JPS59152455A - Color separating method - Google Patents

Color separating method

Info

Publication number
JPS59152455A
JPS59152455A JP58026018A JP2601883A JPS59152455A JP S59152455 A JPS59152455 A JP S59152455A JP 58026018 A JP58026018 A JP 58026018A JP 2601883 A JP2601883 A JP 2601883A JP S59152455 A JPS59152455 A JP S59152455A
Authority
JP
Japan
Prior art keywords
wavelength
light
maximum
color separation
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58026018A
Other languages
Japanese (ja)
Inventor
Taira Kochiwa
小団扇 平
Masami Emoto
江本 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP58026018A priority Critical patent/JPS59152455A/en
Publication of JPS59152455A publication Critical patent/JPS59152455A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/01Electrographic processes using a charge pattern for multicoloured copies

Abstract

PURPOSE:To reduce a loss in the quantity of light and to increase reading speed by allowing a maximum reflection wavelength and a maximum transmission wavelength for color separation to coincide with the middle wavelength at which the maximum light emitting energy is generated in each wavelength region of a light source. CONSTITUTION:A fluorescent lamp 3 contains a fluorescent substance suitable for light emission in three wavelength regions B, G, R to form specified wavelength regions B, G, R. Peak wavelengths (b), (g), (r) each showing the maximum light emitting energy are measured in the wavelength regions. A minimum transmission wavelength Mb close to the maximum reflection wavelength of a mirror 11 and the maximum transmission wavelength Fb of a filter 15 are allowed to coicide with the wavelength (b). A minimum transmission wavelength Mr close to the maximum reflection wavelength of a mirror 12 and the maximum transmission wavelength Fr of a filter 17 are allowed to coincide with the wavelength (r). The maximum transmission wavelength Fg of a filter 16 is allowed to coincide with the wavelength (g). As a result, light in the wavelength regions reflected from an original is subjected to efficient color separation with the matched mirrors and filters. When such a color separating method is applied to a reading device, the quantity of light reaching the photoelectric conversion part is increased, and the reading speed can be increased.

Description

【発明の詳細な説明】 (技術分野) 本発明は原稿情報を複数の波長域別の光情報に分解する
方法、特に、ミラーまたはフィルタにより色分解する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method of separating document information into optical information according to a plurality of wavelength ranges, and particularly relates to a method of color separation using mirrors or filters.

(従来技術) 従来、カラーファックスやカラー・複写機等では、原稿
読取り装置を用い、原稿情報を複数の波長域別の光情報
に分解し、それらを′光電変換部にそれぞれ導き、画像
信号としたり、あるいは°直接感光体に導き、カラー画
像の形成に供している。どのように用いる原稿読取り装
置は光源により原稿を照射し、原稿からの反射光をミラ
ーやフィルタに導ひき、カラー画像情報を複数の波長域
別に色分解する方法を採用している。ところ゛で従来の
カラーファックス等では、光源としてハロゲンランプや
螢光灯を用い、原稿からの反射光をミラーやフィルタに
より3原色に色分解する。この場合、たとえば、螢光灯
の波長域は第1図に示すように可視域においてなだらか
な発光分布を有しているが、これに対し、色分解後の3
原色の各々の光量はミラーやフィルタに吸収される量が
多く、激減している。このような色分解後の光量の低下
を防ぐには、より明るい光源を必要とすることになり、
消費電力の増大を招く。しかも、螢光灯はミラーやフィ
ルタの反射波長域あるいは透過波長域以外の波長域でも
発光し、エネルギを消費しており、これらの発光エネル
ギは色分解に富有しないため、無駄なエネルギの消費と
なっている。更に、従来の色分解方法を読取り装置に用
いた場合、光量低下による読取り速度の低下を生じ易く
、装置め高速化に問題を生じている。
(Prior art) Conventionally, color faxes, color copying machines, etc. use document reading devices to decompose document information into optical information in multiple wavelength ranges, and guide each of them to a photoelectric conversion section to convert them into image signals. Alternatively, it can be guided directly to a photoreceptor to form a color image. How is the document reading device used? A method is adopted in which the document is irradiated with a light source, the reflected light from the document is guided to a mirror or a filter, and color image information is separated into a plurality of wavelength ranges. However, in conventional color fax machines, a halogen lamp or fluorescent lamp is used as a light source, and the reflected light from the document is separated into three primary colors using mirrors or filters. In this case, for example, the wavelength range of a fluorescent lamp has a gentle emission distribution in the visible range as shown in Figure 1, but in contrast,
The amount of light for each of the primary colors is greatly reduced because a large amount is absorbed by mirrors and filters. In order to prevent this decrease in light intensity after color separation, a brighter light source is required.
This results in an increase in power consumption. Moreover, fluorescent lamps emit light in wavelength ranges other than the reflection wavelength range or transmission wavelength range of mirrors and filters, consuming energy, and since this emitted energy is not used for color separation, it is a waste of energy. It has become. Furthermore, when the conventional color separation method is used in a reading device, the reading speed tends to decrease due to a decrease in the amount of light, creating a problem in increasing the speed of the device.

(発明の目的) 本発明は光源の発光エネルギを効率よく利用し、原稿情
報を色分解できる方法を提供することを目的とする。
(Objective of the Invention) An object of the present invention is to provide a method that can efficiently utilize the emission energy of a light source and separate document information into colors.

(発明の構成) 本発明方法は光源が保有する複数の波長域の各々より、
中心波長を求め、これら各中心波長に、色分解光学系が
色分解処理する極大反射波長寸だは極大透過波長を一致
させ、これらにより原稿情報を複数の波長域別の光情報
に分解することを特徴としている。
(Structure of the Invention) The method of the present invention uses each of a plurality of wavelength ranges possessed by a light source.
Find the center wavelength, match the maximum reflection wavelength and maximum transmission wavelength that the color separation optical system performs color separation processing to each of these center wavelengths, and use these to decompose the document information into optical information according to multiple wavelength ranges. It is characterized by

以下、本発明方法を実施例に沿って説明する。The method of the present invention will be explained below with reference to Examples.

まず、本発明方法により原稿情報を青緑赤の3原色別の
光情報に分解する場合を示す。この場合、原稿照明装置
に用いる光源として、第2図に示すような発光分布を示
す螢光灯を用い、色分解光学系を2つのミラーで形成す
るとして、各ミラーは、第3図に示すような分光特性を
示すものとする。
First, a case will be described in which document information is decomposed into optical information for each of the three primary colors of blue, green, and red using the method of the present invention. In this case, a fluorescent lamp with a light emission distribution as shown in FIG. 2 is used as a light source for the document illumination device, and a color separation optical system is formed of two mirrors, each mirror having a light emission distribution as shown in FIG. 3. It shall exhibit the following spectral characteristics.

即ち、ここで用いる螢光灯は3原色に対応する3つの波
長域B、G、Rにおいて、その他の領域より数倍(ここ
では2乃至3倍)の発光輝度を示すよう形成されている
。つまり、この螢光灯はその内壁にコートする螢光体と
して、3つの波長域B。
That is, the fluorescent lamp used here is formed to exhibit luminance several times (here, two to three times) higher than in other regions in three wavelength ranges B, G, and R corresponding to the three primary colors. In other words, this fluorescent lamp has three wavelength ranges B as a fluorescent material coated on its inner wall.

G、Rのみの発光に適応した螢光体を多く用いており、
従来のようにフラットな発光分布に適する螢光体の使用
を押えている。なお螢光灯としては、この他に、内壁に
多層膜コートを設したものも利用できる。更にまた、「
昭和56年度電子通信学会総合全国大会、1125、ス
リット形熱陰極けい光管によるファクンミリ照明光源、
(太田、歓崎)」の記事にみられるような熱陰極螢光管
を用いることも可能である。これらいずれの場合も青緑
赤の3単色光に対応した特定の波長域B、G’、Rを形
成し、これより3つの中心波長h++7+ r、即ち、
各波長域毎に最大発光エネルギを示すことのできるピー
ク波長を求める。
Many phosphors adapted to emit only G and R are used,
This precludes the use of phosphors suitable for flat luminescence distribution as in the past. In addition to this, a fluorescent lamp with a multilayer coating on the inner wall can also be used. Furthermore, “
1981 National Conference of the Institute of Electronics and Communication Engineers, 1125, Fakumiri illumination light source using slit type hot cathode fluorescent tube,
It is also possible to use a hot cathode fluorescent tube as seen in the article "(Ota, Kansaki)". In any of these cases, specific wavelength ranges B, G', and R corresponding to the three monochromatic lights of blue, green, and red are formed, and from this, the three central wavelengths h++7+ r, that is,
The peak wavelength that can exhibit the maximum emission energy is determined for each wavelength range.

次に、螢光灯の3つの中心波長h+  q+ rを基に
2つのミラー(第4・図参照)の分光特性を設定する。
Next, the spectral characteristics of the two mirrors (see Figure 4) are set based on the three center wavelengths h+, q+, and r of the fluorescent lamp.

ここでは原稿からの反射光である光束を第1ミラーで受
け、この第1ミラーを透過した光束を第2ミラーで受け
、この第2ミラーを透過した光束が緑の波長域Gである
よう色分解する光学系が用いられる。第1ミラーは螢光
灯の1つの中心波長りと一致するよう、その極小透過波
長Mhと近似する極大反射波長が設定され、第3図に実
線で示すように極小透過波長Mhをボトムとしてそれ以
外の可視領域(赤および緑の領域)の光を高透過率の基
に透過させる。更に、第2ミラーは螢光ナゴの他の1つ
中心波長rと一致するよう、その極小透過波長Mrと近
似する極大反射波長が設定され、第3図に破線で示すよ
うに極小透過波長Mrをボトムとじてそれ以外の可視領
域(青および緑の領域)の光を高透過率の基に透過させ
る。なお、第1ミラーおよび第2ミラー゛はそれぞれハ
ーフミラ−であり、その蒸着膜の材質、厚さ、膜数によ
り、それぞれの分光特性を調整でき、これらをパラメー
タとして上述の分光特性を適当な状態に設定している。
Here, a first mirror receives the light flux that is reflected light from the original, a second mirror receives the light flux that has passed through the first mirror, and the light flux that has passed through the second mirror is colored so that it is in the green wavelength range G. A resolving optical system is used. The first mirror is set to have a maximum reflection wavelength that is close to the minimum transmission wavelength Mh so as to coincide with one center wavelength of the fluorescent lamp, and as shown by the solid line in Figure 3, the minimum transmission wavelength Mh is set as the bottom. Transmits light in the visible range (red and green range) other than those in the visible range (red and green range) to a base with high transmittance. Furthermore, the maximum reflection wavelength of the second mirror is set to be similar to the minimum transmission wavelength Mr so as to coincide with the other center wavelength r of the fluorescent Nago, and the minimum transmission wavelength Mr is set as shown by the broken line in FIG. The bottom is used to transmit light in the other visible regions (blue and green regions) with high transmittance. The first mirror and the second mirror are each half mirrors, and the spectral characteristics of each can be adjusted depending on the material, thickness, and number of deposited films.Using these as parameters, the above-mentioned spectral characteristics can be adjusted to an appropriate state. It is set to .

上述のような螢光灯と色分解光学系を形成する2つのミ
ラーとをセットとして用いると、第4図に示す読取装置
1を形成できる。この読取装置1は図示しないカラー原
稿を載置するガラス製の原稿載置台2を有し、原稿載置
台2の下側に原稿照明装置としての上述の螢光灯3を配
置する。更に、原稿からの反射光を光電変換部4の3つ
の受光面5.6.7に結像させる結像光学系8が配置さ
れる。この結像光学系8は原稿からの反射光をミラー9
と結像レンズ10とにより各受光面5,6.7に導くと
共に、結像レンズ10と各受光面5,6゜7との間に色
分解光学系としての上述の第1および第2ミラー11,
12を配置した構成である。ここでミラー9は可視域全
域でフラットな反射率を示すものが使用される。、光電
変換部4はフォトダイオ−ドやCCD等の光電変換素子
を一方向にアレイ状に配置した固体イメージセンサで形
成され、これは3つの受光・面5,6.7を形成するよ
うにそれぞれ配置され、これにより各波長域に応じた原
稿情報を別々に読取っている。
When a fluorescent lamp as described above and two mirrors forming a color separation optical system are used as a set, a reading device 1 shown in FIG. 4 can be formed. This reading device 1 has a glass original placing table 2 on which a color original (not shown) is placed, and the above-mentioned fluorescent lamp 3 as a document illuminating device is arranged below the original placing table 2. Furthermore, an imaging optical system 8 is arranged to image the reflected light from the original onto the three light receiving surfaces 5, 6, and 7 of the photoelectric conversion section 4. This imaging optical system 8 directs the reflected light from the document to a mirror 9.
and the imaging lens 10 to each light receiving surface 5, 6.7, and the above-mentioned first and second mirrors as a color separation optical system are installed between the imaging lens 10 and each light receiving surface 5, 6.7. 11,
This is a configuration in which 12 units are arranged. Here, the mirror 9 used has a flat reflectance over the entire visible range. The photoelectric conversion unit 4 is formed of a solid-state image sensor in which photoelectric conversion elements such as photodiodes and CCDs are arranged in an array in one direction, and this is arranged so as to form three light receiving surfaces 5, 6.7. Accordingly, document information corresponding to each wavelength range is read separately.

第4図に示した読取装置1が作動すると、カラーの原稿
に対して紙面垂直方向に長いスリット光が螢光対3より
照射され、原稿からの反射光であるスリット状の結像光
束はミラー9および結像レンズ10により第1ミラー1
1に照射される。
When the reading device 1 shown in FIG. 4 operates, a long slit light perpendicular to the paper surface is irradiated onto a color original from the fluorescent pair 3, and the slit-shaped imaging light flux, which is the light reflected from the original, is mirrored. 9 and the imaging lens 10, the first mirror 1
1.

3つの中心波長h+ q+ rに応じた3つの波長域B
、G、Rを主に保持する複合光束が第1ミラー11に入
射すると、中心波長りで波長域Bの光束のみが反射され
、その他の領域の光束は透過する。
Three wavelength ranges B corresponding to three center wavelengths h+ q+ r
, G, and R are incident on the first mirror 11, only the light beam in the wavelength range B around the center wavelength is reflected, and the light beam in other regions is transmitted.

第1ミラーを透過した光束は2つの中心波長g。The light beam transmitted through the first mirror has two center wavelengths g.

γに応じた2つの波長域G、Rを主に保持しており、こ
れが第2ミラー12により中心波長rで波長域Rの光束
のみ反射され、その他の領域の光束、即ち中心波長gで
波長域Gの光束は透過する。この結果、光電変換部4の
受光面5には波長域Bである青の単色光が入射し、受光
面6には波長域Gである緑の単色光が入射し、受光面7
には波長域Rである赤の単色光が入射する。上述の状態
の基に、原稿は主走査方向(紙面に垂直方向)に長いス
リット光を受けると共に、副走査方向Xにもスリット光
により走査され、これにより、原稿情報は反射光として
順次第1.第2ミラー11.12を介し光電変換部4に
導かれ、青緑赤の3つの単色光の情報として別々に読取
り処理される。
It mainly maintains two wavelength ranges G and R corresponding to γ, and the second mirror 12 reflects only the light beam in the wavelength range R at the center wavelength r, and reflects the light beam in other regions, that is, the light beam at the center wavelength g. The light beam in area G is transmitted. As a result, monochromatic blue light in the wavelength range B enters the light receiving surface 5 of the photoelectric conversion unit 4, monochromatic green light in the wavelength range G enters the light receiving surface 6, and the light receiving surface 7
Red monochromatic light in the wavelength range R is incident on the . Based on the above-mentioned conditions, the document receives long slit light in the main scanning direction (perpendicular to the paper surface) and is also scanned by the slit light in the sub-scanning direction. .. The light is guided to the photoelectric conversion unit 4 via the second mirror 11, 12, and is read and processed separately as information on three monochromatic lights of blue, green, and red.

なお、カラー原稿情報を青緑赤の°3単色に正確に分解
する場合、3つの受光面5,6.7に向う光路が同様の
条件であるとすると、光源の生ずる3単色光の発光エネ
ルギがほぼ同一であることが必要であり、これにより各
受光面上に同一条件の基の各単色光が入射することにな
る。ところが、ここでは螢光対3の発光エネルギが緑〉
赤〉青になっており(第2図参照)、この状態を保持す
る螢光対が一般である。しかしながら同一媒体を通過す
る毎に各単色光の光量は同一に低下することより、ここ
では第1ミラー11と第2ミラー12とで色分解光学系
を形成し、発光エネルギの小さい青を第1ミラー11で
反射し、次に赤を第2ミラー12で反射し、最も発光エ
ネルギの大きい緑を2つのミラーの透過の後に取り出す
構成とし発光エネルギの強弱を補正している。即ち、こ
こで第1ミラー11の表面反射率をR1、ミラー素材の
内一部透過率を含む透過率をTI、同様に第2ミラー1
2をR2,T2.  光源光量をIOとすると、青の波
長域の単色光を受ける受光面5の光量InはIn−lo
 XR1、同様に受光面7の光量11.は工。−IOX
 T、 X R2、同様に受光面60光量■。は工。−
IOX T、 X ’r2である。一般に反射率は透過
率より高< (R+、>’h。
In addition, when color document information is accurately decomposed into three monochromatic colors of blue, green, and red, and assuming that the optical paths toward the three light receiving surfaces 5 and 6.7 are under similar conditions, the emission energy of the three monochromatic lights generated by the light source is It is necessary that the values are substantially the same, so that each monochromatic light under the same conditions is incident on each light receiving surface. However, here, the emission energy of fluorescent pair 3 is green.
Red>blue (see Figure 2), and fluorescent pairs that maintain this state are common. However, since the light intensity of each monochromatic light decreases the same each time it passes through the same medium, here, the first mirror 11 and the second mirror 12 form a color separation optical system, and blue, which has a small emission energy, is The configuration is such that the red light is reflected by the mirror 11, the red light is then reflected by the second mirror 12, and the green light, which has the highest light emitted energy, is taken out after passing through the two mirrors, and the intensity of the light emitted energy is corrected. That is, here, the surface reflectance of the first mirror 11 is R1, the transmittance including the internal partial transmittance of the mirror material is TI, and similarly the second mirror 1 is
2 to R2, T2. When the light source light intensity is IO, the light intensity In of the light receiving surface 5 that receives monochromatic light in the blue wavelength range is In-lo
XR1, similarly the amount of light on the light receiving surface 7 11. Hako. -IOX
T, X R2, similarly light receiving surface 60 light amount■. Hako. −
IOX T, X'r2. In general, reflectance is higher than transmittance < (R+, >'h.

R2〉T2)、結果として光量ロスは■。> bt )
’ I。
R2>T2), and as a result, the light amount loss is ■. >bt)
'I.

となる。この結果は螢光対3の発光エネルギの強弱、即
ち、緑〉赤〉青と打ち消し合うことになり、各受光面5
,6.7は、それぞれ、はぼ同一発光エネルギの基に発
せられたと同様の各単色光を受けることができる。
becomes. This result cancels out the strength of the emitted light energy of the fluorescent pair 3, that is, green>red>blue, and each light receiving surface 5
, 6.7 can each receive monochromatic light similar to that emitted based on approximately the same luminous energy.

上述の処において、色分解光学系として2つの第1.第
2ミラー1.1.’12を用いた場合を説明したが、こ
れに代え、第6・図に示すように結像レンズ10からの
結像光束の進路を2つのミラー13. 14を用い3分
割し、3つの光路上に3つのフィルタ15、16.17
を配置し、これらフィルタにより分光された各波長域の
光束をそれぞれの受光面5,6゜7に結像させ、原稿を
青緑赤の3つの単色光の情報として読取る構成としても
よい。なお、結像光束を3つの光束に分解する手段はこ
の他にもハーフミラ−を用い結像光束を3つの等光量の
光束に分けた周知の手段を利用できる。とれらの場合に
用いるフィルタ1.5.16.17の分光特性は、たと
えば、第2図に示した発光分布を示す螢光対3を用いた
とすると、第5図に示すような分光特性のものが採用さ
れ、使用される。即ち、フィルタ15は波長域Bの光を
主に透過でき、特に、螢光対の1つの中心波長りと同一
波長となる極大透過波長Fbを有するものが採用される
。フィルタ]6は波長域Gの光を主に透過でき、特に螢
光対の1つの中心波長qと同一波長となる極大透過波長
F、7を有するものが採用される。同じくフィルタ17
は波長域Rの光を主に透過でき、特に螢光灯の1つの中
心波長rと同一波長となる極太透過波長Frを有するも
のが採用される。
In the above, two first and second color separation optical systems are used as the color separation optical system. Second mirror 1.1. '12 has been described, but instead of this, as shown in FIG. 14 is used to divide it into three parts, and three filters 15, 16, and 17 are placed on the three optical paths.
It may be arranged such that the light beams in each wavelength range separated by these filters are imaged on the respective light receiving surfaces 5, 6.degree.7, and the document is read as information of three monochromatic lights of blue, green, and red. In addition to this, the means for dividing the imaging light beam into three light beams may be a well-known means in which a half mirror is used to divide the imaging light beam into three light beams of equal light quantity. The spectral characteristics of the filters 1, 5, 16, and 17 used in these cases are, for example, as shown in FIG. Things are adopted and used. That is, the filter 15 can mainly transmit light in the wavelength range B, and in particular, a filter having a maximum transmission wavelength Fb that is the same wavelength as the center wavelength of one of the fluorescent pairs is used. The filter] 6 can mainly transmit light in the wavelength range G, and in particular, a filter having a maximum transmission wavelength F, 7 which is the same wavelength as the center wavelength q of one of the fluorescent pairs is adopted. Similarly filter 17
can mainly transmit light in the wavelength range R, and in particular, one having a very thick transmission wavelength Fr that is the same wavelength as one center wavelength r of the fluorescent lamp is used.

」二連の各色分解方法tは3原色の色分解について説明
したがこの他の複数の所望の色の分解も同様に行なわれ
る。
Although each of the two series of color separation methods t has been described for color separation of three primary colors, separation of a plurality of other desired colors can be performed in the same manner.

(発明の効果) 上述のように、本発明方法である色分解方法によれば、
捷ず、光源である螢光灯の螢光体として、色分解する3
つの波長域に対応した波長域の発光エネルギを特に強化
できるものを選択し、採用する。これにより光源はそれ
が消費するエネルギとして不必要であるような波長域の
発光に無駄なエネルギの使用をせず、経済的である。更
に、螢光灯の3つの波長域の各々で最大発光エネルギの
発生を行なう3つの中心波長b+(1+ rの内、中心
波長りと第1ミラー11の極大反射波長に近似する極小
透過波長y1bまたはフィルタ15の極大透過波長Fh
とを同一波長に設定し、中心波長rと第2ミラー」2の
極太・反射波長に近似する極小透過波長Mrまたはフィ
ルタ17の極大透過波長Frとを同一波長に設定し、中
心波長gとフィルタ16の極大透過波長Fgとを同一波
長に設定した。これにより、原稿からの反射光である結
像光束が含む各波長域の光はこれとマツチングの取られ
たミラーやフィルタにより効率よく色分解され、ここで
の光量ロスは従来に比べ低減され、光源の発光エネルギ
を無駄なく利用できる。しかも、このような色分解方法
を読取装置に適用すれば光電変換部に達する光量が増し
、読取り速度のアップを計れる。
(Effect of the invention) As described above, according to the color separation method of the present invention,
It separates colors as a phosphor in a fluorescent lamp, which is a light source.
Select and employ a device that can particularly enhance the emission energy in the wavelength range corresponding to the two wavelength ranges. As a result, the light source does not waste energy in emitting light in unnecessary wavelength ranges, making it economical. Furthermore, among the three center wavelengths b+(1+r) that generate the maximum emission energy in each of the three wavelength ranges of the fluorescent lamp, the center wavelength and the minimum transmission wavelength y1b that approximate the maximum reflection wavelength of the first mirror 11 are selected. Or maximum transmission wavelength Fh of filter 15
are set to the same wavelength, the center wavelength r and the minimum transmission wavelength Mr that approximates the very thick reflection wavelength of the second mirror 2 or the maximum transmission wavelength Fr of the filter 17 are set to the same wavelength, and the center wavelength g and the filter 17 are set to the same wavelength. The maximum transmission wavelength Fg of 16 was set to be the same wavelength. As a result, the light in each wavelength range included in the imaging light flux, which is the reflected light from the original, is efficiently color-separated by matching mirrors and filters, and the loss of light amount here is reduced compared to conventional methods. The emitted energy of the light source can be used without wasting it. Moreover, if such a color separation method is applied to a reading device, the amount of light reaching the photoelectric conversion section will increase, and the reading speed can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の螢光灯の発光分布特性図、第2図は本発
明方法に用いる螢光灯の発光分布特性図、第3図は本発
明方法に用いるミラーの分光分布特性図、第4図は本発
明方法を適用した読取装置の概略構成図、第5図は第6
図に示しだフィルタの分光分布特性図、第6図は第4図
の読取装置に代えて用い一←」取装置の概略構成図をそ
れぞれ示している。 3 ・螢光灯、  1.1. 1.2  ミラー、  
15. ]’6゜17・フィルタ、B、 G、 R−波
長域、  62g、r中心波長、 Mh、 Mg、 M
’r  極小透過波長、Fh、 Fg、 Fr  極太
透過波長。 r次長〔?lπ〕 壺D 圀
Fig. 1 is a light emission distribution characteristic diagram of a conventional fluorescent lamp, Fig. 2 is a light emission distribution characteristic diagram of a fluorescent lamp used in the method of the present invention, and Figure 3 is a spectral distribution characteristic diagram of a mirror used in the method of the present invention. FIG. 4 is a schematic diagram of a reading device to which the method of the present invention is applied, and FIG.
The spectral distribution characteristics of the filter shown in the figure are shown, and FIG. 6 is a schematic diagram of a reading device used in place of the reading device shown in FIG. 4. 3 ・Fluorescent lamp, 1.1. 1.2 Mirror,
15. ]'6゜17・Filter, B, G, R-wavelength range, 62g, r center wavelength, Mh, Mg, M
'r Minimum transmission wavelength, Fh, Fg, Fr Extremely thick transmission wavelength. r Deputy Director [? lπ〕 Pot D 圀

Claims (1)

【特許請求の範囲】 ■、 光源により、原稿を照射し、この原稿からの反射
光をミラーまたはフィルタよりなる色分解光学系に導き
、原稿情報を複数の波長域別の光情報に分解する方法、
において、上記光源が保有する複数の波長域の各々より
、これら各波長域毎に極大発光エネルギの発生を行なう
中心波長をそれぞれ求め、これら各中心波長に、色分解
光学系が色分解処理する極大反射波長または極太透過波
長を一致させたことを特徴とする色分解方法。 2 」二記光源として螢光灯を用い、この螢光灯の複数
の波長域はその他の波長域よりその発光エネルギを強化
されることを特徴とする特許請求の範囲第1項記載の色
分解方法。
[Claims] (1) A method of illuminating a document with a light source and guiding light reflected from the document to a color separation optical system consisting of mirrors or filters to separate document information into optical information classified by a plurality of wavelength ranges. ,
Then, from each of the plurality of wavelength ranges possessed by the light source, the center wavelength at which the maximum luminous energy is generated is determined for each of these wavelength ranges, and the maximum light emission energy for which the color separation optical system performs color separation processing is determined at each of these center wavelengths. A color separation method characterized by matching reflection wavelengths or thick transmission wavelengths. 2. The color separation according to claim 1, characterized in that a fluorescent lamp is used as the light source, and the emission energy of a plurality of wavelength ranges of the fluorescent lamp is enhanced compared to other wavelength ranges. Method.
JP58026018A 1983-02-18 1983-02-18 Color separating method Pending JPS59152455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58026018A JPS59152455A (en) 1983-02-18 1983-02-18 Color separating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58026018A JPS59152455A (en) 1983-02-18 1983-02-18 Color separating method

Publications (1)

Publication Number Publication Date
JPS59152455A true JPS59152455A (en) 1984-08-31

Family

ID=12181953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58026018A Pending JPS59152455A (en) 1983-02-18 1983-02-18 Color separating method

Country Status (1)

Country Link
JP (1) JPS59152455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301069A (en) * 1987-05-30 1988-12-08 Fuji Xerox Co Ltd Method for exposing image of colored electrophotography
JPS63301068A (en) * 1987-05-30 1988-12-08 Fuji Xerox Co Ltd Method for exposing image of colored electrophotography

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301069A (en) * 1987-05-30 1988-12-08 Fuji Xerox Co Ltd Method for exposing image of colored electrophotography
JPS63301068A (en) * 1987-05-30 1988-12-08 Fuji Xerox Co Ltd Method for exposing image of colored electrophotography

Similar Documents

Publication Publication Date Title
US4670779A (en) Color-picture analyzing apparatus with red-purpose and green-purpose filters
US6593558B1 (en) Luminance-priority electronic color image sensor
US7001021B2 (en) Device for projecting a stereo color image
JPS60148269A (en) Color picture reader
JPH04502394A (en) Irradiation device for film scanning mechanism
JP4497671B2 (en) Image processing method of image reading apparatus
CN105824177A (en) Liquid crystal on silicon projection system
US20150146406A1 (en) Blue light mixing method and system using the same
JPS59152455A (en) Color separating method
JPS61131960A (en) Color picture reader
US6412951B1 (en) Optical image projector
JP2558477B2 (en) Mechanism for adjusting wavelength band of light flux in optical system
JPH054872B2 (en)
JP2001045225A (en) Image reader
JPS59188650A (en) Color balancing method in color scanner
JPS5830271A (en) Multicolor lighting device for original
JPS60236566A (en) Color original reader
JPS60107972A (en) Color picture reader
JPS605663A (en) Color picture reader
JPS6298965A (en) Original reader
JPS6327505Y2 (en)
JP2002335376A (en) Image reader
EP0500220A2 (en) Apparatus and method for separating transparencies
JPS6189764A (en) Picture reading scanner
JPH01190170A (en) Color picture reader