JPS59151051A - Biocatalyst electrode - Google Patents

Biocatalyst electrode

Info

Publication number
JPS59151051A
JPS59151051A JP58025803A JP2580383A JPS59151051A JP S59151051 A JPS59151051 A JP S59151051A JP 58025803 A JP58025803 A JP 58025803A JP 2580383 A JP2580383 A JP 2580383A JP S59151051 A JPS59151051 A JP S59151051A
Authority
JP
Japan
Prior art keywords
biocatalyst
electrode
layer
composite plating
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58025803A
Other languages
Japanese (ja)
Inventor
Yukihiro Kondo
近藤 行広
Akiyoshi Miyawaki
宮脇 明宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP58025803A priority Critical patent/JPS59151051A/en
Publication of JPS59151051A publication Critical patent/JPS59151051A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes

Abstract

PURPOSE:To increase the surface area of a biocatalyst electrode and to improve considerably the sensitivity in measurement by forming a composite plating layer consisting of a metallic layer dispersed therein with a granular material on the surface of a base metallic plate, forming a platinum metallic electrode on said layer and forming a biocatalyst film on the metallic layer. CONSTITUTION:A base body 1 of a conductive material such as copper or the like is electroplated in a plating bath incorporated therein with an insoluble and conductive granular material such as WC or the like together with an electrolyte of Ni, Au, Cu or the like alone or Pd-Ni, etc. to form a composite plating layer 2 dispersed therein with a granular material 2b in a metallic layer 2a. A metallic layer 3 is formed on the layer 2 by vapor deposition or plating of a platinum group metal. A biocatalyst film 5 of enzyme, etc. is then formed on the layer 3. The surface area of the film 5 is increased considerably by incorporating the granular material in the layer 2. The biocatalyst electrode having the sensitivity several times higher than that in the case of the smooth film 5 is thus obtd.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、基質濃度の検出等に用いられる生体触媒電
極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a biocatalytic electrode used for detecting substrate concentration, etc.

〔背景技術〕[Background technology]

近年、省資源、省エネルギーが工業的製造遍程(プロセ
ス)の上において大きな課題の一つとなっている。この
課題の解決法の一つとして、元来、生体内部において非
常に穏やかに、しかも迅速に化学反応の触媒作用を行な
う微生物や酵素等の生体触媒を工業的に利用する技術が
確立されつつある。生体触媒は常温常圧という穏やかな
条件で反応を促進させるため、従来の化学反応工程(プ
ロセス)と比較してエネルギー的に有利であるばかりで
なく、汚染問題や騒音問題を発生して外界に悪影響を及
ぼすことも極めて少ない。加えて、生体触媒を用いるよ
うにすると、従来多段の反応工程が必要であったものが
、単一の反応工程ですむようになることもある。しかし
、微生物や酵素等の生体触媒は一般に水溶性であって、
普通は生体触媒を水に溶解させた状態で反応を行なうよ
うにするため、反応終了後にこれを反応系から取除き、
再利用することは技術的に困難であった。そこで、何ら
かの手段を用いて生体触媒を水不溶化すること等、これ
を固定化する方法が各種提案された。
In recent years, resource conservation and energy conservation have become one of the major issues in industrial manufacturing processes. As one solution to this problem, technology is being established to industrially utilize biocatalysts such as microorganisms and enzymes, which naturally catalyze chemical reactions very gently and quickly inside living organisms. . Because biocatalysts promote reactions under mild conditions of room temperature and pressure, they are not only energy-efficient compared to conventional chemical reaction processes, but they also cause pollution and noise problems and are harmful to the outside world. There are very few negative effects. In addition, when a biocatalyst is used, a process that conventionally required multiple reaction steps can now be completed with a single reaction step. However, biocatalysts such as microorganisms and enzymes are generally water-soluble;
Normally, the reaction is carried out with the biocatalyst dissolved in water, so after the reaction is complete, it is removed from the reaction system.
It was technically difficult to reuse it. Therefore, various methods have been proposed to immobilize the biocatalyst, such as making the biocatalyst insoluble in water by some means.

生体触媒を固定することにより、これまで使用されてき
た回分式生体反応装置を連続流通式生体反応装置に置き
換えて生体触媒をくり返し使用することができるように
なった。また、反応液中に生体触媒が混入しないので、
反応生成物の純度が大幅に向上するようになった。その
うえ、生体触媒が非常に基質特異性が高いこ吉を利用1
.で、特定の物質の濃度等を検出するバイオセンサをつ
くることができるようにもなった。
By fixing the biocatalyst, it has become possible to replace the previously used batch-type bioreactor with a continuous flow bioreactor and use the biocatalyst repeatedly. In addition, since the biocatalyst does not mix into the reaction solution,
The purity of the reaction product has been significantly improved. Moreover, biocatalysts utilize Kokichi, which has extremely high substrate specificity.
.. This has made it possible to create biosensors that detect the concentration of specific substances.

バイオセンサは、一般に、電極本体表面に生体触媒の膜
が形成されてなる生体触媒電極とその対極を備えたもの
である。そして、バイオセンサは生体反応に伴なう、基
質あるいは生成物の濃度変化を電極反応に組み合わせる
ようにしたものであって、基質あるいけ生成物の濃度変
化を電気化学的手法(デバイヌ)により定量的に分析す
るこ吉ができる。また、前述したように生体触媒が基質
特異性が高いことから、他成分の混入した系でも、試料
の分離、精製の操作を行なうこと々く分′析ができる。
A biosensor generally includes a biocatalyst electrode having a biocatalyst film formed on the surface of the electrode body and a counter electrode. Biosensors combine changes in the concentration of substrates or products that occur with biological reactions with electrode reactions, and quantify changes in the concentration of substrates or products using an electrochemical method (debaine). Kokichi can analyze it. Furthermore, as mentioned above, biocatalysts have high substrate specificity, so even systems containing other components can be analyzed without having to perform sample separation and purification operations.

そのうえ、生体触媒は反応を迅速に行なうことから電気
化学的に検知される化学成分の増幅が可能となり、非常
に希薄々成分溶液であっても分析可能である。
Furthermore, since biocatalysts carry out reactions rapidly, it is possible to amplify chemical components that are detected electrochemically, and even very dilute solutions of the components can be analyzed.

〔発明の目的〕 この発明は、測定感度の高い生体触媒電極を提供するこ
とを目的としている。
[Object of the Invention] An object of the present invention is to provide a biocatalyst electrode with high measurement sensitivity.

〔発明の開示〕[Disclosure of the invention]

発明者らは、従来、一般に使用されている生体触媒電極
のように、表面が平らで表面積の小さい電極本体を備え
させるのではなく、表面積の大きな電極本体を備えさせ
、生体触媒反応に伴って行なわれる電極反応の活性部分
(活性点)を増加させることにより、生体触媒電極の測
定感度を向上させようとして研究を重ねた。その結果、
生体触媒電極の本体として、基材表面に粒状体および金
属層からなる複合めっき層を形成し、複合めっき層の表
面にさらに白金属金属層を形成してなるものを用いるこ
吉とすればよいということを見出し、ここにこの発明を
完成した。
The inventors have developed an electrode body with a large surface area, rather than an electrode body with a flat surface and a small surface area, as in conventional biocatalytic electrodes that have been commonly used. Research has been conducted in an attempt to improve the measurement sensitivity of biocatalytic electrodes by increasing the number of active sites for electrode reactions. the result,
As the main body of the biocatalyst electrode, it is advisable to use one in which a composite plating layer consisting of granules and a metal layer is formed on the surface of a base material, and a platinum metal layer is further formed on the surface of the composite plating layer. This discovery led to the completion of this invention.

すなわち、この発明は、電極本体表面に生体触媒の膜が
形成されてなる生体触媒電極であって、前記電極本体が
、基材と、その表面に形成された金属層−粒状体複合め
っき層と、複合めっき層の表面に形成された白金属金属
層とからなるものであることを特徴とする生体触媒電極
をその要旨としている。以下、この発明の詳細な説明す
る。
That is, the present invention provides a biocatalyst electrode in which a biocatalyst film is formed on the surface of an electrode body, the electrode body comprising a base material and a metal layer-granule composite plating layer formed on the surface of the base material. The gist of this invention is a biocatalytic electrode characterized by comprising a platinum metal layer formed on the surface of a composite plating layer. The present invention will be described in detail below.

この発明にかかる生体触媒電極は、第1図に示されてい
るように、基材1の表面に、金属層2a中に粒状体2b
を含む複合めっき層2.複合めっき層20表面にさらに
白金属金属層3がそれぞれ形成されてなる電極本体4を
もち、この電極本体4表面すなわち、白金属金属層3表
面に生体触媒の膜5が形成されている。電極本体4は表
面が非常に多くの凹凸を持った状態となっており、表面
積が非常に広くなっている。これはつぎのような理由に
よ不。基材1に複合めっきを行なって複合めっき層2を
形成させる際、基拐1表面に金属が析出して固着されて
ゆくとともに粒状体2bも固着されてゆく。そのため、
複合めっき層2の表面は、非常に多くの凹凸を持った状
態となる。したがって、この複合めっき層2の表面に白
金属金属層3を形成させると、やはり白金属金属層30
表面は非常に多くの凹凸を持った状態となるのである。
As shown in FIG. 1, the biocatalytic electrode according to the present invention has particles 2b in a metal layer 2a on the surface of a base material 1.
Composite plating layer containing 2. It has an electrode body 4 in which a platinum metal layer 3 is further formed on the surface of the composite plating layer 20, and a biocatalyst film 5 is formed on the surface of the electrode body 4, that is, on the surface of the platinum metal layer 3. The surface of the electrode body 4 has many irregularities, and the surface area is extremely large. This is a problem for the following reasons. When composite plating is performed on the substrate 1 to form the composite plating layer 2, metal is deposited and fixed on the surface of the substrate 1, and the granules 2b are also fixed. Therefore,
The surface of the composite plating layer 2 has many irregularities. Therefore, when the white metal layer 3 is formed on the surface of this composite plating layer 2, the white metal layer 3
The surface becomes extremely uneven.

この生体触媒電極は、電極本体4の表面積が広い、すな
わち電極反応の活性部分が広いので、測定感度が高い。
This biocatalyst electrode has a large surface area of the electrode main body 4, that is, a large active area for electrode reaction, and therefore has high measurement sensitivity.

ここで、基材1としては銅等の導電性材料から々るもの
が用いられる。複合めっき層2に含ませる粒状体2bと
しては、金属酸化物、炭化物、窒化物、はう化物、フッ
化物および有機化合物などからなるもののうちの少なく
とも1種が用いられるが、電極本体用材料として用いら
れるので、WC等の導電性の高い物質からなるものが用
いられるのが好ましい。また、粒状体2bは、基材1に
複合めっきを行なって複合めっき層2を形成させる際、
めっき液に浴けないことが、必要である。複合めっき層
2に含ませる金属としては、ニッケル(Nt)、金(A
u) 、、銅(Cu )  等が単独で用いられたり、
パラジウム(Pd)  とニッケルの組合わせ等、2種
類以上が同時に用いられたりする。生体触媒電極の性能
を向上させるといったような目的で、複合めっき層2に
粒状体2bおよび金属以外の他の材料を含ませる場合が
ある。たとえば、複合めっき層2Vcニッケルを含ませ
るようにする場合はリン(P)も含ませるときがある。
Here, as the base material 1, various conductive materials such as copper are used. As the granules 2b included in the composite plating layer 2, at least one of metal oxides, carbides, nitrides, borides, fluorides, organic compounds, etc. is used. Therefore, it is preferable to use a highly conductive material such as WC. Further, the granules 2b are used when performing composite plating on the base material 1 to form the composite plating layer 2.
It is necessary to avoid exposure to plating solution. The metals included in the composite plating layer 2 include nickel (Nt) and gold (A
u) , copper (Cu) etc. are used alone,
Two or more types are sometimes used at the same time, such as a combination of palladium (Pd) and nickel. For the purpose of improving the performance of the biocatalyst electrode, the composite plating layer 2 may contain the granules 2b and other materials other than metal. For example, when the composite plating layer contains 2Vc nickel, phosphorus (P) may also be included.

白金属の金属としては、白金(Pt)、パラジウム(P
d) 、ロジウム(Rh)およびルテニウム(Ru)等
のなかから選ばれた少なくとも1種が用いられる。従来
では、電極本体はほとんど白金からなるものであったが
、この発明では電極本体用材料として他の白金属金属を
用いることもある。生体触媒は、電気化学的に検出可能
な物質を反応系に有するものであf′Lげ、種類は特に
限定されない。
Platinum metals include platinum (Pt) and palladium (P
d) At least one selected from rhodium (Rh), ruthenium (Ru), etc. is used. Conventionally, the electrode body was mostly made of platinum, but in the present invention, other platinum metals may be used as the material for the electrode body. The biocatalyst has an electrochemically detectable substance in its reaction system, and its type is not particularly limited.

なお、複合めっき層は、普通、電気めっき法を用いて形
成させる。すなわち、金属を含むめっき液に粒状体を懸
濁させ、このめっき液に基材と対極を浸漬する。つぎに
、電解を行って基材表面に金属と粒状体を同時に固着さ
せるのである。複合めっき層上に白金端金属を形成させ
る方法としては、電気めっき法や真空蒸着法等を用い、
湿式。
Note that the composite plating layer is usually formed using an electroplating method. That is, the granules are suspended in a plating solution containing metal, and the base material and the counter electrode are immersed in this plating solution. Next, electrolysis is performed to simultaneously fix the metal and the granules to the surface of the base material. As a method for forming platinum edge metal on the composite plating layer, electroplating method, vacuum evaporation method, etc. are used.
Wet type.

乾式を問わない。複合めっき層が表面に多くの凹凸を持
ち、析出白金属金属に内部応力が生じるので、密着性の
悪い白金属金属であっても、白金属金属層の厚みを比較
的厚くすることができる。電極本体表面に生体触媒膜を
形成させる方法は、特に限定されない。たとえば、生体
触媒、パラホルムアルデヒドおよびアルブミンを含む混
合液に電極本体を浸漬したあと乾燥させるようにしたり
、電極本体と生体触媒を架橋剤で架橋したりして生体触
媒膜を形成させる。
Doesn't matter if it's a dry method. Since the composite plating layer has many irregularities on the surface and internal stress is generated in the precipitated white metal, the thickness of the white metal layer can be made relatively thick even if the white metal has poor adhesion. The method of forming the biocatalyst film on the surface of the electrode body is not particularly limited. For example, a biocatalyst film is formed by immersing the electrode body in a mixed solution containing a biocatalyst, paraformaldehyde, and albumin and then drying it, or by crosslinking the electrode body and the biocatalyst with a crosslinking agent.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる生体触媒電極は、基材表面に粒状体お
よび金属を含む複合めっき層が形成され、複合めっき層
の表面にさらに白金属金属層が形成されてなる電極本体
を備えているので、感度が高いものとなった。
The biocatalytic electrode according to the present invention includes an electrode body in which a composite plating layer containing granules and metal is formed on the surface of the base material, and a platinum metal layer is further formed on the surface of the composite plating layer. The sensitivity was high.

つぎに、実施例および比較例について説明する。Next, Examples and Comparative Examples will be described.

〔実施例1〕 つぎのようにして実施例1の生体触媒電極をつくった。[Example 1] The biocatalytic electrode of Example 1 was made in the following manner.

まず、電気めっき法を用いた複合めっきを行なって、基
材となる1辺5眉の正方形で厚み0.2 mttrの銅
板表面に、パラジウム、ニッケルおよび炭化タングステ
ンを含む厚み3〜4μmの複合めっき層を形成させた。
First, composite plating is performed using an electroplating method, and a 3 to 4 μm thick composite plating containing palladium, nickel, and tungsten carbide is applied to the surface of a 0.2 mttr thick copper plate, which is a square with 5 eyebrows on each side. A layer was formed.

めっき液(めっき浴)としては、っぎのような組成のも
のを用いた。
The plating solution (plating bath) used was one with a composition similar to the one shown below.

バラダヌアミンクロライド   40g/ICPd(N
H3)2Cl21 硫酸ニッケル〔N15o4・6H2o〕5og/I!硫
酸アンモニウム((NH4)2SO4350g/lポリ
オキシエチレンナトリウム        3g/l炭
化タングステン(WC,0,71℃m径)    25
g/’1前記のようなめつき液を8時間予備撹拌し、っ
ぎのようなめつき条件を用いて複合めっきを行なった。
Varadanuamine chloride 40g/ICPd(N
H3) 2Cl21 Nickel sulfate [N15o4・6H2o] 5og/I! Ammonium sulfate ((NH4)2SO4 350g/l Sodium polyoxyethylene 3g/l Tungsten carbide (WC, 0.71℃m diameter) 25
g/'1 The plating solution as described above was preliminarily stirred for 8 hours, and composite plating was performed using the plating conditions as described above.

電流密度    0.5 A / dm2pH8,8 温   度       30℃ めっき時間    24分 つぎに、電気めっきを行なって複合めっきノ※表面に白
金層を形成させ、電極本体をつくったパ。使用しためつ
き液の組成はっぎのとおりである。
Current density 0.5 A/dm2pH 8.8 Temperature 30℃ Plating time 24 minutesNext, electroplating was performed to form a platinum layer on the surface of the composite plating* to form the electrode body. The composition of the tamping solution used is as shown below.

H2PtCl6・6H204g / 1(NH4)2H
PO420g / 1 Na2HP04・12 N20          1
00 g/ 1捷だ、めっき条件はつぎの通りである。
H2PtCl6・6H204g/1(NH4)2H
PO420g/1 Na2HP04・12 N20 1
The plating conditions were as follows.

温   度         60℃ 電流密度      IA/dm2 めっき時間゛     約60秒 このあと、電極本体に下記方法で生体触媒(酵素)を固
定化した。
Temperature: 60°C Current density: IA/dm2 Plating time: Approximately 60 seconds After this, a biocatalyst (enzyme) was immobilized on the electrode body by the following method.

まず、電極本体を濃硝酸(conc HNO3)中に5
0℃で1時間浸漬し、つぎに洗浄した。洗浄後、5係ト
リクロルシラン−ヘキサン水浴液に塩酸(HCI)を滴
下して?くったpH3〜4の溶液に75℃で2時間電極
本体を浸漬した。電極本体を洗浄したあと、100℃で
10分間乾燥させた。このあと、2係バラホルムアルデ
ヒ’a液1μm、4−’ly/ルコースオキシダーゼ溶
液2μI!卦よび35係アルブミン1.5μlを混合し
てつくった混合液を電極本体に塗布し、自然乾燥を行な
って生体触媒電極を得た。
First, place the electrode body in concentrated nitric acid (conc HNO3) for 5 minutes.
It was soaked for 1 hour at 0°C and then washed. After washing, add hydrochloric acid (HCI) dropwise to the trichlorosilane-hexane water bath solution. The electrode body was immersed in the solution having a pH of 3 to 4 at 75° C. for 2 hours. After washing the electrode body, it was dried at 100° C. for 10 minutes. After this, 1 μm of the 2-part formaldehyde a solution and 2 μl of the 4-'ly/lucose oxidase solution! A mixed solution prepared by mixing 1.5 μl of trigrams and Group 35 albumin was applied to the electrode body and air-dried to obtain a biocatalyst electrode.

前記のようにしてつくられた生体触媒電極と。A biocatalytic electrode made as described above.

対極とを様々な濃度のグルコース溶液中に設置し、電極
反応に伴う電流値を測定した。ただし、印加電圧は0.
7■とした。測定結果を第2図に示す。
The counter electrode was placed in glucose solutions of various concentrations, and the current value associated with the electrode reaction was measured. However, the applied voltage is 0.
It was set as 7■. The measurement results are shown in Figure 2.

〔実施例2〕 つぎのようにして実施例2の生体触媒電極をつくった。[Example 2] The biocatalyst electrode of Example 2 was made in the following manner.

捷ず、実施例1で示した複合めっき液の組成分にα−ア
ルミナ(酸化アルミニウム+ Al2O3、0,3μm
n径)を添加して濃度を3 g/lとした複合めっき液
を用いるようにしたほかは、実施例1と同様にして操作
を行ない、基材となる1辺5期の正方形で厚み0.2 
mmの銅板表面にパラジウム、ニッケル、炭化タングヌ
テンおよびα−アルミナを含む複合めっき層を形成させ
た。このあと、実施例1吉同様にして白金めつきおよび
生体触媒(グルコースオキシダーゼ)の固定化を行なっ
て生体触媒電極を得た。
Without stirring, α-alumina (aluminum oxide + Al2O3, 0.3 μm) was added to the composition of the composite plating solution shown in Example 1.
The operation was carried out in the same manner as in Example 1, except that a composite plating solution was used with a concentration of 3 g/l by adding plating solution (n diameter). .2
A composite plating layer containing palladium, nickel, tungnuten carbide, and α-alumina was formed on the surface of a copper plate having a diameter of 1 mm. Thereafter, platinum plating and immobilization of the biocatalyst (glucose oxidase) were performed in the same manner as in Example 1 to obtain a biocatalyst electrode.

〔実施例3」 つぎのようにして実施例3の生体触媒電極をつくった。[Example 3] The biocatalyst electrode of Example 3 was made in the following manner.

まず、実施例1と同様にして1辺5 mmの正方形で厚
み0.2 myrの銅板表面にパラジウム、ニッケルお
よび炭化タングヌテンを含む複合めっき層を形成させた
。つぎに、テトラアミノージ硝酸めっき法(電気めっき
法)を用いて複合めっき層表面にパラジウム層を形成さ
せ、電極本体をつくった。
First, in the same manner as in Example 1, a composite plating layer containing palladium, nickel, and tungnuten carbide was formed on the surface of a copper plate having a square shape of 5 mm on a side and a thickness of 0.2 myr. Next, a palladium layer was formed on the surface of the composite plating layer using a tetraaminodinitric acid plating method (electroplating method) to produce an electrode body.

ただし、めっき液として30 g/lのPd (NH3
) 4 (NO3)2浴液を用いた。また、めっき条件
は、温度70℃。
However, 30 g/l of Pd (NH3
) 4 (NO3)2 bath solution was used. The plating conditions were a temperature of 70°C.

電流密度IA/dm2とした。このあと、実施例1と同
様の方法で生体触媒(グルコースオキシダーゼ)の固定
化を行ない、生体触媒電極を得た。
The current density was set to IA/dm2. Thereafter, a biocatalyst (glucose oxidase) was immobilized in the same manner as in Example 1 to obtain a biocatalyst electrode.

〔実施例4〕 つぎのようにして実施例4の生体触媒電極をつくった。[Example 4] The biocatalyst electrode of Example 4 was made in the following manner.

まず、電気めっき法を用いた複合めっきを行なって、基
材となる1辺5節の正方形で厚み0.2 rimの銅板
表面に金およびα−アルミナを含む複合めっき層を形成
させた。
First, composite plating was performed using an electroplating method to form a composite plating layer containing gold and α-alumina on the surface of a copper plate having a square shape of 5 nodes on each side and a thickness of 0.2 rim, which served as a base material.

めっき液としては、つぎのような組成のものを用いた。A plating solution having the following composition was used.

KAu(CN)z            5 g/ 
1KCN                   15
 g/lK2CO315g / l Na2HP94               15 
g/lα−Al2O3(0,3pm径)      5
 g/lめっき条件はつぎのようにした。
KAu(CN)z 5 g/
1KCN 15
g/l K2CO3 15g/l Na2HP94 15
g/lα-Al2O3 (0.3pm diameter) 5
The g/l plating conditions were as follows.

温   度       60℃ 電電流塵    0.5A/dm2 めっき時間   30分 このあと、実施例1と同様にして白金めっきおよび生体
触媒(グルコースオキシダーゼ)の固定化を行なって生
体触媒電極を得だ。
Temperature: 60° C. Electrical current: 0.5 A/dm 2 Plating time: 30 minutes Thereafter, platinum plating and immobilization of the biocatalyst (glucose oxidase) were performed in the same manner as in Example 1 to obtain a biocatalyst electrode.

〔実施例5〕 つぎのようにして実施例5の生体触媒電極をつくった。[Example 5] The biocatalyst electrode of Example 5 was made in the following manner.

捷ず、電気めっき法を用いた複合めっきを行なって、基
材となる1辺5間の正方形で厚み0.2 mmの銅板表
面にニッケルおよびα−アルミナを含む複合めっき層を
形成させた。
A composite plating layer containing nickel and α-alumina was formed on the surface of a 0.2 mm thick copper plate with a square shape of 5 spaces on each side as a base material by performing composite plating using an electroplating method.

めっき液としては、つぎのような組成のものを用いた。A plating solution having the following composition was used.

Ni 504 ・7H20240g / lNiC12
・6H2020g/ I H3B03                20 g
 / 1tx−Ah03(0,3pm径)     1
0g/l!前記のようなめつき液を8時間予備撹拌し、
っぎのようなめっき条件を用いて複合めっきを行なった
Ni 504 ・7H20240g / lNiC12
・6H2020g/I H3B03 20g
/ 1tx-Ah03 (0.3pm diameter) 1
0g/l! Preliminarily stir the plating solution as described above for 8 hours,
Composite plating was performed using plating conditions similar to those described above.

温   度       50℃ 電電流塵    4A/dm2 つぎに、電気めっきを行なって複合めっき層表面にロジ
ウム層を形成させた。めっき液の組成は、金属ロジウム
2 g/ l 、 H2SO450me/ lとした。
Temperature: 50° C. Electric current: 4 A/dm 2 Next, electroplating was performed to form a rhodium layer on the surface of the composite plating layer. The composition of the plating solution was 2 g/l of metal rhodium and 50 me/l of H2SO4.

まためっき条件はつぎの通りとした。The plating conditions were as follows.

温   度       50℃ 電電流塵    3A/dm2 めっき哨2間、    10分 〔比較例〕 5 m X 5 w X 70μmの白金板表面に、実
施例1で記したき同様の固定化法でグルコースオキシダ
ーゼを固定し、比較例の生体触媒電極を得た。
Temperature 50°C Electrostatic dust 3A/dm2 Plating for 2 hours, 10 minutes [Comparative example] Glucose oxidase was applied to the surface of a 5 m x 5 w x 70 μm platinum plate using the same immobilization method as described in Example 1. It was fixed to obtain a biocatalyst electrode of a comparative example.

実施例2〜5および比較例の生体触媒電極を用い、実施
例1と同様にしてグルコース溶液中における出力電流特
性を調べた。結果を実施例2〜5は第3図、比較例は第
4図にそれぞれ示す。
Using the biocatalyst electrodes of Examples 2 to 5 and Comparative Example, the output current characteristics in a glucose solution were investigated in the same manner as in Example 1. The results are shown in FIG. 3 for Examples 2 to 5 and in FIG. 4 for Comparative Example.

第2〜4図より、実施例1の生体触媒電極を用いた場合
は10倍程度、実施例2〜5の生体触媒電極を用いた場
合は4〜6倍程度、比較例のものを用いた場合に比べて
出力電流が高く、実施例はいずれも比較例に比べ感度が
高く々っでいることがわかる。
From Figures 2 to 4, when the biocatalytic electrode of Example 1 was used, it was about 10 times as large, when the biocatalytic electrode of Examples 2 to 5 was used, it was about 4 to 6 times, and that of the comparative example was used. It can be seen that the output current is higher than that in the case, and the sensitivity is higher and more vibrant in all examples than in the comparative example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる生体触媒電極の構造説明図、
第2図は実施例1.第3図は実施例2〜5、第4図は比
較例の生体触媒電極の、それぞれグルコース濃度と出力
電流の関係をあられすグラフである。 1・・・基材 2・・・複合めっき層 2a・・・粒状
体 3・・・白金属金属層 4・・・電極本体 5・・
・生体触媒の膜 代理人 弁理士 松 本 武 彦 第1図 クルコース濃度(×163M > 第2図
FIG. 1 is an explanatory diagram of the structure of the biocatalyst electrode according to the present invention;
FIG. 2 shows Example 1. FIG. 3 is a graph showing the relationship between glucose concentration and output current of biocatalyst electrodes of Examples 2 to 5, and FIG. 4 of comparative examples. 1... Base material 2... Composite plating layer 2a... Granular body 3... White metal metal layer 4... Electrode body 5...
・Membrane agent for biocatalyst Patent attorney Takehiko Matsumoto Figure 1: Curose concentration (×163M > Figure 2)

Claims (1)

【特許請求の範囲】[Claims] Q)  電極本体表面に生体触媒の膜が形成されてなる
生体触媒電極であって、前記電極本体が、基材と、その
表面に形成された金属層−粒状体複合めっき層と、複合
めっき層の表面に形成された白金属金属層とからなるも
のであることを特徴とする生体触媒電極。
Q) A biocatalyst electrode in which a biocatalyst film is formed on the surface of an electrode body, the electrode body comprising a base material, a metal layer-granular composite plating layer formed on the surface of the base material, and a composite plating layer. A biocatalytic electrode comprising a platinum metal layer formed on the surface of the electrode.
JP58025803A 1983-02-17 1983-02-17 Biocatalyst electrode Pending JPS59151051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025803A JPS59151051A (en) 1983-02-17 1983-02-17 Biocatalyst electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025803A JPS59151051A (en) 1983-02-17 1983-02-17 Biocatalyst electrode

Publications (1)

Publication Number Publication Date
JPS59151051A true JPS59151051A (en) 1984-08-29

Family

ID=12176012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025803A Pending JPS59151051A (en) 1983-02-17 1983-02-17 Biocatalyst electrode

Country Status (1)

Country Link
JP (1) JPS59151051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283641A (en) * 1985-10-08 1987-04-17 Sharp Corp Sensor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283641A (en) * 1985-10-08 1987-04-17 Sharp Corp Sensor element
JPH0460549B2 (en) * 1985-10-08 1992-09-28 Sharp Kk

Similar Documents

Publication Publication Date Title
US8309362B2 (en) Process for the preparation of modified electrodes, electrodes prepared with said process, and enzymatic biosensors comprising said electrodes
US20060057604A1 (en) Method for electrically detecting oligo-nucleotides with nano-particles
Meng et al. Fabrication of DNA electrochemical biosensor based on gold nanoparticles, locked nucleic acid modified hairpin DNA and enzymatic signal amplification
Zhao et al. Amperometric glucose biosensor based on platinum nanoparticles combined aligned carbon nanotubes electrode
Xiao et al. Nanoporous gold: A review and potentials in biotechnological and biomedical applications
Kumar et al. Electrochemical investigation of glucose sensor fabricated at copper‐plated screen‐printed carbon electrodes
Sun Immobilization of horseradish peroxidase on a self-assembled monolayer modified gold electrode for the detection of hydrogen peroxide
CN105907844A (en) Electrochemical DNA biosensor based on three-dimensional graphene-dendritic nanogold, and preparation method thereof
An et al. A dendritic palladium electrode for a hydrogen peroxide sensor fabricated by electrodeposition on a dynamic hydrogen-bubble template and dealloying
Hou et al. An amperometric enzyme electrode for glucose using immobilized glucose oxidase in a ferrocene attached poly (4-vinylpyridine) multilayer film
JPS59151051A (en) Biocatalyst electrode
JP2011069727A (en) Redox protein immobilization nanostructure electrode
Safaei et al. Image-Reversal Soft Lithography: Fabrication of Ultrasensitive Biomolecular Detectors
Wang et al. An effective gold nanotubes electrode for amperometric biosensor
Zhu et al. An overview of Si-based biosensors
JP3260432B2 (en) Oxidation catalyst and method for producing the same
Kazi et al. Inexpensive, three-dimensional, open-cell, fluid-permeable, noble-metal electrodes for electroanalysis and electrocatalysis
Horozova et al. Modified graphites: Application to the development of enzyme-based amperometric biosensors
Aziz et al. Nanomaterials in electrochemical biosensor
Pusta et al. Aptamers and new bioreceptors for the electrochemical detection of biomarkers expressed in hepatocellular carcinoma
RU2784199C1 (en) A method for producing an electrochemical catalyst based on reduced gold
Anik Gold Nanoparticle‐Based Electrochemical Biosensors for Medical Applications
Pournaghi-Azar et al. Electrocatalytic oxidation of pyridoxine (vitamin B 6) on aluminum electrode modified by metallic palladium particles/iron (III) hexacyanoferrate (II) film
Wachholz et al. Template‐Free Galvanic Nanostructuring of Gold Electrodes for Sensitive Electrochemical Biosensors
Domínguez et al. Electrostatic assemblies for bioelectrocatalytic and bioelectronic applications