JPS5915223B2 - Space diversity receiver - Google Patents

Space diversity receiver

Info

Publication number
JPS5915223B2
JPS5915223B2 JP54035643A JP3564379A JPS5915223B2 JP S5915223 B2 JPS5915223 B2 JP S5915223B2 JP 54035643 A JP54035643 A JP 54035643A JP 3564379 A JP3564379 A JP 3564379A JP S5915223 B2 JPS5915223 B2 JP S5915223B2
Authority
JP
Japan
Prior art keywords
signal
phase
circuit
waveform distortion
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54035643A
Other languages
Japanese (ja)
Other versions
JPS55128935A (en
Inventor
省三 小牧
泉 堀川
栄晴 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP54035643A priority Critical patent/JPS5915223B2/en
Priority to US06/113,591 priority patent/US4326294A/en
Priority to CA344,382A priority patent/CA1128134A/en
Priority to GB8003122A priority patent/GB2042307B/en
Priority to DE3003820A priority patent/DE3003820C2/en
Priority to IT67209/80A priority patent/IT1128754B/en
Priority to FR8003180A priority patent/FR2449372B1/en
Publication of JPS55128935A publication Critical patent/JPS55128935A/en
Priority to US06/365,345 priority patent/US4710975A/en
Publication of JPS5915223B2 publication Critical patent/JPS5915223B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/084Equal gain combining, only phase adjustments

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Description

【発明の詳細な説明】 本発明は無線通信回線で発生するフエージングの影響を
軽減するスペース・ダイバーシチ方式に関するものであ
り、主として周波数選択性フエーワ ジンクの発生する
伝送路を用いてデイジタノに信号を伝送する方式に用い
て効果の高い装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a space diversity method for reducing the effects of fading that occurs in wireless communication lines, and mainly uses a transmission path where frequency selective fading occurs to transmit signals to a digitano. The present invention relates to a device that is highly effective when used in a transmission method.

無線通信回線で発生するフエージングは、その頻度、深
さ、起こる時間などが受信空中線の設置場所によつて異
なる。この性質を利用して2基以・o 上の空中線を互
いにフエージングの相関性の少い位置に設置し、各空中
線で受信された信号を合成または切替えることによりフ
エージングを軽減する方式が、所謂スペース・ダイバー
シチ(SD)受信方式である。15従来、マイクロ、波
FM回線においてフエージングによる熱雑音の増加や瞬
断を軽減するため、2基のアンテナによる同相合成SD
受信方式が適用されている。
Fading that occurs in wireless communication lines varies in frequency, depth, time, etc. depending on where the receiving antenna is installed. Taking advantage of this property, there is a method that reduces fading by installing two or more antennas in positions where there is little correlation between fading and combining or switching the signals received by each antenna. This is a so-called space diversity (SD) reception method. 15 Conventionally, in-phase synthesis SD using two antennas has been used to reduce thermal noise increase and momentary interruption due to fading in micro and wave FM lines.
reception method is applied.

第1図にその基本構成を示す。第1図において、空中線
1で受信した信号e、90は位相変調器2で周波数fp
の位相変調(センシング)波形Aにより位相変調を受け
合成器3に入る。一方、空中線4で受信した信号e2は
移相器5を経てe’。となつて合成器3に加えられ、空
中線1からの信号e’1と合成される。25e’、とe
’。
Figure 1 shows its basic configuration. In FIG. 1, the signal e, 90 received by the antenna 1 is transmitted to the phase modulator 2 at a frequency fp.
The signal is phase modulated by the phase modulation (sensing) waveform A of , and enters the synthesizer 3. On the other hand, the signal e2 received by the antenna 4 passes through the phase shifter 5 and becomes e'. The signal e'1 from the antenna 1 is then added to the combiner 3 and combined with the signal e'1 from the antenna 1. 25e', and e
'.

に位相差がない場合は、合成器3の出力には第2図aの
A列(合成波のベクトル図)、及びB列(合成波の振幅
変化)のごとく位相変調周波数fpの第2高調波である
周波数2fd、H2)の振幅変化分のみが現われ、基本
波f 成分は零30となる。
If there is no phase difference between Only the amplitude change of the wave (frequency 2fd, H2) appears, and the fundamental wave f component becomes zero 30.

一方、e’、とe’2に位相差があると、2つの合成ベ
クトルは第2図b、cに示すように周波数fpの振幅変
化分が現われる。このfp(H2)の振幅変化分はe’
4とe’2の位相差にほぼ比例し、その極性はe’1が
e’2に対して進んでいるかある35いは遅れているか
によつて反転する。この振幅変調成分を伴つた信号は受
信器6に入り、その自動利得制御回路7によつて、fp
の変動成分が抽出される。同期検波回路8において、f
成分の極性が判ゝ p定され、F,成分が零となるよ
うに移相器5が制御され、e′1とE22が同相状態で
合成される。
On the other hand, if there is a phase difference between e' and e'2, the amplitude change of the frequency fp appears in the two composite vectors as shown in FIG. 2b and c. The amplitude change of this fp(H2) is e'
It is approximately proportional to the phase difference between e'2 and e'2, and its polarity is reversed depending on whether e'1 is leading, 35 or lagging behind e'2. The signal with this amplitude modulation component enters the receiver 6, and its automatic gain control circuit 7 controls fp
The fluctuation components of are extracted. In the synchronous detection circuit 8, f
The polarity of the component is determined, the phase shifter 5 is controlled so that the F component becomes zero, and e'1 and E22 are combined in the same phase.

9は位相差検出のために、位相変調器2を駆動するため
の正弦波発振器である。
9 is a sine wave oscillator for driving the phase modulator 2 for phase difference detection.

なお、第2図のように位相変調により位相の進み遅れを
判定する方法をセンシング法と呼ぶ。一般に周波数選択
性フエージングは通路差のある多重波が干渉することに
よつて発生するが、これ等の多重波のうち支配的なもの
は2波になることが知られている。
Note that the method of determining phase lead/lag by phase modulation as shown in FIG. 2 is called a sensing method. Frequency selective fading generally occurs due to interference between multiple waves with path differences, and it is known that two waves are dominant among these multiple waves.

第3図は2波の干渉によつて発生する周波数選択性フエ
ージングモデル(2波モデル)を示す。第4図は、2波
モデルを用いて計算した周波数選択性フエージングの1
例を示しており、単一受信時には大きな帯域内振幅偏差
、遅延偏差が発生することが分かる。このような伝送路
を用いてデイジタル信号を伝送した場合、受信信号の波
形がひずみ、符号誤りが発生する。また、第4図には従
来の同相合成時の帯域特性を同時に示しているが、帯域
特性の改善は完全ではないことが分かる。したがつて、
従来の制御法では信号レベルを最大にすることが可能で
はあるが、上記のような周波数特性すなわち波形ひずみ
の改善には不適当であつた。なお第3図における記号は
次のとおりである。
FIG. 3 shows a frequency selective fading model (two-wave model) that occurs due to the interference of two waves. Figure 4 shows the frequency-selective fading calculated using the two-wave model.
An example is shown, and it can be seen that large in-band amplitude deviations and delay deviations occur during single reception. When a digital signal is transmitted using such a transmission path, the waveform of the received signal is distorted and code errors occur. Furthermore, although FIG. 4 also shows the band characteristics during conventional in-phase synthesis, it can be seen that the improvement in the band characteristics is not perfect. Therefore,
Although conventional control methods can maximize the signal level, they are not suitable for improving the frequency characteristics, ie, waveform distortion, as described above. The symbols in FIG. 3 are as follows.

γ:主波と干渉波の振幅比τ,:空中線4における主波
と干渉波の遅延時間差τ2:空中線1における主波と干
渉波の遅延時間差ω:搬送波角周波数F1(I,F2(
C!)):単一受信の伝達関数X@):合成受信信号の
伝達関数φ:移相器5の移相推移量 第3図で、アンテナ4及び1の信号をF1(株)及びF
2(至)として、移相器5の出力(a)はF1((j)
Exp(Jφ)であり、合成器3の出力(b)はX(C
i)=F1(至)Exp(jφ)+F2(至)である。
γ: Amplitude ratio between the main wave and the interference wave τ,: Delay time difference between the main wave and the interference wave in the antenna 4 τ2: Delay time difference between the main wave and the interference wave in the antenna 1 ω: Carrier wave angular frequency F1 (I, F2 (
C! )): Transfer function of single reception
2 (to), the output (a) of the phase shifter 5 is F1((j)
Exp(Jφ), and the output (b) of synthesizer 3 is X(C
i)=F1 (to) Exp(jφ)+F2 (to).

又第4図AO)aは空中線1のベクトル図、第4図A(
7)bは空中線4のベクトル図、第4図Bは単独および
同相合成の帯域特性をしめし計算条件は次のとおりであ
る。
Also, Fig. 4 AO)a is a vector diagram of antenna 1, Fig. 4 A(
7) b shows the vector diagram of the antenna 4, and FIG. 4B shows the band characteristics for single and in-phase combination.The calculation conditions are as follows.

中心周波数 F。Center frequency F.

=5G1Iz通路差τ1=4nsec 振ら比γ=0.9 同 相条 件帯域中央(f=FO) 第4図Bで曲線aは空中線4によるF1(匈、曲線bは
空中線1によるF2(至)、曲線cは従来の技術による
同相合成の特性、をしめす。
= 5G1Iz path difference τ1 = 4nsec Swing ratio γ = 0.9 In-phase condition band center (f = FO) In Figure 4B, curve a is F1 (to) due to antenna 4, curve b is F2 (to) due to antenna 1 , curve c shows the characteristics of in-phase synthesis according to the prior art.

なお本発明は曲線dのごとく平坦な合成特性を得ようと
するものである。従来のこの制御法は、合成後のレベル
を最大とする制御であるため、狭帯域信号の信号対熱雑
音比の改善には有効である。
Note that the present invention aims to obtain flat composite characteristics as shown by curve d. Since this conventional control method maximizes the level after synthesis, it is effective in improving the signal-to-thermal noise ratio of narrowband signals.

しかし、第4図Bに示されたように、周波数選択性フエ
ージングによつて発生する帯域内レベル偏差を改善する
要求に対しては、従来の同相合成法では十分な効果を得
ることができないという欠点があつた。本発明は、周波
数選択性フエージング伝送路で発生する帯域内レベル偏
差、帯域内遅延偏差を減少できるスペースダイバーシチ
受信装置を実現することを目的とするものであり、移相
器の制御信号として伝送路で発生した波形ひずみを使用
することを特徴とする。
However, as shown in Figure 4B, the conventional in-phase synthesis method cannot achieve a sufficient effect in meeting the requirement to improve the in-band level deviation caused by frequency selective fading. There was a drawback. The present invention aims to realize a space diversity receiver that can reduce in-band level deviations and in-band delay deviations that occur in a frequency selective fading transmission path, and which is capable of reducing in-band level deviations and in-band delay deviations that occur in a frequency selective fading transmission path. It is characterized by using the waveform distortion generated in the road.

第5図は本発明の概念を示す図で、aおよびbは各空中
線受信信号のベクトル図を示しており、それぞれ主波お
よび干渉波から成つている。
FIG. 5 is a diagram showing the concept of the present invention, and a and b show vector diagrams of each antenna reception signal, each consisting of a main wave and an interference wave.

これ等を合成する際に空中線2の信号を例えば図の例の
ように移相量φ=130の移相して合成を行なえば同図
cのごとく干渉波が消去できる。この結果合成後の信号
には互いに遅延時間差のない主波1および主波2のみが
残り、帯域特性は平坦となる。(第4図b破線参照)し
たがつて、各空中線に受信される干渉波を互に逆相にな
るように合成を行なえば帯域内振幅特性および遅延特性
が平坦となり波形ひずみを除去できることが分かる。第
6図は本発明の実施例を示し、1および4は空中線、2
は位相変調器、3は合成器、5は移相器、6は受信器、
7は自動利得制御回路、8は同期検波回路、9はセンシ
ング発振器、10は検波回路、11は識別器、12は波
形ひずみ検出回路、13は切替回路、14は駆動回路を
示す。空中線1または4によつて受信された信号はそれ
ぞれ位相変調器2または移相器5に通し、合成器3を用
いて合成し、受信器6に加える。
When these are combined, if the signal of the antenna 2 is shifted by a phase shift amount φ=130 as shown in the example shown in the figure, the interference waves can be eliminated as shown in c of the figure. As a result, only the main wave 1 and the main wave 2 with no delay time difference remain in the combined signal, and the band characteristics become flat. (See the broken line in Figure 4b) Therefore, it can be seen that if the interference waves received by each antenna are combined so that they have opposite phases, the in-band amplitude characteristics and delay characteristics will become flat and waveform distortion can be removed. . FIG. 6 shows an embodiment of the present invention, in which 1 and 4 are antennas, 2
is a phase modulator, 3 is a combiner, 5 is a phase shifter, 6 is a receiver,
7 is an automatic gain control circuit, 8 is a synchronous detection circuit, 9 is a sensing oscillator, 10 is a detection circuit, 11 is a discriminator, 12 is a waveform distortion detection circuit, 13 is a switching circuit, and 14 is a drive circuit. The signals received by the antenna 1 or 4 are passed through a phase modulator 2 or a phase shifter 5, respectively, combined using a combiner 3, and applied to a receiver 6.

受信器6では、自動利得制御回路7を用いて振幅変動を
除去し、検波回路10および識別器11に加えデイジタ
ル信号を取り出す。一方、識別器入力信号aおよび出力
信号bを波形ひずみ検出回路12に加え、伝送路で発生
した波形ひずみに比例した信号cを得る。移相器5の移
相量と波形ひずみの関係は第7図aのようになり、波形
ひずみの最小になる安定点が2つ存在する。空中線1か
ら受信された信号は位相変調器2によつて位相変調され
ているため、周期的に移相量が変化している。この結果
、移相量が大きい場合、小さい場合に対し、第7図bに
示す波形ひずみ信号cが波形ひずみ検出回路の出力とし
【得られ、位相変調信号(センシング信号)と同相また
は逆相の信号が発生する。同期検波回路8ではセンシン
グ発振器9の出力信号Sと波形ひずみ信号cの同相、逆
相が判定され、移相器の駆動方向を定め、駆動回路14
によつて移相器を安定点の方に動かし、波形ひずみが最
小になる点に位相を安定させる。なおRは残留波形ひず
みを示し、又第7図aの矢印は移相器の匍脚方向を示す
。第7図に示した安定点のうち、安定点1は干渉波が消
去される場合、安定点2は主波が消去される場合を示し
ている。
In the receiver 6, an automatic gain control circuit 7 is used to remove amplitude fluctuations, and a digital signal is extracted in addition to a detection circuit 10 and a discriminator 11. On the other hand, the discriminator input signal a and output signal b are applied to a waveform distortion detection circuit 12 to obtain a signal c proportional to the waveform distortion generated in the transmission path. The relationship between the phase shift amount of the phase shifter 5 and the waveform distortion is as shown in FIG. 7a, and there are two stable points where the waveform distortion is minimum. Since the signal received from the antenna 1 is phase modulated by the phase modulator 2, the amount of phase shift changes periodically. As a result, the waveform distortion signal c shown in FIG. A signal is generated. The synchronous detection circuit 8 determines whether the output signal S of the sensing oscillator 9 and the waveform distortion signal c are in phase or out of phase, determines the drive direction of the phase shifter,
The phase shifter is moved toward the stable point by , and the phase is stabilized at the point where the waveform distortion is minimized. Note that R indicates residual waveform distortion, and the arrow in FIG. 7a indicates the direction of the armature of the phase shifter. Among the stable points shown in FIG. 7, stable point 1 indicates the case where the interference wave is eliminated, and stable point 2 indicates the case where the main wave is eliminated.

一般には干渉波のレベルは主波に対して小さいため、安
定点1に収束する方が安定点2に収束した場合より合成
後の信号レベルが大きくなる。このため安定点1に収束
することが望ましい。一方、図中の4印は合成信号レベ
ルが最大となる従来の同相合成制御を行なつた場合の安
定点Bを示しており、一般にこの点の移相量は安定点2
の移相量よりも安定点1の移相量に近い。したがつて、
制御を開始した直後に切替器13を自動利得制御回路7
に接続し、従来の同相合成制御を行ない、合成信号レベ
ルを最大にした後、切替器13を波形ひずみ検出回路1
2側に接続し、先に述べた制御を行なえば同相合成点に
近い安定点1に収束させることが可能となる。以上に述
べたような制御を行なえば、干渉波を逆位相にし、互い
に消去することが可能となるため、帯域内レベル偏差、
帯域内遅延偏差が減少し、良好なデイジタル伝送が可能
となる。第8図は波形ひずみ検出回路の実施例を示し、
15は遅延回路、16は引算回路、17は2値多植変換
回路、18は伝送路と等価な帯域特性を有する低域フイ
ルタ、19は標本回路、20は全波整流回路、21は低
域フイルタを示す。
Generally, the level of the interference wave is smaller than that of the main wave, so when the interference wave converges to stable point 1, the signal level after synthesis becomes higher than when it converges to stable point 2. Therefore, it is desirable to converge to stable point 1. On the other hand, the 4 marks in the figure indicate stable point B when performing conventional in-phase synthesis control where the combined signal level is maximum, and generally the phase shift amount at this point is stable point B.
is closer to the phase shift amount at stable point 1 than the phase shift amount at stable point 1. Therefore,
Immediately after starting control, switch 13 is switched to automatic gain control circuit 7.
After connecting the switch 13 to the waveform distortion detection circuit 1 and performing conventional in-phase synthesis control to maximize the synthesized signal level,
By connecting it to the 2 side and performing the control described above, it is possible to converge to the stable point 1 close to the in-phase synthesis point. By performing the control described above, it becomes possible to make the interference waves have opposite phases and cancel each other out, thereby reducing in-band level deviation,
In-band delay deviation is reduced, enabling good digital transmission. FIG. 8 shows an embodiment of the waveform distortion detection circuit,
15 is a delay circuit, 16 is a subtraction circuit, 17 is a binary conversion circuit, 18 is a low-pass filter having band characteristics equivalent to the transmission line, 19 is a sampling circuit, 20 is a full-wave rectifier circuit, and 21 is a low-pass filter. shows a range filter.

送信されたデイジタル信号が多植である場合、識別器1
1から得られた2値信号を2値一多植変換回路17およ
び低域フイルタ18に加え、送信した波形ひずみのない
信号と同一の信号を作り、引算回路16を用いて受信さ
れた波形ひずみのある信号との差信号すなわち波形ひず
み成分のみを取り出し、標本回路19に加え、標本時刻
に発生した波形ひずみのみを抽出し、全波整流回路20
に通し、波形ひずみの絶対値を得、低域フイルタ21で
高調波成分を除去し、所要の波形ひずみに相当する出力
cを得ることができる。なお、検波されたデイジタル信
号が2値の場合(たとえば4PSK)2値一多植変換回
路17は使用する必要がない。
If the transmitted digital signal is polygonal, the discriminator 1
The binary signal obtained from 1 is added to the binary one-to-multiple conversion circuit 17 and the low-pass filter 18 to produce a signal identical to the transmitted waveform distortion-free signal, and the received waveform is converted using the subtraction circuit 16. Only the difference signal from the distorted signal, that is, the waveform distortion component, is extracted and added to the sampling circuit 19. Only the waveform distortion occurring at the sampling time is extracted, and the full-wave rectifier circuit 20
The absolute value of the waveform distortion is obtained, and the harmonic components are removed by the low-pass filter 21 to obtain the output c corresponding to the desired waveform distortion. Note that when the detected digital signal is binary (for example, 4PSK), it is not necessary to use the binary one-to-multiple conversion circuit 17.

また、低域フイルタ18が伝送路(送信フイルタ、受信
フイルタを含む)と同一の周波数特性を有する場合は、
標本回路19は省略可能である。また、デイジタル信号
を中継する場合は、変調器を用いて2値一多植変換およ
び低域済波を行なうため、このような場合は第8図にお
ける17および18の回路は必要とはならない。第9図
は波形ひずみ検出回路の他の実施例を示し、22はパタ
ーン判定回路、23は比較回路を示す。
Furthermore, if the low-pass filter 18 has the same frequency characteristics as the transmission path (including the transmission filter and reception filter),
The sample circuit 19 can be omitted. Furthermore, when relaying digital signals, a modulator is used to perform binary one-to-multiple conversion and low frequency conversion, so the circuits 17 and 18 in FIG. 8 are not necessary in such a case. FIG. 9 shows another embodiment of the waveform distortion detection circuit, in which 22 represents a pattern determination circuit, and 23 represents a comparison circuit.

パターン判定回路22を用い、伝送された信号の中から
特定の符号系列(パターン)のみを判定し、それに対応
する波形ひずみを含んだ受信信号を標本回路19によつ
て抽出し、比較回路23に加え、あらかじめ記憶されて
いる波形ひずみを含まない信号波形との比較を行なえば
波形ひずみのみを抽出することが可能である。なお、第
6図は原理的構成を示す図であり、第6図の変形として
次のような構成が挙げられる。
The pattern determination circuit 22 is used to determine only a specific code sequence (pattern) from the transmitted signal, and the received signal containing the corresponding waveform distortion is extracted by the sampling circuit 19 and sent to the comparison circuit 23. In addition, by comparing the signal waveform with a previously stored signal waveform that does not include waveform distortion, it is possible to extract only the waveform distortion. Incidentally, FIG. 6 is a diagram showing the principle configuration, and the following configuration can be cited as a modification of FIG. 6.

4センシング用位相変調器2と移相器5は同一空中線径
路に縦続に接続しても効果は同じである。
Even if the four-sensing phase modulator 2 and the phase shifter 5 are connected in series to the same antenna path, the same effect can be obtained.

また移相器5が高速で駆動可能であれば位相推移と同時
に位相変調を同時にかけることができるので位相変調器
2の役割を移相器5で代行可能である。◎ 第6図では
高周波合成方式の例を示したが、空中線1および4の受
信信号を、各々中間周波帯に変換した後に合成する中間
周波合成方式においても第6図と同様の信号検出、処理
及び制御が可能である〇◎ 第6図に示した位相変調器
の最大位相偏移量を大きくする程、制御信号の信号対雑
音電力比を改善できる。
Furthermore, if the phase shifter 5 can be driven at high speed, phase modulation can be applied at the same time as the phase shift, so the role of the phase modulator 2 can be replaced by the phase shifter 5. ◎ Although Fig. 6 shows an example of the high frequency synthesis method, the same signal detection and processing as shown in Fig. 6 is also used in the intermediate frequency synthesis method in which the received signals of antennas 1 and 4 are converted to intermediate frequency bands and then synthesized. 〇◎ The larger the maximum phase shift amount of the phase modulator shown in FIG. 6, the more the signal-to-noise power ratio of the control signal can be improved.

しかし、過度の位相偏移は伝送信号に無用の位相変動及
び振幅変動をもたらし、伝送品質の劣化をきたす場合が
ある。このため、第10図に示すように制御情報検出の
ための径路を新たに付加してセンシングをかけることに
よつて主信号を劣化させずに制御信号の、信号対雑音電
力比を改善することが可能である。@ 上述の説明では
切替器13は、制御のはじまつた直後のみ自動利得制御
回路7側に切替えたが、合成器3の出力信号レベルを検
出し、それがあらかじめ設定された値以下になつた場合
には強制的に自動利得制御回路側に切替える構成とし、
受信信号レベルを所要の値以下に下げないような動作を
行なう実施例も可能である。第10図においては入力信
号の一部は分岐回路24,25によつて分岐し、一方は
デイジタル信号の復調用に使用され、他方は制御信号を
抽出するために使用する。
However, excessive phase shift may cause unnecessary phase fluctuations and amplitude fluctuations in the transmission signal, resulting in deterioration of transmission quality. Therefore, as shown in FIG. 10, by adding a new path for detecting control information and performing sensing, it is possible to improve the signal-to-noise power ratio of the control signal without deteriorating the main signal. is possible. @ In the above explanation, the switch 13 was switched to the automatic gain control circuit 7 side only immediately after control started, but when the output signal level of the synthesizer 3 is detected and it becomes below a preset value, Forcibly switch to the automatic gain control circuit side,
An embodiment is also possible in which the received signal level is not lowered below a required value. In FIG. 10, part of the input signal is branched by branch circuits 24 and 25, one of which is used for demodulating the digital signal, and the other used for extracting the control signal.

位相変調器2は主信号系の外にあるため必要に応じて深
い位相変調をかけることが可能となる。なお、本文の説
明においては周波数選択性フエージングの例として2波
モデルを用いて説明を加えたが、干渉波が多数存在した
場合においても波形ひずみが最小となるように制御する
本発明の構成を使用すれば、干渉波を最小にすることが
可能であり、同様の効果を得ることが可能である。
Since the phase modulator 2 is located outside the main signal system, it is possible to apply deep phase modulation as necessary. Although the main text has been explained using a two-wave model as an example of frequency-selective fading, the configuration of the present invention controls the waveform distortion to a minimum even when there are many interfering waves. By using , it is possible to minimize interference waves and obtain the same effect.

以上説明したように、本発明の構成によれば、フエージ
ングによる帯域内振幅及び遅延偏差の発生の原因である
干渉波成分を常に逆相状態で消去することができ、帯域
内レベル特性及び遅延特性を同時に平坦化することがで
きる〇マイクロ波帯を用いるデイジタル伝送方式等の広
帯域波形伝送では、フエージング時に発生する帯域内レ
ベル偏差、遅延偏差により符号間干渉が増大し、誤り率
特性が著しく劣化するため、本発明によるスペース・ダ
イバーシチ受信法を適用することにより、フエージング
時の帯域内偏差の発生を抑圧でき、フエージング伝搬路
における広帯域デイジタル信号の伝送品質の改善への寄
与は極めて大きい。
As explained above, according to the configuration of the present invention, it is possible to always eliminate the interference wave component that causes in-band amplitude and delay deviation due to fading in an opposite phase state, and improve the in-band level characteristics and delay. Characteristics can be flattened at the same time. In wideband waveform transmission such as digital transmission methods using microwave bands, intersymbol interference increases due to in-band level deviation and delay deviation that occur during fading, and error rate characteristics significantly deteriorate. Therefore, by applying the space diversity reception method according to the present invention, it is possible to suppress the occurrence of in-band deviations during fading, which greatly contributes to improving the transmission quality of wideband digital signals in fading propagation paths. .

この結果、中継距離の増加、伝送容量の増大、周波数の
有効利用化を図ることが可能となり、デイジタル信号伝
送コストを低減できる。
As a result, it becomes possible to increase relay distance, increase transmission capacity, and make effective use of frequencies, thereby reducing digital signal transmission costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の同相合成スペース・ダイバーシチ装置の
構成図、第2図はセンシングによる位相差検出の原理、
第3図は2波モデルの概念を説明する図、第4図は2波
モデルを用いて計算した周波数特性を示す図、第5図は
本発明の基本動作を説明する概念図、第6図は本発明に
よる装置の一実施例を示す構成図、第7図は制御回路の
動作を示す図、第8図及び第9図は第6図に示した波形
ひずみ検出回路12の構成の実施例を示す図、第10図
は制御のためのセンシング系を主信号伝送系とは別に設
置した場合の本発明の一実施例である。 1,4・・・・・・空中線、2・・・・・・位相変調器
、3,31・・・・・・合成器、5・・・・・・移相器
、6,61・・・・・・受信器、7,71・・・・・第
動利得制御回路、8・・・・・・同期検波回路、9・・
・・・・センシング発振器、10,101・・・・・・
検波回路、11・・・・・・識別器、12・・・・・・
波形ひずみ検出回路、13・・・・・一切替回路、14
・・・・・・駆動回路、15・・・・・・遅延回路、1
6・・・・・・引算回路、17・・・・・・2値一多植
変換回路、18・・・・・・低域フイルタ、19・・・
・・・標本回路、20・・・・・・全波整流回路、21
・・・・・・低域フイルタ、22・・・・・・パターン
判定回路、23・・・・・・比較回路、24,25・・
・・・・分岐回路。
Figure 1 is a configuration diagram of a conventional in-phase synthesis space diversity device, Figure 2 is the principle of phase difference detection by sensing,
Figure 3 is a diagram explaining the concept of the two-wave model, Figure 4 is a diagram showing frequency characteristics calculated using the two-wave model, Figure 5 is a conceptual diagram explaining the basic operation of the present invention, and Figure 6 7 is a diagram showing the operation of the control circuit, and FIGS. 8 and 9 are examples of the configuration of the waveform distortion detection circuit 12 shown in FIG. 6. FIG. 10 shows an embodiment of the present invention in which a sensing system for control is installed separately from the main signal transmission system. 1, 4... Antenna, 2... Phase modulator, 3, 31... Combiner, 5... Phase shifter, 6, 61... ... Receiver, 7, 71 ... th dynamic gain control circuit, 8 ... Synchronous detection circuit, 9 ...
...sensing oscillator, 10,101...
Detection circuit, 11... Discriminator, 12...
Waveform distortion detection circuit, 13... Complete switching circuit, 14
...Drive circuit, 15...Delay circuit, 1
6... Subtraction circuit, 17... Binary one-to-multiple conversion circuit, 18... Low-pass filter, 19...
... Sample circuit, 20 ... Full wave rectifier circuit, 21
...Low pass filter, 22...Pattern judgment circuit, 23...Comparison circuit, 24, 25...
...Branch circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 2系統のディジタル受信信号の少なくとも一方をセ
ンシング用低周波により位相変調し、両受信波の少なく
とも一方を移相器により処理した後、2系統を合成し、
合成波の中から前記低周波に相当する信号f_pを検出
し、該信号に従つて前記移相器を制御するごときスペー
ス・ダイバーシチ受信装置において、合成後のディジタ
ル信号から伝送路で発生したパルス波形のひずみ成分を
抽出する波形ひずみ検出回路をもうけ、合成波にふくま
れる前記信号f_pが最小となるごとく移相器の移相量
を制御した後、該波形ひずみ検出回路の出力にふくまれ
る前記低周波信号に相当する制御信号が最小となるごと
く前記移相器の移相量を制御する手段を有することを特
徴とするスペース・ダイバーシチ受信装置。
1 Phase-modulate at least one of the two systems of digital reception signals with a low frequency for sensing, process at least one of both reception waves with a phase shifter, and then combine the two systems,
In a space diversity receiving device that detects a signal f_p corresponding to the low frequency from among the composite waves and controls the phase shifter according to the signal, a pulse waveform generated in a transmission line from the composite digital signal. After controlling the phase shift amount of the phase shifter so that the signal f_p included in the composite wave is minimized, the signal f_p included in the output of the waveform distortion detection circuit is A space diversity receiving device comprising means for controlling the amount of phase shift of the phase shifter so that a control signal corresponding to a frequency signal is minimized.
JP54035643A 1979-02-13 1979-03-28 Space diversity receiver Expired JPS5915223B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP54035643A JPS5915223B2 (en) 1979-03-28 1979-03-28 Space diversity receiver
US06/113,591 US4326294A (en) 1979-02-13 1980-01-21 Space diversity reception system having compensation means of multipath effect
CA344,382A CA1128134A (en) 1979-02-13 1980-01-25 Space diversity reception system having compensation means of multipath effect
GB8003122A GB2042307B (en) 1979-02-13 1980-01-30 Multipath radio reception system
DE3003820A DE3003820C2 (en) 1979-02-13 1980-02-02 Space diversity receiving device
IT67209/80A IT1128754B (en) 1979-02-13 1980-02-12 SPACE DIVERSITY RECEIVER SYSTEM FOR RADIO SIGNALS
FR8003180A FR2449372B1 (en) 1979-02-13 1980-02-13 SPACE DIVERSITY RADIO TRANSMISSION SYSTEM WITH MULTI-PATH COMPENSATION MEANS
US06/365,345 US4710975A (en) 1979-02-13 1982-04-05 Space diversity reception system having compensation means of multipath effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54035643A JPS5915223B2 (en) 1979-03-28 1979-03-28 Space diversity receiver

Publications (2)

Publication Number Publication Date
JPS55128935A JPS55128935A (en) 1980-10-06
JPS5915223B2 true JPS5915223B2 (en) 1984-04-07

Family

ID=12447545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54035643A Expired JPS5915223B2 (en) 1979-02-13 1979-03-28 Space diversity receiver

Country Status (1)

Country Link
JP (1) JPS5915223B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512034A (en) * 1983-07-11 1985-04-16 At&T Bell Laboratories Technique for digital radio space diversity combining

Also Published As

Publication number Publication date
JPS55128935A (en) 1980-10-06

Similar Documents

Publication Publication Date Title
CA1235751A (en) One frequency repeater for a digital microwave radio system with cancellation of transmitter-to-receiver interference
US4710975A (en) Space diversity reception system having compensation means of multipath effect
JP3338747B2 (en) Interference wave canceller
CA1215430A (en) Cross-polarization distortion canceller for use in digital radio communication receiver
US4313211A (en) Single sideband receiver with pilot-based feed forward correction for motion-induced distortion
CN101940037A (en) Mobile station, mobile radio communication system, mobile radio communication method, and mobile radio communication program
US6741838B2 (en) Method and device for diversity transmission/reception
US8027411B2 (en) Wireless receiver
JPS5915223B2 (en) Space diversity receiver
JPH05291995A (en) Method for compensating interference for radio repeater station
US5592507A (en) Intermediate relay station of a digital microwave communication system using service channel for monitoring and controlling space and/or time diversity, heterodyne relay, phase control, frequency control, with phase shift keying modulation
JPH04150320A (en) Diversity receiver
JPH0396886A (en) Interference compensating circuit
JP3412605B2 (en) Diversity receiving apparatus and method
JPH0611125B2 (en) Same frequency relay system
JPS6119188B2 (en)
JPS5887928A (en) Space diversity system
JP2738353B2 (en) Spectrum suppression method and apparatus
JP2787905B2 (en) Transmission power control method
JPS61171239A (en) Synthesized diversity receiver
JPS6348018A (en) Fm interference suppressing circuit
JPH03139031A (en) Interference compensation system
JPH04220043A (en) Pi/4 shift qpsk demodulation system
JPH02246566A (en) Demodulator with fm wave interference compensating circuit
JPS62213441A (en) Interference compensation system between cross polarized waves