JPS59152623A - Method of charged particle ray exposure - Google Patents

Method of charged particle ray exposure

Info

Publication number
JPS59152623A
JPS59152623A JP58026006A JP2600683A JPS59152623A JP S59152623 A JPS59152623 A JP S59152623A JP 58026006 A JP58026006 A JP 58026006A JP 2600683 A JP2600683 A JP 2600683A JP S59152623 A JPS59152623 A JP S59152623A
Authority
JP
Japan
Prior art keywords
scanning
mark
signal
charged particle
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58026006A
Other languages
Japanese (ja)
Inventor
Moriyuki Isobe
磯部 盛之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP58026006A priority Critical patent/JPS59152623A/en
Publication of JPS59152623A publication Critical patent/JPS59152623A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To enable highly accurate exposure by a method wherein a mark of a desired shape is formed on a material by contamination, which mark is then scanned with the titled ray, thus detecting the generated informational signal, and performing the focus positioning of said ray. CONSTITUTION:An electron beam draws a cross on the material by scanning a fixed range with said beam by switching to the directions X and Y at every period of a blanking signal from a mask pattern generating circuit 9. This cross scanning with said beam is performed at many times, resulting in the deposit of contaminations, according to the times of scanning, at the part of this material irradiated with said beam, and accordingly the cross mark is formed. The secondary electrons generated accompanied with the scanning are supplied to a cathode ray tube 19 as a brightness signal, after being detected by a detector 17. Then, the microscopic image of scanning electrons at the desired region including the mark is displayed. The amount of focus deviation is obtained, and the power source 20 for an objective lens 4 is controlled in order to correct it.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は荷電粒子線露光方法に関し、特に、超微細パタ
ーンの露光を行うに最適な荷電粒子線露光方法に関づる
1゜ [従来技術] 例えば、電子ビーム露光装置で超微細パターンを露光り
る場合には、被露光材料−トの電子ヒー11の仔を0.
01−程度にする必要がある。このような細いビーム径
を得るためには、最終段電子レンズと該材料とのr。1
の距離を狭めねばならないが、それによって電子ビーム
の開き角はひろがり、焦点深度は浅くなる。通常、被露
光材料の表面は、数1J11の量の高さ方向の変位があ
り、イのため、該祠戸ハニの一点でフォーカスを合せて
b、他の白ではかなりのボ、りが発生し、結果どし゛C
露光粕瓜が悪化する。このボクを無くすためには、各露
光リベき領域の近傍に予め凹凸のマークを伺(プ(おき
、露光操作に先立つ−CCママ−9部分走査電子顕微鏡
像を1q、該走査電子顕微鏡像によつ(フォーカス合せ
を行えば良いが、材料に凹凸ン−りを付(J−(も、レ
ンズI〜で該マークが被われ−Cしようため、該マーク
部分の凹ン]・ラストの良好な走査電子顕微鏡像を得、
ることはC゛きず、正(イ「に)A−カス合ぜを行うこ
とは困難となる。更に、各露光+ii’i ha fj
jに前もってマークを付番ノることは、多大な手間を要
づる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a charged particle beam exposure method, and particularly relates to a charged particle beam exposure method that is optimal for exposing ultra-fine patterns. For example, when exposing an ultra-fine pattern using an electron beam exposure device, the temperature of the electron beam 11 on the material to be exposed is 0.
It is necessary to set it to about 01-. In order to obtain such a narrow beam diameter, the r of the final stage electron lens and the material must be adjusted. 1
The distance must be narrowed, but this widens the aperture angle of the electron beam and shallows the depth of focus. Normally, the surface of the material to be exposed has a displacement in the height direction of an amount of several J11. Therefore, when focusing on one point of the shrine, considerable blurring occurs on other white areas. What is the result?C
Exposed lees melon gets worse. In order to eliminate this problem, it is necessary to place uneven marks in the vicinity of each exposed area in advance (preparation). (Although it is fine to focus, the material has a concave and convex hole (J-(Also, the mark is covered by the lens I~, so there is a concave part on the mark))・The last is good. Obtain scanning electron microscopy images,
It will be difficult to match the A-marks with C's scratches.
Assigning marks and numbers to j in advance requires a great deal of effort.

[目的] 本発明は上述した点に鑑み−Cなされたもので、・簡単
に荷電粒子線のフォーカス合りを行い得、高精度の露光
を行うことができるvrJ電粒子粒子線露光方法供する
ことを目的とする。
[Objective] The present invention has been made in view of the above-mentioned points, and is to provide a vrJ particle beam exposure method that can easily focus a charged particle beam and perform high-precision exposure. With the goal.

[発明の構成] 本発明に基づく荷電粒子線露光方法は、被露光材料上の
露光されるべき領域の近傍の表面上に、荷電粒子線を多
数回照射し−C核材判上にコンタミネーションによって
所望形状のマークを形成し、該マーク形成後、該マーク
部分において該荷電粒子線を走査し、該走査に基づき該
部分から発生した情報信号を検出し、該検出信号に基づ
いて該荷電粒子線のフォーカス合ぜを行い、該フォーカ
ス合けの後に前記領域の露光を行うようにしたことを特
徴としている。
[Structure of the Invention] The charged particle beam exposure method based on the present invention irradiates the surface of a material to be exposed in the vicinity of the area to be exposed with a charged particle beam many times to prevent contamination on the surface of the C core material. After forming the mark, the charged particle beam is scanned in the mark portion, an information signal generated from the portion is detected based on the scanning, and the charged particle beam is detected based on the detection signal. The method is characterized in that the lines are focused, and after the focusing, the area is exposed.

U実施例J 以下本発明の一実施例を添14図面に基づき詳述り゛る
Embodiment J An embodiment of the present invention will be described in detail below with reference to the attached 14 drawings.

第1図は本発明を実mlるための電子ビーム露光装置の
一例を示しており、1は電子銃である。
FIG. 1 shows an example of an electron beam exposure apparatus for implementing the present invention, and 1 is an electron gun.

該電子銃1より発生した電子ビームは、集束レンズ2.
3及び対物レンズ4によってステージ5の□  上に載
置された被露光材料6の表面上に細く集束される。該電
子ビームは、ブランキング電極7へのブランキング信号
に応じて該材料6へ照射され、あるいは、その照射が阻
止されると共に、更に、静電偏向器8に供給される偏向
信号に応じてその材料上の照射位置が変化させられる。
The electron beam generated by the electron gun 1 is passed through a focusing lens 2.
3 and an objective lens 4, the light is narrowly focused onto the surface of the material to be exposed 6 placed on the stage 5. The electron beam is irradiated onto the material 6 in response to a blanking signal supplied to the blanking electrode 7, or its irradiation is blocked, and further in response to a deflection signal supplied to an electrostatic deflector 8. The irradiation position on the material is varied.

該ブランキング電極7には、マークパターン発生回路9
.走査電子顕微鏡用走査信号発生回路10.露光パター
ン発生回路11のいずれかの回路からのブランキング倍
量が第1のスイッチ回路12によっ−C選択され、増幅
器13を介して供給される。該静電偏向器8には、該マ
ークパターン発生回路9.走査電子顕微鏡用走査信号発
生回路10.露光パターン発生回路11のいずれかの回
路からの偏向信号が第2のスイッチ回路14によって選
択され。
The blanking electrode 7 includes a mark pattern generation circuit 9.
.. Scanning signal generation circuit for scanning electron microscope 10. The blanking double amount from any one of the exposure pattern generation circuits 11 is selected by the first switch circuit 12 by -C and is supplied via the amplifier 13. The electrostatic deflector 8 includes the mark pattern generation circuit 9. Scanning signal generation circuit for scanning electron microscope 10. A deflection signal from one of the exposure pattern generation circuits 11 is selected by the second switch circuit 14.

増幅器15を介して供給される。該第1.第2のスイッ
チ回路12.14は電子計算機の如き制御装置16から
の(N ’W’iによって切換えられる“。核材FA6
への電子ビームの照射に伴って、該材料から発生した2
次電子は検出器17によって検出されるが、該検出信号
は増幅器18によって増幅された後、モニタ一手段とし
ての陰極線管19と該制御装置16に供給され°る。該
制御装置16は該対物レンズ4の励磁電源2o及びステ
ージ5を移動Jるためのモータ21の電源22にも、制
御信号。
It is supplied via an amplifier 15. Part 1. The second switch circuit 12.14 is switched by (N'W'i) from the control device 16, such as an electronic computer.
2 generated from the material when irradiated with an electron beam
The secondary electrons are detected by a detector 17, and the detection signal is amplified by an amplifier 18 and then supplied to a cathode ray tube 19 as a monitor means and to the control device 16. The control device 16 also sends control signals to the excitation power source 2o of the objective lens 4 and the power source 22 of the motor 21 for moving the stage 5.

を供給り“る。We supply “.

1述した如き構成において、まず、制御装置16からモ
ータ電源22に制御信号が供給され、該ステージ5がモ
ータ21によって所望距離移動させられ、超微細パター
ンを露光すべき材料上の領域(フィールド〉が、電子ビ
ーム光軸上に配Hされる。次に、該制御装置から第1と
第2のスイッチ回路12.14に信号が供給され、マー
クパターン発生回路9がらのブランキング信号と偏向信
号とが電極7.偏向器8に供給されるように該各スイッ
チ回路は切換えられる。第2図は、該マークパターン発
生回路9がらのブランキング信号(Δ)、X方向走査信
号(B)、Y方向走査信号(C)を示しており、ブラン
キング信号の1周期毎にX方向とY方向に切換えて所定
範囲電子ビームが走査されることから、該電子ビームは
材料上で十字を描くことになる。該材料上での電子ビー
ムの十字状走査は多数回行われ、その結果、該材料の電
子ビーム照射部分には、該走査の回数に応じてコンタミ
ネーションが堆積し、十字状のマークが形成されること
になる。該コンタミネーションによる十字状マークが形
成された後、該制御装置16からスイッチ回路12.1
4に信号が供給され、走査電子顕微鏡用走査信号発生回
路10 h+らのブランキング信号と走査信号とが電F
i!7と偏向器8に供給される。この走査信号はX、Y
方向への2次元的な走査であり、該走査に伴なって発生
した2次電子は検出器17によって検出された後、該走
査信号が供給されている陰極線管19に輝度信号として
供給されることから、該陰極線管には該マークを酋む所
望領域の走査電子顕微鏡像が表示される。該2次電子検
出信号は該制御装置16にも供給されており、該制御装
置は供給された信号に基づいて、フォーカスのずれ量を
求め、このフォーカスのずれを補正すべく、該対物レン
ズ4の電源20を制御する。尚、このフォーカスの補゛
正は、陰極線管19に表示された走査電子顕微鏡像を観
察しながら、オペレータが手動で行っても良い。該フォ
ーカスの補正が行われた後、該制御装置16はスイッチ
回路12,14を切換えることから、露光パターン発生
回路11からの信号が電極7及び偏向器8に供給される
ことになる。
In the configuration as described above, first, a control signal is supplied from the control device 16 to the motor power source 22, and the stage 5 is moved a desired distance by the motor 21 to form an area (field) on the material where an ultrafine pattern is to be exposed. is distributed on the electron beam optical axis.Next, signals are supplied from the control device to the first and second switch circuits 12 and 14, and the blanking signal and deflection signal from the mark pattern generation circuit 9 are output. The switch circuits are switched so that the signals are supplied to the electrodes 7 and the deflector 8. FIG. 2 shows the blanking signal (Δ), the X-direction scanning signal (B), and The Y-direction scanning signal (C) is shown, and since the electron beam scans a predetermined range by switching between the X direction and the Y direction every cycle of the blanking signal, the electron beam draws a cross on the material. The cross-shaped scanning of the electron beam on the material is performed many times, and as a result, contamination is deposited on the electron beam irradiated part of the material according to the number of scans, and a cross-shaped mark is formed. After the cross-shaped mark is formed due to the contamination, the switch circuit 12.1 is sent from the control device 16.
The blanking signal and the scanning signal from the scanning signal generating circuit 10 for a scanning electron microscope are supplied to the electric F.
i! 7 and a deflector 8. This scanning signal is
This is two-dimensional scanning in the direction, and the secondary electrons generated along with the scanning are detected by the detector 17 and then supplied as a brightness signal to the cathode ray tube 19 to which the scanning signal is supplied. Therefore, a scanning electron microscope image of a desired area including the mark is displayed on the cathode ray tube. The secondary electron detection signal is also supplied to the control device 16, and the control device determines the amount of focus shift based on the supplied signal, and adjusts the objective lens 4 to correct the focus shift. The power supply 20 of the controller is controlled. Note that this focus correction may be performed manually by the operator while observing the scanning electron microscope image displayed on the cathode ray tube 19. After the focus is corrected, the control device 16 switches the switch circuits 12 and 14, so that the signal from the exposure pattern generation circuit 11 is supplied to the electrode 7 and the deflector 8.

該露光パターン発生回路には該フィールド内の超微細パ
ターンに開力る情報が記憶されており、該パターンに応
じた描画信号が電極7.偏向器8に供給され、該フィー
ルド内において、所望のパターンが露光される。このパ
ターンの露光は、該材料に照射される電子ビームが74
−カスが合った状態で細く絞られ−(い、ることから、
極めて精度良く行うことがeきる。該フィールドの露光
が終了した後、該制御装置16は、モータ電源22に信
号を送ってモータを駆動し、材料上の次のフィールドを
露光すべく該材料の移動を行う。この次のフィールドの
露光を行う場合も、MFf 迩したコンタミネーション
による一ン二りの形成、走査電子顕微鏡像によるフォー
カス合わせが行われる。
The exposure pattern generation circuit stores information on how to develop an ultra-fine pattern within the field, and a writing signal corresponding to the pattern is sent to the electrodes 7. The field is supplied to a deflector 8 and a desired pattern is exposed within the field. In this pattern exposure, the electron beam irradiated on the material is 74
- It is narrowed down with the waste together - (because it is,
This can be done with extremely high precision. After the field has been exposed, the controller 16 sends a signal to the motor power supply 22 to drive the motor to move the material to expose the next field on the material. When the next field is exposed, one-two formation due to contamination that has passed through the MFf and focus adjustment using a scanning electron microscope image are performed.

尚、本発明は上述した実施例に限定されることなく幾多
の変形が可能である。例えば、コンタミネーションにJ
、るン−りを十字1状に形成したが、該マークの形状は
直線等の他の形状であっても良い。又、」ンタミネーシ
ョンによってマークを形成し、該マークによるフォーカ
ス合せを各フィールド毎に行う必要は無く、許容「む囲
に応じて、複数フィールド毎に行っても良い。更に、マ
ークの何着、走査電子顕微鏡像の取得、所望パターンの
露光を別個の回路を設けて行ったが、電子計悼機によっ
てイの全てを行うようにしても長い。更に又、マークの
1号着時のみ、被露光材料の周囲の真空度を低下さ駄、
コンタミネーションの付き易い雰囲気とすることは可能
である。更に、上述した実施例では、電子ビーム露光装
置を例に説明したが、イオンビーム露光装置に本発明を
適用づるこ・とも可能である。
Note that the present invention is not limited to the embodiments described above, and can be modified in many ways. For example, J
Although the marks are formed in the shape of a cross, the marks may have other shapes such as a straight line. In addition, it is not necessary to form a mark by tampering and perform focusing using the mark for each field, but it may be performed for multiple fields depending on the permissible area. , Separate circuits were installed to acquire the scanning electron microscope image and expose the desired pattern, but it would take a long time to do all of the above using an electronic recording machine.Furthermore, only when the first mark arrives, Do not reduce the vacuum around the exposed material.
It is possible to create an atmosphere where contamination is likely to occur. Further, in the above-mentioned embodiments, an electron beam exposure apparatus was explained as an example, but the present invention can also be applied to an ion beam exposure apparatus.

[効果コ 以上詳述した如く、本発明に基づく荷電粒子線露光方法
は、材料表面に高さ方向の変位があっても、各フィール
ド毎にフォーカス合わせを行って所望の露光を行ってい
るだ話、超微細パターンの高精度の露光を行い得る。又
、本発明においては、1予め材料上に多数のマークを伺
【プる手間を必要としない。更には、本発明に用いられ
るマークは、レンズ1−の上にコンタミネーションによ
って付りられたものである!こめ、材料にIi;+接設
りられたマークとは異なり、該レジストによって被われ
ることは無く、マーク部分のコントラストが良好な走査
電子顕微鏡像を得ることができ、正確なフォーカス合U
を行い得る。更に又、該レンズ1−の上に°設りられた
マークは、レジスト剥離の上程で該レジストと共に除去
でき、該マークが付された部分に他の回路を設ける等の
利用を図ることができる。
[Effects] As detailed above, the charged particle beam exposure method based on the present invention can perform the desired exposure by adjusting the focus for each field even if there is a displacement in the height direction on the material surface. In fact, it is possible to perform highly accurate exposure of ultra-fine patterns. Further, in the present invention, there is no need to take the trouble of making a large number of marks on the material in advance. Furthermore, the mark used in the present invention is placed on the lens 1- by contamination! Unlike the marks attached to the material, they are not covered by the resist, making it possible to obtain a scanning electron microscope image with good contrast of the mark part, and accurate focusing.
can be done. Furthermore, the mark provided on the lens 1- can be removed together with the resist in the upper stage of resist peeling, and the part to which the mark is attached can be used for providing other circuits, etc. .

/4、図面の簡単な説明 第1図は本発明に基づく荷電粒子線露光方法を実施する
ための電子ビーム露光装置の一例を示づ図、第2図は十
字マークを付4−Jる為のブランキング信号と走査信号
を示す図である。
/4, Brief explanation of the drawings Fig. 1 shows an example of an electron beam exposure apparatus for carrying out the charged particle beam exposure method based on the present invention, and Fig. 2 shows a cross mark 4-J. FIG. 2 is a diagram showing a blanking signal and a scanning signal of FIG.

1・・・・・・・・・電子銃 4・・・・・・・・・対物レンズ 5・・・・・・・・・ステージ 6・・・・・・・・・被露光材料 7・・・・・・・・・ブランキング電極8・・・・・・
・・・静電偏向器 9・・・・・・・・・マークパターン発生回路10・・
・・・・・・・走査電子顕微鏡用走査信号発生回路 11・・・・・・・・・露光パターン発生回路12.1
4・・・・・・・・・スイッチ回路16・・・・・・・
・・制御装置 17・・・・・・・・・2次電子検出器19・・・・・
・・・・陰極線管 −2,O・・・・・・・・・対物レンズ電源21・・・
・・・・・・モータ 22・・・・・・・・・モータ電源 特許出願人 日本電子株式会社 代表者 9藤 −夫
1... Electron gun 4... Objective lens 5... Stage 6... Material to be exposed 7.・・・・・・Blanking electrode 8・・・・・・
... Electrostatic deflector 9 ... Mark pattern generation circuit 10 ...
. . . Scanning signal generation circuit for scanning electron microscope 11 . . . Exposure pattern generation circuit 12.1
4...Switch circuit 16...
...Control device 17...Secondary electron detector 19...
...Cathode ray tube -2, O...Objective lens power supply 21...
...Motor 22 ...Motor power supply patent applicant JEOL Ltd. Representative 9 Fuji - Husband

Claims (1)

【特許請求の範囲】[Claims] 被露光材料上の露光されるべき領域の近傍の表面上に、
荷電粒子線を多数回照射して該材料−Fにコンタミネー
ションによって所望形状のマークを形成し、該マーク形
成後、該マーク部分においC該荷電粒子線を走査し、該
走査に基づき該部分が・ら発生した情報信号を検出し、
該検出信号に基づいて該荷電粒子線のフォーカス合Uを
行い、該フォーカス合せの後に前記領域の露光を行うよ
うにした荷電粒子線露光方法。
on the surface of the exposed material in the vicinity of the area to be exposed,
A mark of a desired shape is formed on the material F by contamination by irradiating the charged particle beam many times, and after the mark is formed, the charged particle beam C is scanned over the marked portion, and based on the scanning, the portion is・Detect information signals generated from
A charged particle beam exposure method, wherein the charged particle beam is focused U based on the detection signal, and the area is exposed after the focusing.
JP58026006A 1983-02-18 1983-02-18 Method of charged particle ray exposure Pending JPS59152623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58026006A JPS59152623A (en) 1983-02-18 1983-02-18 Method of charged particle ray exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58026006A JPS59152623A (en) 1983-02-18 1983-02-18 Method of charged particle ray exposure

Publications (1)

Publication Number Publication Date
JPS59152623A true JPS59152623A (en) 1984-08-31

Family

ID=12181605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58026006A Pending JPS59152623A (en) 1983-02-18 1983-02-18 Method of charged particle ray exposure

Country Status (1)

Country Link
JP (1) JPS59152623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002163934A (en) * 2000-11-24 2002-06-07 Yazaki Corp Flat type shield harness and manufacturing method of flat type shield harness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002163934A (en) * 2000-11-24 2002-06-07 Yazaki Corp Flat type shield harness and manufacturing method of flat type shield harness

Similar Documents

Publication Publication Date Title
EP0298495B1 (en) Method and apparatus for correcting defects of x-ray mask
JP2001273861A (en) Charged beam apparatus and pattern incline observation method
US20040065826A1 (en) System for imaging a cross-section of a substrate
TW200848725A (en) Scanning electron microscope with length measurement function and dimension length measurement method
JP3101114B2 (en) Scanning electron microscope
US4924104A (en) Ion beam apparatus and method of modifying substrate
DE2805602C2 (en)
JPH11213934A (en) Method for observing secondary ion image formed by focused ion beam
US4392058A (en) Electron beam lithography
JPH11271458A (en) Method for measuring beam
JPH0235419B2 (en)
US4263514A (en) Electron beam system
US5180919A (en) Electron beam exposure system having the capability of checking the pattern of an electron mask used for shaping an electron beam
JPS59152623A (en) Method of charged particle ray exposure
JPS60126834A (en) Ion beam processing method and device thereof
JP2672808B2 (en) Ion beam processing equipment
JPH10208996A (en) Electron beam exposure device and manufacture of device using it
JPH0897122A (en) Method and device for applying charged particle beam
JP2005064041A (en) Beam irradiating position correcting method in charged-particle beam drawing apparatus
JPH04274341A (en) Section machining observation method
JPH04251254A (en) Ion beam machining method
JP3168032B2 (en) Electron beam exposure apparatus and method for inspecting drawing pattern
JPH0613300A (en) Charged particle beam aligner
JPH06231716A (en) Ion micro beam device
JP3578867B2 (en) Focused charged particle beam processing method and apparatus