JPS59152444A - Photosensitive screen body - Google Patents

Photosensitive screen body

Info

Publication number
JPS59152444A
JPS59152444A JP2565183A JP2565183A JPS59152444A JP S59152444 A JPS59152444 A JP S59152444A JP 2565183 A JP2565183 A JP 2565183A JP 2565183 A JP2565183 A JP 2565183A JP S59152444 A JPS59152444 A JP S59152444A
Authority
JP
Japan
Prior art keywords
screen
layer
mesh
substrate
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2565183A
Other languages
Japanese (ja)
Inventor
Shigeto Tanaka
成人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2565183A priority Critical patent/JPS59152444A/en
Publication of JPS59152444A publication Critical patent/JPS59152444A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To improve the primary potential characteristics and retentivity of a photosensitive screen body for an electrophotographic system using a screen process by making the central part of the substrate of a screen mesh thinner than the peripheral part. CONSTITUTION:The central part of the substrate 1 of a screen mesh for manufacturing a photosensitive screen body for an electrophotographic system using a screen process is made thinner than the peripheral part by shaving, and a PC layer 2 and an InS layer 3 are coated on the substrate 1 to obtain the desired photosensitive screen body. Since the screen mesh 1 is concaved, each of the layers 2, 3 can be coated to a large thickness, and sticking to the side of the mesh 1 is hardly caused. Accordingly, the potential of a primary latent image is stabilized, the area of openings is increased to improve the efficiency of transfer of a secondary latent image, and many copies can be obtd. from one latent image without reducing the image density.

Description

【発明の詳細な説明】 真方式において使用するスクリーン感光体に関する。[Detailed description of the invention] This invention relates to a screen photoreceptor used in the true method.

スクリーン感光体は、通常の電子写真用感光体と原理的
には同じ構成にあるが、多数の微細な開口を有すること
において異なる。スクリーン感光体の最も一般的な使用
方法は、スクリーン感光体に静電像を形成し、この静電
像は1次静電像として記録媒体に2次静電像を形成する
ために利用される。形成された2次静電像は可視化され
る。例えば、導電層とその上に形成された光導電層とを
基本構成とするスクリーン感光体にあっては、例えば、
帯電し、次いで画像露光するプロセスによ91次静電像
が形成される。また、光導電層上に更に絶縁層を備えた
スクリーン感光体にあっては、例えば、1次゛電圧印加
、画像露光、画像露光と同時着しくは画像露光後の2次
電圧印加及び全面露光のプロセス、或いは、1次電圧印
加同時露光、2次電圧印加及び全面露光のプロセスによ
って1次静電像が形成される(なお、ここで2次電圧印
加とは、1次電圧印加で帯電された電荷を除電若しくは
除電した後逆極性に帯電させる工程である)。
A screen photoreceptor has the same structure in principle as a normal electrophotographic photoreceptor, but differs in that it has a large number of fine apertures. The most common method of using a screen photoreceptor is to form an electrostatic image on the screen photoreceptor, and this electrostatic image is used as a primary electrostatic image to form a secondary electrostatic image on a recording medium. . The formed secondary electrostatic image is visualized. For example, in a screen photoreceptor whose basic structure is a conductive layer and a photoconductive layer formed thereon, for example,
A 91st electrostatic image is formed by a process of charging and then imagewise exposure. In addition, in the case of a screen photoreceptor further provided with an insulating layer on the photoconductive layer, for example, primary voltage application, image exposure, simultaneous deposition with image exposure, secondary voltage application after image exposure, and whole surface exposure A primary electrostatic image is formed by the process of applying a primary voltage and simultaneous exposure, applying a secondary voltage, and exposing the entire surface (in this case, the application of a secondary voltage refers to the process of applying a primary voltage to the image). (This is a process of removing static electricity or charging it to the opposite polarity after removing the static charge.)

上記の1次静電像の形成ゾロセスは、その1例に過ぎず
、例えば、特公昭46−39318号公報,特公昭48
−5971号公報,特公昭48−5063号公報。
The above-mentioned method for forming a primary electrostatic image is just one example, for example, Japanese Patent Publication No. 46-39318,
-5971 publication, Japanese Patent Publication No. 48-5063.

特開昭48−59840及び特開昭51−341号公報
等に開示されている多くのプロセスによっても1次静電
像が形成される。1次静電像が形成されているスクリー
ン感光体は、記録媒体と対向して配置され、スクリーン
感光体を介して電圧を印加することによシ、記録媒体の
表面に2次静電像が形成される。電圧印加の際生ずるイ
オン流はスクリーン感光体に形成されている1次静電像
による電場によシ、スクリーン感光体の開口部を・ 1
次静電像によって選択的に通過して記録媒体面に達し、
そこに2次静電像を形成する。この2次静電像は電子写
真における通常の現像方法によp現像され、定着される
。2次静電像は、他の記録媒体に静電転写された後に現
像されてもよいし、現像された2次静電像を他の記録媒
体に転写してもよい。
A primary electrostatic image is also formed by many processes disclosed in Japanese Patent Application Laid-open No. 48-59840 and Japanese Patent Application Laid-open No. 51-341. A screen photoreceptor on which a primary electrostatic image is formed is placed facing the recording medium, and by applying a voltage through the screen photoreceptor, a secondary electrostatic image is formed on the surface of the recording medium. It is formed. The ion flow generated when voltage is applied is caused by the electric field caused by the primary electrostatic image formed on the screen photoreceptor, and the opening of the screen photoreceptor is
Then selectively passes through the electrostatic image to reach the recording medium surface,
A secondary electrostatic image is formed there. This secondary electrostatic image is developed and fixed by a normal developing method in electrophotography. The secondary electrostatic image may be electrostatically transferred to another recording medium and then developed, or the developed secondary electrostatic image may be transferred to another recording medium.

スクリーン感光体を用いる複写方法は、いくつかの特長
を備えている。例えば、スクリーン感光体は直接現像処
理を受けることがないので感光体の耐久性が良いこと、
また、表面に絶縁層を備えたスクリーン感光体にあって
は、1度形成された1次静電像を繰返し利用して多数枚
の複写を可能にする。これは、特に、高速複写の点で有
利である。
The copying method using a screen photoreceptor has several features. For example, screen photoreceptors do not undergo direct development processing, so the photoreceptor has good durability;
Further, in the case of a screen photoreceptor having an insulating layer on its surface, a primary electrostatic image formed once can be repeatedly used to make a large number of copies. This is especially advantageous in terms of high speed copying.

スクリーン感光体を構成する導電材料としては、ステン
レス、銅、アルミニウム、錫等の金属、ポリビニールピ
ロリドン、 In 、クロムあるいは錫等、の金属酸化
物などが挙げられる。これらの材料は、種々の形態をも
って導電層の形成に供される。例えば、金属の場合には
、金属粉末を樹脂溶液に分散させたものを充填すること
ができる。
Examples of the conductive material constituting the screen photoreceptor include metals such as stainless steel, copper, aluminum, and tin, and metal oxides such as polyvinyl pyrrolidone, In, chromium, and tin. These materials are used in various forms to form the conductive layer. For example, in the case of metal, metal powder dispersed in a resin solution can be filled.

まだ、導電性樹脂の場合には、その溶液を充填すること
ができる。
Still, in the case of conductive resin, it can be filled with its solution.

光導電材料としては、例えは、S e Se r Pb
ol及びS r Se y Te p As r Sb
 p pb等を有した合金や金属間化合物、ZnOr 
CdS e TiO2z等の無機光導電材料、ポリビニ
ルカルバゾール、アントラセン、フタロシアニン等の有
機光導電材料、及びこれらの有機、無機光導電材料に色
累増感やルイス酸増感をしたもの、さらに絶縁性バイン
ダーとの混合物を用い得る。なお絶縁性バインダーとし
ては、下記に述べる絶縁材料に用いるところの、有機絶
縁物やガラス等の無機物質を使用し得る。
Examples of photoconductive materials include S e Ser Pb
ol and S r Se y Te p As r Sb
Alloys and intermetallic compounds with p pb etc., ZnOr
Inorganic photoconductive materials such as CdS e TiO2z, organic photoconductive materials such as polyvinylcarbazole, anthracene, and phthalocyanine, and those obtained by color sensitization or Lewis acid sensitization of these organic and inorganic photoconductive materials, as well as insulating binders and A mixture of can be used. Note that as the insulating binder, inorganic substances such as organic insulators and glass, which are used for insulating materials described below, can be used.

なお上記手段等によシ形成される光導電層の厚さは、使
用する光導電材料の種類や特性にもよるが一般には、最
大厚が10〜80μ程度が適当である。次に絶縁材料と
しては、高抵抗で電荷保持特性が可能で、照射工程にお
ける照射に対し透明であることが要件となシ、必ずしも
耐摩耗性において優れている必要はない。上記要件を満
すところの材料としては、例えは、 アクリル樹脂、塩化ビニル樹脂、シリコーン物脂、フェ
ノール樹脂、弗素樹脂、スチレン樹脂。
Although the thickness of the photoconductive layer formed by the above-mentioned method depends on the type and characteristics of the photoconductive material used, it is generally appropriate that the maximum thickness is about 10 to 80 .mu.m. Next, the insulating material must have high resistance, have charge retention properties, be transparent to irradiation in the irradiation process, and does not necessarily need to have excellent wear resistance. Examples of materials that meet the above requirements include acrylic resin, vinyl chloride resin, silicone resin, phenol resin, fluororesin, and styrene resin.

酢酸ビニール樹脂。Vinyl acetate resin.

などの、溶剤に溶かして用いられる樹脂、エポキシ樹脂
、ウレタン樹脂、フェノール樹脂。
Resins that are dissolved in solvents such as epoxy resins, urethane resins, and phenolic resins.

アミノ他層、弗累樹脂、酢酸ビニル柾h6 s光硬化型
不飽和ポリエステル樹脂、アクリル枕!j+−pアルキ
ド樹脂。
Amino other layer, fluorocarbon resin, vinyl acetate h6s photocurable unsaturated polyester resin, acrylic pillow! j+-p alkyd resin.

などの硬化前は液状であシ、硬化剤、熱、光等によシ硬
化した後は固体になるような樹脂などの熱硬化型樹脂、
光硬化性樹脂などが挙げられる〇浴剤を含まない樹脂の
場合には、「乾燥」は「硬化」になる。なお、上記の樹
脂の分類は一般的なものであシ、硬化型樹脂を溶剤型樹
脂とじて用いても、あるいはその反対として用いてもよ
いものである。絶縁層は、その最大厚部において、m常
o、s〜10μの厚さに設定される。
Thermosetting resins such as resins that are liquid before curing, but become solid after curing by hardening agent, heat, light, etc.
Examples include photocurable resins. 〇In the case of resins that do not contain bath agents, "drying" becomes "curing." The above classification of resins is general, and curable resins may be used together with solvent-based resins, or vice versa. The insulating layer is set to have a thickness of 10 μm at its maximum thickness.

しかしスクリーン感光体を構成する導電材料のメツシュ
の大きさは使用可能範囲から150〜500メツシユに
限定され、またその線の1本の巾は10〜80μが適当
で開口部の広さは25〜150μとなシ、ゆえに開口率
は25〜80%の範囲となる。そして例えば400メツ
シユで行な。
However, the size of the mesh of the conductive material constituting the screen photoreceptor is limited to 150 to 500 meshes due to the usable range, and the appropriate width of each line is 10 to 80μ, and the width of the opening is 25 to 500. It is 150μ, so the aperture ratio is in the range of 25 to 80%. And, for example, do it with 400 meshes.

うとするとその線巾はおよそ20μとなシ開ロ部の広さ
は約45μ、開口率は約50%となる。この場合機械的
強度の点からと製造上の技術からメツシュの厚さは約1
5μが適当である。このメツシュの上に光導電層、例え
ばCd5−バインダー系と絶縁層シリコン樹脂を設ける
とする。
When the line width is approximately 20μ, the width of the opening portion is approximately 45μ, and the aperture ratio is approximately 50%. In this case, from the viewpoint of mechanical strength and manufacturing technology, the thickness of the mesh is approximately 1
5μ is appropriate. A photoconductive layer, for example a Cd5-binder system, and an insulating layer of silicone resin are provided on this mesh.

スクリーンプロセスの諸条件から光導電層の必要な厚み
は15〜20μであシ絶縁層は2〜3μである。ところ
がメツシュの断面形状が第1図のようにまっすぐな長方
形であるとスプレー法などでCdS層を塗布する場合に
あまシ厚く塗布できず、無理に多く塗布するとメツシー
の側面や裏面に付着して開口率を小さくし通過効率を悪
くしてしまうO 本発明は高メンシュ化(400〜500メツシユ)によ
って開口率と線巾が小さくな920層が厚く塗布できな
くなったことt解決し、合わせてPC層やInS層がメ
ツシュの側面に付着し特性を低下させることを防ぐこと
も可能としたものである。
In view of the conditions of the screen process, the required thickness of the photoconductive layer is 15 to 20 .mu.m, and the thickness of the insulating layer is 2 to 3 .mu.m. However, if the cross-sectional shape of the mesh is a straight rectangle as shown in Figure 1, it is difficult to apply the CdS layer thickly when applying it by spraying, and if you apply too much CdS, it will stick to the sides and back of the mesh. The present invention solves the problem that the 920 layer, which has a small aperture ratio and line width, cannot be coated thickly due to the high mesh size (400 to 500 mesh), and also improves the PC This also makes it possible to prevent the InS layer from adhering to the side surfaces of the mesh and deteriorating its properties.

即ち本発明(−A、スクリーンプロセスを用いるX子写
真方式で使用するスクリーン感光体において、スクリー
ンメツシーの゛基体の断面形状を中央部が周辺部よ91
0%〜50%板厚が簿いことを特徴とするスクリーン感
光体である。
That is, in the present invention (-A), in a screen photoreceptor used in an X-ray photography method using a screen process, the cross-sectional shape of the base of the screen mesh is such that the central part is 91° larger than the peripheral part.
This is a screen photoreceptor characterized by a plate thickness that is 0% to 50% smaller.

以下本発明を図面を用いて詳細に説明する。The present invention will be explained in detail below using the drawings.

第1図は従来のスクリーンメツシ=の断面を示す図、第
2図は本発明の実施例でメツシーの上■]を丸く削った
ものの断面を示す図、第3図は他の実施例でメツシュの
上面を直線状に削ったものの断面を示す図、第4図は従
来のスクリーンメツシュにpc層とInS層を塗布した
ときの断面を示す図、第5図は上面を丸く削ったメソシ
ーにPC層とInS層を塗布した本発明の実施例の断面
を示す図である。
Figure 1 is a diagram showing a cross section of a conventional screen mesh, Figure 2 is a diagram showing a cross section of an embodiment of the present invention in which the upper part of the mesh has been cut into a round shape, and Figure 3 is a diagram showing a cross section of a mesh in another embodiment. Figure 4 shows a cross section of a conventional screen mesh coated with a PC layer and an InS layer, and Figure 5 shows a mesh with a rounded upper surface. FIG. 2 is a cross-sectional view of an embodiment of the present invention coated with a PC layer and an InS layer.

一般にスクリーンメツシュは250〜400メツシユの
場合線巾C,は20〜25μであシ板厚d、ばl′5〜
20μである。このときの開口部81の長さは45〜7
0μであ910面積率は40〜50%となる。このメツ
シュにPC層を20μInS層を3μスプレー法等で塗
布すると側面にもpc層とInS層が付着するため所j
a部の長さbけe】 よシも狭くなり25μ稈肛とな9
10面積率も15チ程度になる。開口面積率を大きくお
さえてpc層とInS層を塗布するとPC層の厚さaが
少なくなってしまう。
Generally, when the screen mesh is 250 to 400 meshes, the line width C, is 20 to 25μ, and the plate thickness d, is 1'5~
It is 20μ. The length of the opening 81 at this time is 45 to 7
At 0μ, the 910 area ratio is 40 to 50%. When a PC layer and a 20 μm InS layer are applied to this mesh using a 3 μm spray method, the PC layer and InS layer will also adhere to the sides, so there will be some damage.
The length of part a is narrower and the anus is 25μ.9
The 10 area ratio will also be about 15 inches. If the PC layer and the InS layer are coated with a large opening area ratio, the thickness a of the PC layer will become small.

そこで本発明は第2図に示すようスクリーンメツシーの
中央部を丸く削シ、これに同じようにPC/e20μと
In8層3μを塗布するものである。
Therefore, in the present invention, as shown in FIG. 2, the central part of the screen mesh is cut into a round shape, and a layer of PC/e of 20 μm and a layer of In8 of 3 μm is similarly applied thereto.

この場合、メツシーの中央部がへこんでいるためメツシ
ュの側面にはpc層とIn3層が付着しない。
In this case, since the center of the mesh is concave, the PC layer and the In3 layer do not adhere to the sides of the mesh.

そのため開口部の長さbi  も広(30〜35μとな
って開口面積率は20〜28チとなる。このときPC層
の厚さa′は従来のメツシュのpc層の厚さaと同じで
あるが中央部のへこみf2によって側面へのはみ出しを
防いでいる。へこみの量f2はこの場合2〜7μ中央部
の厚みは端の厚みのlθ〜50チが適当でおシ、これよ
シ少なくては効果がなく、又多すぎてはメツシュの強度
が悪くなるのでこの範囲とする。
Therefore, the length bi of the opening is wide (30 to 35μ, and the opening area ratio is 20 to 28 inches.At this time, the thickness a' of the PC layer is the same as the thickness a of the PC layer of the conventional mesh. However, the indentation f2 in the center prevents it from protruding to the sides.The amount of indentation f2 is 2 to 7μ in this case.The thickness of the center is preferably lθ to 50cm, which is the thickness of the edges. If it is too much, it will not be effective, and if it is too much, the strength of the mesh will deteriorate, so it should be within this range.

前−記実施例のようにメツシュの上面を丸く窪ませたス
クリーンはPC層r InS層の塗布に効果があるが、
メツシュは特に丸く窪ませなくても例えば第3図のよう
に直線状に窪ませてもよく、また中央が窪んでいなくて
も両端が第6図のように高くなっていてもよい。
Although the screen having a circular depression on the top surface of the mesh as in the above embodiment is effective in coating the PC layer and the InS layer,
The mesh may not be particularly roundly recessed, but may be recessed linearly as shown in FIG. 3, and even if the center is not recessed, both ends may be raised as shown in FIG. 6.

以上説明したようにスクリーンメツシュの上面の中央部
を窪ませることによ920層、 InS層が厚く塗布で
きてしかも側面に付着子ることか少ないのでスクリーン
の電子写真特性を向上させる顕著な効果を秦するもので
ある。つ−1ppc層が厚くなるために一次潜像電位も
安定してとれるようになシ、開口面積率も大きいために
2次潜像の転写効率がよくなシその結果、同一潜像で画
像濃度が低下することなく多数枚コピーができる即ち、
リテンション特性も向上するのである。
As explained above, by recessing the center of the top surface of the screen mesh, the 920 layer and the InS layer can be applied thickly, and there is less adhesion on the sides, which has a remarkable effect on improving the electrophotographic properties of the screen. The Qin Dynasty. - Since the 1ppc layer is thicker, the potential of the primary latent image can be stably obtained, and because the aperture area ratio is large, the transfer efficiency of the secondary latent image is poor.As a result, the image density with the same latent image is reduced. A large number of copies can be made without degrading the performance, that is,
Retention characteristics are also improved.

実施例として下記のサンプルを作成した。The following sample was created as an example.

pc77とins層の塗布はスプレー法で行った。The pc77 and ins layers were applied by a spray method.

上記ラーンノルを電位特性と強度、耐久性を測定した。The electrical potential characteristics, strength, and durability of the above Lannor were measured.

◎:特に良い、Q:良い、△:やや劣る。×:悪い以上
の結果から基体中央は10%〜50チ薄くすることによ
シ良好な結果が得られ本発明の目的を達することが判っ
た。
◎: Particularly good, Q: Good, △: Slightly poor. ×: From the results above poor, it was found that by making the center of the substrate thinner by 10% to 50 inches, good results could be obtained and the object of the present invention could be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスクリーンメツシーの断面を示す図、第
2図は本発明の実施例でメツシーの上面を丸く窪ませた
ものの断面を示す図、第3図は他の実施例における上面
を直線状に窪1せたメツシーの断面を示す図、第4図は
従来のメソシーにpc層r InS層を塗布したときの
断面を示す図、第5図は本発明の実施例で上面を丸く窪
壕せたメソシ=にpc層とInS層を塗布したときの断
面を示す図、第6図は更に本発明の他の実施例で、メツ
シュの両端を高くしたものの断面を示す図である。 1“°゛基盤メツシュ)2・・・26層、3・・・In
S層。 第1図 二羽 b」嘔 第6図 ]Z羽 口
Fig. 1 is a cross-sectional view of a conventional screen mesh, Fig. 2 is a cross-sectional view of an embodiment of the present invention in which the upper surface of the mesh is roundly recessed, and Fig. 3 is a diagram showing the upper surface of another embodiment. Figure 4 shows a cross section of a conventional mesh with a PC layer and InS layer applied to it. Figure 5 shows an embodiment of the present invention with a rounded top surface. A diagram showing a cross section when a PC layer and an InS layer are applied to a recessed mesh, and FIG. 6 is a diagram showing a cross section of another embodiment of the present invention in which both ends of the mesh are raised. 1"°゛Base mesh) 2...26 layers, 3...In
S layer. Fig. 1 Two wings b" and Fig. 6] Z tuyer mouth

Claims (1)

【特許請求の範囲】[Claims] スクリーンプロセスを用いる電子写真方式で使用するス
クリーン感光体において、スクリーンメツシーの基体の
断面形状を中央部が周辺部より10係〜50%板厚が薄
いことを特徴とするスクリーン感光体。
A screen photoreceptor used in electrophotography using a screen process, wherein the cross-sectional shape of the screen substrate is 10 to 50% thinner in the center than in the peripheral area.
JP2565183A 1983-02-18 1983-02-18 Photosensitive screen body Pending JPS59152444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2565183A JPS59152444A (en) 1983-02-18 1983-02-18 Photosensitive screen body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2565183A JPS59152444A (en) 1983-02-18 1983-02-18 Photosensitive screen body

Publications (1)

Publication Number Publication Date
JPS59152444A true JPS59152444A (en) 1984-08-31

Family

ID=12171721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2565183A Pending JPS59152444A (en) 1983-02-18 1983-02-18 Photosensitive screen body

Country Status (1)

Country Link
JP (1) JPS59152444A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058873U (en) * 1991-07-18 1993-02-05 富士通株式会社 connector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058873U (en) * 1991-07-18 1993-02-05 富士通株式会社 connector

Similar Documents

Publication Publication Date Title
US3552848A (en) Xerographic plate
DE3043040A1 (en) METHOD FOR DEVELOPING ELECTRIC LATEN IMAGES, AND A DEVICE FOR CARRYING OUT THIS METHOD
US3818864A (en) Image developing apparatus
JPH02141761A (en) Electrophotographic device
US3685907A (en) Electrophotographic process
JPS59152444A (en) Photosensitive screen body
JPS6252297B2 (en)
US4197331A (en) Novel electrostatic imaging system
US3166420A (en) Simultaneous image formation
JP3245680B2 (en) Developer carrier and image forming method using the same
US3326709A (en) Electrostatic printing
JP2662677B2 (en) Developer carrier
JPS5872158A (en) Formation of two-color toner image forming method
US4149486A (en) Transfer development apparatus using self-spacing donor member
JP2968981B2 (en) Developer carrier
US3625681A (en) Method of liquid developing a photoconductive plate
JPH0616213B2 (en) Electrophotography method
JP3617140B2 (en) Organic photoreceptor for liquid development and method for producing the same
JPH07325475A (en) Developing device
JPS6325666B2 (en)
JPS6113256A (en) Electrophotographic sensitive body
JP3020099B2 (en) Image forming method
JPS6118970A (en) Recording method using photoconductive toner and counter electrode used for method
JPS60165659A (en) Electrophotographic method or the like recording method using photoconductive toner
JPS63143563A (en) Noncontact one-component developing method