JPS5915136B2 - Highly adsorptive macroporous polymer - Google Patents

Highly adsorptive macroporous polymer

Info

Publication number
JPS5915136B2
JPS5915136B2 JP11017679A JP11017679A JPS5915136B2 JP S5915136 B2 JPS5915136 B2 JP S5915136B2 JP 11017679 A JP11017679 A JP 11017679A JP 11017679 A JP11017679 A JP 11017679A JP S5915136 B2 JPS5915136 B2 JP S5915136B2
Authority
JP
Japan
Prior art keywords
resin
reaction mixture
formaldehyde
melamine
internal diluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11017679A
Other languages
Japanese (ja)
Other versions
JPS5534299A (en
Inventor
リチヤ−ド・ウオン
ロバ−ト・ピ−・ザジヤツク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Shamrock Corp
Original Assignee
Diamond Shamrock Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Shamrock Corp filed Critical Diamond Shamrock Corp
Publication of JPS5534299A publication Critical patent/JPS5534299A/en
Publication of JPS5915136B2 publication Critical patent/JPS5915136B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08G12/30Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with substituted triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds

Description

【発明の詳細な説明】 本発明は、一般に、改良された吸着特性を有するメラミ
ンとホルムアルデヒドとを酸触媒および内部希釈剤の存
在で縮合して高い表面積を有する巨大多孔質(Macr
OpOrOus)の樹脂を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention generally relates to the condensation of melamine with improved adsorption properties and formaldehyde in the presence of an acid catalyst and an internal diluent to form a macroporous (Mac
OpOrOus).

アミノ含有物質をアルデヒドと反応させて反応性モノマ
ーを形成し、次いで縮重合して熱硬化性樹脂を生成する
ことはよく知られている。
It is well known to react amino-containing materials with aldehydes to form reactive monomers, which are then polycondensed to produce thermoset resins.

多分このタイプの最も普通の樹脂は、メラミンとホルム
アルデヒドとの縮合から生じたメラミン樹脂である。こ
れらの樹脂は成形用配合物、接着剤、湿潤紙力増強用樹
脂、および布はく処理用組成物として広く使用されてい
る。従来のアミノ樹脂は有用な収着容量を示さず、そし
て吸着剤として使用条件下で比較的不安定である。
Perhaps the most common resin of this type is melamine resin, which results from the condensation of melamine and formaldehyde. These resins are widely used as molding compounds, adhesives, wet strength resins, and fabric coating compositions. Conventional amino resins do not exhibit useful sorption capacity and are relatively unstable under the conditions of use as adsorbents.

したがつて、増大した機械的および浸透的安定性を有す
ると同時に流体の透過性を有する多巨大孔質のアミノ樹
脂を製造することは望ましい。このような透過性は液相
の樹脂を通る流れおよび拡散を促進し、そして吸収、吸
着、触媒などとしてその実用性を高める。ポリアミノ−
トリアジンとホルムアルデヒドとを約1:2〜1:7の
モル比で混和性有機ポロゲンおよび酸触媒の存在で反応
させることによつて、高度に吸着性の多巨大孔質のアミ
ノ樹脂を製造できることを発見した。
It is therefore desirable to produce multi-macroporous amino resins that have increased mechanical and osmotic stability while at the same time being permeable to fluids. Such permeability facilitates flow and diffusion through the resin in the liquid phase and enhances its utility as an absorption, adsorption, catalyst, etc. polyamino
It has been shown that highly adsorptive, multi-macroporous amino resins can be prepared by reacting triazine and formaldehyde in a molar ratio of about 1:2 to 1:7 in the presence of a miscible organic porogen and an acid catalyst. discovered.

反応混合物をかきまぜ、少なくとも約65℃まで、ゲル
化が起こるまで、加熱する。次いで樹脂を硬化して高い
多孔度と10イ/t以上の程度の表面積を有する材料を
生成する。本発明の方法によつて製造された樹脂は、従
来の非多孔質アミノ樹脂と比較して高い機械的および浸
透的安定性、および大きく改良された吸着特性を有する
The reaction mixture is stirred and heated to at least about 65° C. until gelation occurs. The resin is then cured to produce a material with high porosity and surface area on the order of 10 i/t or more. Resins produced by the method of the present invention have high mechanical and osmotic stability and greatly improved adsorption properties compared to conventional non-porous amino resins.

この多巨大孔質樹脂は、木材パルプ漂白排水のような溶
液から着色剤および有機物質を除去するための吸着容量
にきわめてすぐれることが明らかにされ、また酵素、触
媒、殺生物剤などの担体材料として有用である。本発明
により、メラミンをホルムアルデヒドと反応させて塩基
性樹脂を生成する。
This multi-macroporous resin has been shown to have exceptional adsorption capacity for the removal of colorants and organic materials from solutions such as wood pulp bleaching wastewater, and has also been shown to have excellent adsorption capacity for the removal of colorants and organic substances from solutions such as wood pulp bleaching wastewater, as well as for supporting enzymes, catalysts, biocides, etc. Useful as a material. According to the present invention, melamine is reacted with formaldehyde to produce a basic resin.

ホルムアルデヒドという語はホルムアルデヒド自体のみ
ならず、ホルムアルデヒドを生ずる化合物、たとえば、
パラホルムアルデヒドなどを包含する。ホルムアルデヒ
ドは一般にアルデヒド成分として、通常30〜45%の
水溶液の形態で使用するために好ましい。なぜなら樹脂
の製造は一般に水性媒体中で実施するからである。メラ
ミン対ホルムアルデヒドのモル比はとくに臨界的であり
、最終生成物に望む特性に依存して約2〜約7の範囲で
あることができる。
The term formaldehyde refers not only to formaldehyde itself, but also to compounds that produce formaldehyde, such as:
Includes paraformaldehyde, etc. Formaldehyde is generally preferred for use as the aldehyde component, usually in the form of a 30-45% aqueous solution. This is because the production of resins is generally carried out in an aqueous medium. The molar ratio of melamine to formaldehyde is particularly critical and can range from about 2 to about 7 depending on the desired properties of the final product.

メラミンとホルムアルデヒドとの好ましい系に対して、
メラミン1モル当り3〜5モルのホルムアルデヒドの比
は本発明の方法に最も適当であることがわかつた。メラ
ミンとホルムアルデヒドの縮合反応はPHによつてかな
り影響を受け、そして巨大多孔質の樹脂の沈殿のための
最適PH範囲は約2〜約5であることが決定された。
For the preferred system of melamine and formaldehyde,
A ratio of 3 to 5 moles of formaldehyde per mole of melamine has been found to be most suitable for the process of the invention. It has been determined that the condensation reaction of melamine and formaldehyde is significantly affected by pH, and the optimum pH range for macroporous resin precipitation is from about 2 to about 5.

結局、この方法における縮合を触媒する酸の使用は推奨
される。ギ酸、硫酸、塩酸および酢酸のような触媒を使
用できる。ギ酸はこの方法で最も効果的であることがわ
かり、好ましい触媒である。酸触媒の量はメラミン1モ
ル当り約0.01〜約0.10モルの範囲であることが
でき、0.04〜0.06モルは通常の濃度である。効
果的な混和性有機内部希釈剤の使用は、高い吸着性と大
きぃ表面積の望む特性を有する巨大多孔質の樹脂の製造
に必須である。内部希釈剤は反応成分のすべてと混和性
であるべきである。縮合中、内部希釈剤は望むスポンジ
様巨大多孔質構造を最終樹脂に導入するための作用をす
る。内部希釈剤は有機物質、たとえば、アルコール、チ
オール、アミド、エーテル、エステル、またはそれらの
混合物から選ぶことができる。本発明の方法のために好
ましいポロゲンは、n−プロパノールであり、これはこ
の方法における初期の反応成分のすべてと混和性であり
、そして標準重合温度よりも高く通常の乾燥温度におけ
る最後の除去を可能とするのに十分に低い適当な沸点(
97℃)を有する。内部希釈剤は反応混合物中に広い範
囲の濃度、通常全体積の約5〜約30%にわたつて存在
できる。16〜20容量%の範囲の濃度は、好ましいメ
ラミン−ホルムアルデヒド系について生成物樹脂に最適
な吸着性を生ずることがわかつた。
Finally, the use of acids to catalyze the condensation in this process is recommended. Catalysts such as formic acid, sulfuric acid, hydrochloric acid and acetic acid can be used. Formic acid has been found to be the most effective in this process and is the preferred catalyst. The amount of acid catalyst can range from about 0.01 to about 0.10 mole per mole of melamine, with 0.04 to 0.06 mole being common concentrations. The use of effective miscible organic internal diluents is essential to the production of macroporous resins with the desired properties of high adsorption and large surface area. The internal diluent should be miscible with all of the reaction components. During condensation, the internal diluent acts to introduce the desired sponge-like macroporous structure into the final resin. Internal diluents can be selected from organic substances such as alcohols, thiols, amides, ethers, esters, or mixtures thereof. The preferred porogen for the process of the invention is n-propanol, which is miscible with all of the initial reaction components in the process and which allows final removal at normal drying temperatures above standard polymerization temperatures. A suitable boiling point (low enough to allow
97°C). The internal diluent can be present in the reaction mixture over a wide range of concentrations, usually from about 5% to about 30% of the total volume. Concentrations in the range of 16-20% by volume have been found to yield optimal adsorption to the product resin for the preferred melamine-formaldehyde system.

この方法に有用な他の特定の内部希釈剤にはエトキシエ
タノールおよびジメチルホルムアミドが包含される。樹
脂の製造は水性媒体中で実施するので、初期反応混合物
中の固体の全量は臨界的でなく、通常全混合物の30〜
55重量%の範囲である。
Other specific internal diluents useful in this method include ethoxyethanol and dimethylformamide. Since the production of the resin is carried out in an aqueous medium, the total amount of solids in the initial reaction mixture is not critical and usually ranges from 30 to 30% of the total mixture.
It is in the range of 55% by weight.

約45%の固体含量は最も適当な樹脂を生成することが
わかり、これより少ない量はもろい樹脂を生成し、そし
て多い量は生成物の多孔度を減少することがわかつた。
モノマー、触媒、およびポロゲンをすべて適当な大きさ
の反応がま、通常のガラスまたはステンレス鋼製で、そ
して普通の加熱およびかきまぜ手段を備える、反応がま
に供給する。
A solids content of about 45% was found to produce the most suitable resin, lower amounts produced a brittle resin, and higher amounts were found to reduce the porosity of the product.
The monomers, catalyst, and porogen are all fed into a suitably sized reactor, made of conventional glass or stainless steel, and equipped with conventional heating and agitation means.

反応混合物のPHは初め2〜5の範囲である。反応混合
物は初期の反応成分の溶解が完結するまで徐々に加熱し
、かきまぜ、次いで重合が始まりかつゲルが形成するま
で加熱を続ける。この初めの反応は約65℃〜約95℃
、好ましくは約70℃〜約85℃までの範囲の温度にお
いて実施できる。初めの反応時間は使用する温度および
反応混合物中への熱入力速度に依存する。反応混合物の
温度増加の平均速度は、ゲル化まで0.5〜5℃7/分
の範囲に維持する。反応時間は初期温度の減少とともに
長くなる。75℃において反応は30分より長く続ける
The pH of the reaction mixture initially ranges from 2 to 5. The reaction mixture is gradually heated and stirred until dissolution of the initial reaction components is complete, then heating is continued until polymerization begins and a gel forms. This initial reaction is about 65°C to about 95°C.
, preferably at temperatures ranging from about 70<0>C to about 85<0>C. The initial reaction time depends on the temperature used and the rate of heat input into the reaction mixture. The average rate of temperature increase of the reaction mixture is maintained in the range 0.5-5°C 7/min until gelation. The reaction time increases with decreasing initial temperature. At 75°C the reaction continues for more than 30 minutes.

反応は加圧下に実施でき、圧力は前述の温度および時間
に影響を与えるであろう。初期の反応後、樹脂は周囲温
度〜100℃において約2〜20時間硬化する。
The reaction can be carried out under pressure, and pressure will affect the temperature and time mentioned above. After the initial reaction, the resin is cured for about 2-20 hours at ambient temperature to 100<0>C.

硬化時間は温度を前記範囲の上限に上げることによつて
短縮できる。硬化工程の間、縮合は完結し、橋かけの程
度は増加する。硬化の完結は樹脂の酸性加水分解に対す
る安定性を測定することによつて決定できる。次いで生
成物の樹脂を破砕し、粉砕して望む粒度にし、そして洗
浄する。樹脂はチヨウクの物理的外観を有する。特徴あ
る物質は、次式\ / N の繰返し単位をもち、10Tr1/f以上、約1000
イ/fまでの表面積(B.E.T.窒素多点分析により
測定)および0.2〜1.0m1/yの多孔度(ヘプタ
ン分率により測定)を有するであろう。
Cure time can be reduced by increasing the temperature to the upper end of the range. During the curing process, the condensation is completed and the degree of cross-linking increases. Completion of cure can be determined by measuring the stability of the resin to acidic hydrolysis. The product resin is then crushed, milled to the desired particle size, and washed. The resin has an ordinary physical appearance. The characteristic substance has a repeating unit of the following formula \ / N, and has a repeating unit of 10Tr1/f or more, about 1000
It will have a surface area of up to I/f (determined by B.E.T. nitrogen multipoint analysis) and a porosity (determined by heptane fraction) of 0.2 to 1.0 m1/y.

耐酸化性(H2O2の酸化により測定)は、5時間まで
の周囲温度において100%である。典型的な樹脂は、
製紙用パルプ工場の「E」排水についてコバルトクロロ
プラネートとして200kg/イ以上の吸着容量を有し
、これに比べて従来の非多孔質アミノ樹脂は50kg/
M3より低い吸着性を有する。最終樹脂はさらに既知の
方法により、たとえば、エピクロロヒドリンとの反応お
よび/またはアミン化により処理して、異なる特性を有
する物質を生成できる。本発明の樹脂は、流動性媒体か
ら有機物質を吸着により除去するために、とくに実用性
をもつ。
The oxidation resistance (measured by oxidation of H2O2) is 100% at ambient temperature for up to 5 hours. A typical resin is
It has an adsorption capacity of more than 200 kg/I as cobalt chloroplanate for "E" wastewater from a paper pulp mill, compared to 50 kg/I for conventional non-porous amino resins.
It has lower adsorption than M3. The final resin can be further processed by known methods, for example by reaction with epichlorohydrin and/or amination, to produce materials with different properties. The resins of the present invention have particular utility for the adsorption removal of organic substances from fluid media.

代表的な応用は、カルボニル基およびカルボキシル基な
らびにフエノール性ヒドロキシル基をもつ、縮合したグ
イアシルプロパン型構造の着色物体を含有する製紙用パ
ルプ工場の排水の処理である。このような物質ぱ、本発
明の多巨大孔質樹脂との接触により効果的に除去される
。また、樹脂は典型的な有機物質のための平均吸着容量
、すなわち、0.01モルのp−ニトロフエノール溶液
中で85〜90%の除去率および軍需工場の赤色排水中
で70%の除去率を示す。本発明を、次σ持定の実施例
によりさらに説明する。
A typical application is the treatment of paper pulp mill effluents containing colored bodies of condensed guiacylpropane type structure with carbonyl and carboxyl groups and phenolic hydroxyl groups. Such substances are effectively removed by contact with the multi-macroporous resin of the present invention. The resin also has an average adsorption capacity for typical organic substances, i.e. 85-90% removal rate in 0.01 molar p-nitrophenol solution and 70% removal rate in munitions factory red wastewater. shows. The present invention will be further explained by the following example for determining σ.

実施例1および参考例1(用途) 225fのメラミン、536m1のホルムアルデヒド(
37%、水溶液)、240m1のn−プロパノールおよ
び12m1の88%ギ酸を、かきまぜ機、冷却器および
温度計を有するジヤケツト付き樹脂ピン中で混合した。
Example 1 and Reference Example 1 (Application) 225f of melamine, 536ml of formaldehyde (
37%, aqueous solution), 240 ml of n-propanol and 12 ml of 88% formic acid were mixed in a jacketed resin pin with a stirrer, condenser and thermometer.

この混合物を、ゲル化が起こるまで(約20分後)かき
まぜかつ80゜Cに加熱した。冷却後、生成物をびんか
ら取り出し、粉砕し、水洗した。樹脂は不透明の固体で
あり、0.6m1/7の孔体積、160m”/7の表面
積およびコバルトクロロプラチネートとして280kg
/M2の製紙用パルプ工場排水に対する吸着容量を有し
た。実施例2および参考例2(用途) 765yのメラミン、1608mZのホルムアルデヒド
(37%)、720m1のn−プロパノールおよび36
1t1の88%ギ酸を実施例1におけるように合わせた
The mixture was stirred and heated to 80°C until gelation occurred (after about 20 minutes). After cooling, the product was removed from the bottle, ground and washed with water. The resin is an opaque solid with a pore volume of 0.6 m''/7, a surface area of 160 m''/7 and 280 kg as cobalt chloroplatinate.
/M2 of adsorption capacity for pulp mill wastewater. Example 2 and Reference Example 2 (Application) 765y melamine, 1608mZ formaldehyde (37%), 720ml n-propanol and 36
1 t1 of 88% formic acid was combined as in Example 1.

混合物をかきまぜ、ゲル化するまで(約30分)かきま
ぜかつ75℃に加熱した。加熱を80℃でさらに12時
間続けた。冷却、粉砕および洗浄後、生成物の樹脂は白
色不透明の固体であり、0.74m1/fの孔体積、1
80TrI/7の表面積ぉょびコバルトクロロプラチネ
ートとして360kg/M3の製紙用パルプ工場排水に
対する吸着容量を有する。実施例3および参考例3 (用途) 44.3yのメラミン、63.2yのパラホルムアルデ
ヒド、85mZの水、57w11f)n−プロパノール
および1.9m1の95%硫酸を実施例1におけるよう
に合わせtら混合物を、ゲル化が起こるまで、かきまぜ
かつ78℃に加熱した。
The mixture was stirred and heated to 75° C. until it gelled (approximately 30 minutes). Heating was continued at 80°C for an additional 12 hours. After cooling, milling and washing, the product resin is a white opaque solid with a pore volume of 0.74 m1/f, 1
It has a surface area of 80 TrI/7 and an adsorption capacity for paper mill wastewater of 360 kg/M3 as cobalt chloroplatinate. Example 3 and Reference Example 3 (Application) 44.3y of melamine, 63.2y of paraformaldehyde, 85mZ of water, 57w11f) n-propanol and 1.9ml of 95% sulfuric acid were combined as in Example 1. The mixture was stirred and heated to 78° C. until gelation occurred.

加熱を約80℃でさらに16時間続け、その後物質を冷
却し、粉砕し、そして洗浄した。次いで生成物を100
℃にさらに48時間加熱した。生ずる樹脂は白色不透明
の固体であり、0.35m1/iの孔体積およびコバル
トクロロブラチネートとして125W9/イの製紙用バ
ルブ工場排水に対する吸着容量を有した。実施例 4 63Vのメラミン、150.5m1のホルムアルデヒド
(37%)、25mZのエトキシエタノール、75m1
の水および3,35m1の88%のギ酸を実施例1にお
けるように混合した。
Heating was continued for an additional 16 hours at about 80°C, after which the material was cooled, ground, and washed. The product is then reduced to 100
Heated for a further 48 hours. The resulting resin was a white opaque solid with a pore volume of 0.35 m1/i and an adsorption capacity for paper valve mill effluent of 125 W9/i as cobalt chlorobratinate. Example 4 63V melamine, 150.5ml formaldehyde (37%), 25mZ ethoxyethanol, 75ml
of water and 3.35 ml of 88% formic acid were mixed as in Example 1.

この混合物を、ゲ※ぐル化が起こるまで、かきまぜかつ
80℃に加熱した。加熱を80℃でさらに23時間続け
た。物質を冷却し、粉砕し、洗浄した。樹脂は不透明の
固体であり、213イ/7の表面積を有した。実施例
565yのメラミン、150.5m1のホルムアルデヒ
ド(37%)、25mZのジメチルホルムアミド、75
WL1の水、および3.35m1の88%ギ酸を、実施
例4におけるように混合し、反応させた。
The mixture was stirred and heated to 80° C. until gelling occurred. Heating was continued at 80°C for an additional 23 hours. The material was cooled, ground and washed. The resin was an opaque solid and had a surface area of 213 I/7. Example
565y melamine, 150.5ml formaldehyde (37%), 25mZ dimethylformamide, 75
WL1 of water and 3.35 ml of 88% formic acid were mixed and reacted as in Example 4.

樹脂の生成物は不透明の固体であり、211TrI/f
の表面積を有した。実施例6および参考例4 (用途) 本発明の巨大多孔質樹脂を大規模で、1901の容量を
もつ重合びんを用いて製造した。
The product of the resin is an opaque solid, 211TrI/f
It had a surface area of Example 6 and Reference Example 4 (Application) The giant porous resin of the present invention was produced on a large scale using a polymerization bottle with a capacity of 1901.

反応成分をかきまぜながら次の順序、すなわち、104
.91のホルムアルデヒド(37%、水溶液、メタノー
ルで抑制)、44.1yのメラミン、471のn一プロ
パノール、および2.351の88%ギ酸、の順序で加
えた。ぴんの内容物を、かきまぜながら、徐々に加熱し
た。混合物が約65℃に到達したときかきまぜ機を除去
し、そしてゲル化が起こるまで加熱を続けた。次いでお
だやかな発熱により、温度は80−85℃に上昇した。
次いでびんのジヤケツト温度を約85℃に上昇し、この
温度を4時間維持した。次いで樹脂生成物を冷却し、粉
砕し、洗浄した。いくつかのバツチについての反応条件
と生成物の特性を、下表に示す。実施例1で製造した樹
脂を、タンニン含有表面水の脱色に使用した。
While stirring the reaction components, proceed in the following order: 104
.. 91 of formaldehyde (37%, aqueous, suppressed with methanol), 44.1 of melamine, 471 of n-propanol, and 2.351 of 88% formic acid were added in this order. The contents of the pin were gradually heated while stirring. The stirrer was removed when the mixture reached approximately 65°C and heating continued until gelation occurred. A mild exotherm then caused the temperature to rise to 80-85°C.
The bottle jacket temperature was then increased to approximately 85°C and maintained at this temperature for 4 hours. The resin product was then cooled, ground and washed. The reaction conditions and product properties for several batches are shown in the table below. The resin produced in Example 1 was used to decolorize tannin-containing surface water.

600APHA表面水の流れを、直径1インチ(2.5
4(V7!)のカラム中の50m1の体積の樹脂中に1
1m1/分の速度で通した。
600APHA surface water flow to 1 inch (2.5
1 in a volume of 50 ml of resin in a column of 4 (V7!)
It passed at a speed of 1 ml/min.

合計12.51の水が平均25APHA単位に脱色され
、最大の色は75APHA単位であつた。参考例 6(
用途) 実施例1におけるようにして製造した樹脂を、「E」排
水と呼ばれる、漂白した硫酸塩製紙用パルブ工場液のN
aOH抽出液の脱色に使用した。
A total of 12.51 waters were bleached to an average of 25 APHA units, with maximum color being 75 APHA units. Reference example 6 (
Application) The resin produced as in Example 1 was added to the N of bleached sulfate paper pulp mill liquor, referred to as "E" effluent.
It was used to decolorize the aOH extract.

5355APHA単位の合計の色を有する力性抽出液を
、PH4に調整した。
The strength extract with a total color of 5355 APHA units was adjusted to PH4.

次いでこの溶液を2礪の直径のガラスカラム中の50m
jの樹脂に5m1/分(6ベツドの体積/時)の速度で
通した。カラムの流出液をアリコートずつ集め、PHを
7.6に調整し、そして供給溶液から調製した標準と比
較して、除去された着色物質の百分率を決定した。実験
は色の除去率が70%に低下した任意の点において停止
した。本発明の樹脂に対して、これは、コバルトクロロ
プラチネートとして表わして、350kg/M3の合計
の着色物質の処理後、生じた。3種類の他の商業的に入
手できる吸着剤を同じ方法で試験し、そして結果を下表
に記載する。
This solution was then poured into a 50 m glass column with a diameter of 2 cm.
of resin at a rate of 5 ml/min (6 bed volumes/hour). Column effluent was collected in aliquots, the pH was adjusted to 7.6, and compared to standards prepared from the feed solution to determine the percentage of colored material removed. The experiment was stopped at any point where the color removal rate decreased to 70%. For the resin of the invention, this resulted after treatment of a total of 350 kg/M3 of colored substances, expressed as cobalt chloroplatinate. Three other commercially available adsorbents were tested in the same manner and the results are reported in the table below.

Claims (1)

【特許請求の範囲】 1 メラミンおよびホルムアルデヒドとを1:2〜1:
7のモル比で酸性触媒および少なくとも1種の混和性有
機内部稀釈剤の存在で反応させ、ゲル化が起こるまで加
熱し、次いで生ずる樹脂を硬化することを特徴とする、
下式の繰返し単位をもち、ヘプタン分率により測定して
0.2ml/g以上の多孔度およびB.E.T.窒素多
点分析により測定して10m^2/g以上の表面積を有
する、高度に吸着性の巨大多孔質樹脂の製造法。 ▲数式、化学式、表等があります▼ 2 混和性有機内部希釈剤の比率は全反応混合物の5〜
30容量%である前記特許請求の範囲第1項記載の方法
。 3 反応混合物をゲル化前に65〜95℃の範囲に加熱
する前記特許請求の範囲第1項記載の方法。 4 反応混合物をゲル化前に0.5℃〜5℃/分の温度
上昇の平均速度で加熱する前記特許請求の範囲第1項記
載の方法。 5 反応は70〜85℃の温度において実施し、そして
生ずる樹脂を周囲温度〜100℃において硬化する前記
特許請求の範囲第1項記載の方法。 6 反応をゲル化前に10〜100分間維持し、そして
生ずる樹脂を2〜20時間硬化する前記特許請求の範囲
第5項記載の方法。 7 反応混合物の固体含量は全混合物の30〜55重量
%である特許請求の範囲第1項記載の方法。 8 内部希釈剤はn−プロパノールである前記特許請求
の範囲第1項記載の方法。 9 内部希釈剤はエトキシエタノールである前記特許請
求の範囲第1項記載の方法。 10 内部希釈剤はジメチルホルムアミドである前記特
許請求の範囲第1項記載の方法。 11 触媒はギ酸である前記特許請求の範囲第1項記載
の方法。 12 メラミンとホルムアルデヒドとを1:3〜1:5
のモル比で水溶液中でギ酸触媒およびn−プロパノール
内部希釈剤の存在下に反応させることからなり、反応混
合物をゲル化前に75〜85℃の温度に加熱し、次いで
生成物を少なくとも2時間硬化して、0.2ml/g以
上の多孔度と1.00m^2/gより大きい表面積とを
有する樹脂を生成することを特徴とする前記特許請求の
範囲第1項に記載の方法。
[Claims] 1. Melamine and formaldehyde in a ratio of 1:2 to 1:
reacting in the presence of an acidic catalyst and at least one miscible organic internal diluent in a molar ratio of 7 to 7, heating until gelation occurs and then curing the resulting resin,
It has a repeating unit of the following formula, a porosity of 0.2 ml/g or more as measured by heptane fraction, and a B. E. T. A method for producing a highly adsorptive, macroporous resin having a surface area of 10 m^2/g or more as measured by nitrogen multipoint analysis. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ 2. The proportion of miscible organic internal diluent is 5 to 5 of the total reaction mixture.
30% by volume. 3. A method according to claim 1, wherein the reaction mixture is heated to a temperature in the range of 65-95°C before gelling. 4. The method of claim 1, wherein the reaction mixture is heated before gelling at an average rate of temperature increase of 0.5°C to 5°C/min. 5. The method of claim 1, wherein the reaction is carried out at a temperature of 70-85°C and the resulting resin is cured at ambient temperature to 100°C. 6. The method of claim 5, wherein the reaction is maintained for 10 to 100 minutes before gelling and the resulting resin is cured for 2 to 20 hours. 7. A process according to claim 1, wherein the solids content of the reaction mixture is between 30 and 55% by weight of the total mixture. 8. The method of claim 1, wherein the internal diluent is n-propanol. 9. The method of claim 1, wherein the internal diluent is ethoxyethanol. 10. The method of claim 1, wherein the internal diluent is dimethylformamide. 11. The method of claim 1, wherein the catalyst is formic acid. 12 Melamine and formaldehyde in a ratio of 1:3 to 1:5
in the presence of a formic acid catalyst and an n-propanol internal diluent in an aqueous solution in a molar ratio of A method according to claim 1, characterized in that it is cured to produce a resin having a porosity of greater than 0.2 ml/g and a surface area greater than 1.00 m^2/g.
JP11017679A 1978-08-31 1979-08-29 Highly adsorptive macroporous polymer Expired JPS5915136B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US93835478A 1978-08-31 1978-08-31
US000000938354 1978-08-31

Publications (2)

Publication Number Publication Date
JPS5534299A JPS5534299A (en) 1980-03-10
JPS5915136B2 true JPS5915136B2 (en) 1984-04-07

Family

ID=25471295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11017679A Expired JPS5915136B2 (en) 1978-08-31 1979-08-29 Highly adsorptive macroporous polymer

Country Status (4)

Country Link
JP (1) JPS5915136B2 (en)
CA (1) CA1137458A (en)
FR (1) FR2434827A1 (en)
IN (1) IN153404B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI832553A (en) * 1983-07-19 1985-01-14 Gosudarstvenny Nauchno- Issledovatelsky I Proektny Institut/Po Obogascheniju Rud Tsvetnykh Metallov Çkazmekhanobrç POLYMER MATERIAL FOR PHYSICAL AND CHEMICAL PROCESSING OF OIL FOR FARING FRAMSTATION OF MATERIALS.
JPS60173334A (en) * 1984-02-15 1985-09-06 Honda Motor Co Ltd Air-fuel ratio control device of internal-combustion engine
US5286390A (en) * 1992-09-30 1994-02-15 Calgon Corporation Method for treating deink wastes using melamine aldehyde-type polymers
GB0019417D0 (en) * 2000-08-09 2000-09-27 Mat & Separations Tech Int Ltd Mesoporous carbons
US8591855B2 (en) 2000-08-09 2013-11-26 British American Tobacco (Investments) Limited Porous carbons
DE102005059303A1 (en) * 2005-12-09 2007-06-21 Basf Ag Nanoporous polymer foams from polycondensation reactive resins
SG11201402706RA (en) * 2011-11-29 2015-02-27 Agency Science Tech & Res Melamine Aldehyde Polymers
JP7324444B2 (en) * 2019-08-23 2023-08-10 国立大学法人京都大学 Organic porous material, manufacturing method thereof, adsorbent and organic porous column
US11618004B1 (en) 2020-06-25 2023-04-04 King Saud University Melamine-formaldehyde derived porous carbon adsorbent

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2327968A (en) * 1941-01-28 1943-08-24 American Cyanamid Co Porous xerogel
US4007142A (en) * 1974-04-24 1977-02-08 Balm Paints Limited Amine resin and process

Also Published As

Publication number Publication date
FR2434827B1 (en) 1984-01-27
CA1137458A (en) 1982-12-14
FR2434827A1 (en) 1980-03-28
IN153404B (en) 1984-07-14
JPS5534299A (en) 1980-03-10

Similar Documents

Publication Publication Date Title
CN100575368C (en) The manufacture method of the manufacture method of polyvinyl acetal resin, polyvinyl butyral resin and esterified polyvinyl alcohol resin
US4558080A (en) Stable tannin based polymer compound
US4307201A (en) Highly adsorptive macroporous polymers
JPS5915136B2 (en) Highly adsorptive macroporous polymer
JPS6317904A (en) Production of crosslinked porous polyvinyl alcohol particle
US4081401A (en) Process for producing adsorbent
US2412855A (en) Process of sorbing ions
GB2192005A (en) Process for preparing urea-formaldehyde resins
AU604930B2 (en) Process for the preparation of urea-formaldehyde resins
US2228160A (en) Process for exchanging cations
JPH051108A (en) Production of polyvinyl acetal resin
US3972939A (en) Process for the preparation of polyethylene-polyamine salts of low viscosity
US2373548A (en) Process of removing cations from liquid media
US2862908A (en) Polyvinyl acetals
JP3022657B2 (en) Method for producing polyvinyl acetal resin
CN101367905B (en) Process for preparing butanol etherification benzene substituted melamine formaldehyde resin
JP3131692B2 (en) Urea resin manufacturing method
US2582098A (en) Phenol-aldehyde-amine anion exchange resin
US2915503A (en) Process for the manufacture of cast resins of urea-formaldehyde and the like, and resins so produced
US3749668A (en) Water purification with amine oxide resins
CN109293861A (en) Cationic adsorbs resin and preparation method thereof
CN112159495A (en) Gel type weak acid acrylic cation exchange resin
JP4231155B2 (en) Method for producing polyvinyl acetal resin
RU2081886C1 (en) Method of synthesis of carbamidoformaldehyde resin
CN107827902A (en) The preparation method of the spiroglycol