a diagram showing a detection example of the light receiving part. Circuit diagram of signal processing from light receiving section,
FIG. 6 is a diagram showing the control system of the single cylinder lock assembly device. 1...Light source, 2...Lens, 3...Key 1.4...
- Light receiving section, 40... Photoelectric conversion section, 41... Slit. Takeho Applicant: Hitachi Electronics Engineering Co., Ltd. Patent Attorney Juju Hon-Masa Figure 1 Figure 2 Figure 3 Figure 4 - 4041'+Li 41 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、測定位置におかれたシリンダー錠片の鍵に光欠照射
する手段と、該照射による該鍵からの反射光又は透過光
乞該鍵の鍵山形状対応に受光する受光部と、該受光部か
らの受光信号を取込み測定系の校正用信号によって校正
する手段と、該校正手段からの出力を取込みシリンダー
錠組立て用のデータとして格納する手段とより成るシリ
ンダー錠・組立用鍵形状検出装置。 2、上記測定系の校正用信号は、測定位置にシリンダー
錠片の鍵乞おかないで上記手段から光ン照射し、受光部
欠介して得られた信号とする特許請求の範囲第1項記載
の鍵形状検出装置。 3、上記受光部は平面形状をなし、且つ複数のスリット
で区分けされた複数の光電変換部より成し、各光電変換
部は該変換部の受光領域に照射された光の領域の大きさ
対応の信号を出力する構成とする特許請求の範囲第1項
又は第2項記載の鍵形状検出装置。
[Scope of Claims] 1. A means for irradiating a key of a cylinder lock piece placed at a measurement position, and a means for receiving reflected light or transmitted light from the key due to the irradiation, and receiving light corresponding to the shape of the key thread of the key. A cylinder lock for assembling a cylinder lock, comprising a part, a means for taking in the light reception signal from the light receiving part and calibrating it with a calibration signal of a measurement system, and a means for taking in the output from the calibration means and storing it as data for cylinder lock assembly. Key shape detection device. 2. The signal for calibration of the measurement system is a signal obtained by irradiating light from the above means without placing the key of the cylinder lock at the measurement position and without using the light receiving section. key shape detection device. 3. The light receiving section has a planar shape and is composed of a plurality of photoelectric conversion sections separated by a plurality of slits, and each photoelectric conversion section corresponds to the size of the area of the light irradiated onto the light receiving area of the conversion section. A key shape detection device according to claim 1 or 2, which is configured to output a signal.
JP58026933A 1983-02-22 1983-02-22 Key-shape detecting device for cylinder lock Pending JPS59153106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58026933A JPS59153106A (en) 1983-02-22 1983-02-22 Key-shape detecting device for cylinder lock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58026933A JPS59153106A (en) 1983-02-22 1983-02-22 Key-shape detecting device for cylinder lock

Publications (1)

Publication Number Publication Date
JPS59153106A true JPS59153106A (en) 1984-09-01

Family

ID=12206953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58026933A Pending JPS59153106A (en) 1983-02-22 1983-02-22 Key-shape detecting device for cylinder lock

Country Status (1)

Country Link
JP (1) JPS59153106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057472A1 (en) * 2000-02-01 2001-08-09 Machine Magic Llc Key measurement apparatus and method
US6406227B1 (en) * 1997-07-31 2002-06-18 Machine Magic Llc Key measurement apparatus and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121446A (en) * 1973-03-19 1974-11-20
JPS50126132A (en) * 1974-03-23 1975-10-03
JPS5317034A (en) * 1976-07-30 1978-02-16 Sharp Corp Image sensor output correcting system
JPS5383677A (en) * 1976-12-29 1978-07-24 Rikagaku Kenkyusho Measurement of grain size distribution
JPS57182606A (en) * 1981-05-07 1982-11-10 Toshiba Corp Measuring method of shape of cubic parts and its device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121446A (en) * 1973-03-19 1974-11-20
JPS50126132A (en) * 1974-03-23 1975-10-03
JPS5317034A (en) * 1976-07-30 1978-02-16 Sharp Corp Image sensor output correcting system
JPS5383677A (en) * 1976-12-29 1978-07-24 Rikagaku Kenkyusho Measurement of grain size distribution
JPS57182606A (en) * 1981-05-07 1982-11-10 Toshiba Corp Measuring method of shape of cubic parts and its device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406227B1 (en) * 1997-07-31 2002-06-18 Machine Magic Llc Key measurement apparatus and method
WO2001057472A1 (en) * 2000-02-01 2001-08-09 Machine Magic Llc Key measurement apparatus and method

Similar Documents

Publication Publication Date Title
US3255357A (en) Photosensitive reader using optical fibers
US4573193A (en) Individual identification apparatus
CA1045252A (en) Inspection of masks and wafers by image dissection
EP0456813B1 (en) Multichannel optical monitoring system
US3737856A (en) Automated optical comparator
US3578979A (en) Electrical signal generating apparatus having a scale grid
JPS59153106A (en) Key-shape detecting device for cylinder lock
EP0118919B1 (en) Method and apparatus for converting spectral and light intensity values directly to digital data
EP0097555B1 (en) System to retrieve information from a record carrier
GB2261505A (en) Optical monitoring of container filling
US4474470A (en) Arrangement for color detection in map-plotting or other printed materials
JP2000121499A (en) Method and apparatus for measuring internal refractive index distribution of optical fiber base material
US4512663A (en) Optical inspection of machined surfaces
SU1430902A1 (en) Optical radiation spectrometer
RU2055386C1 (en) Color-sensitive head of color analyzer
RU2029257C1 (en) Spectral analysis device
JPH10104065A (en) Spectrophotometer
SU960690A1 (en) Pointer type instrument checking device
SU938019A1 (en) Optoelectronic device for measuring linear dimensions
JPH0650261B2 (en) Spectrophotometer using integrating sphere
Stoy The initial performance of the galaxy machine
JPS593681B2 (en) Pattern inspection method
EP0228702A2 (en) Interferometer including stationary, electrically alterable, optical masking device
KR101103250B1 (en) Line Detector Using Fiber Array
JPS54110563A (en) Optical read-out system