JPS59150263A - Multi-chanber type heat pump system air conditioner - Google Patents
Multi-chanber type heat pump system air conditionerInfo
- Publication number
- JPS59150263A JPS59150263A JP58024138A JP2413883A JPS59150263A JP S59150263 A JPS59150263 A JP S59150263A JP 58024138 A JP58024138 A JP 58024138A JP 2413883 A JP2413883 A JP 2413883A JP S59150263 A JPS59150263 A JP S59150263A
- Authority
- JP
- Japan
- Prior art keywords
- bellows
- air conditioner
- heat pump
- pressure during
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は多室形ヒートポンプ式空気調和機の圧縮機周波
数運転を決める為の負荷検出構成に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a load detection arrangement for determining compressor frequency operation of a multi-chamber heat pump air conditioner.
従来例の構成とその問題点
従来、1台の室外ユニットに対し、複数台の室内ユニッ
トを接続した多室形空気調和機は、室外ユニットに圧縮
機が設けられ、この圧縮機は、一定速度の回転で運転さ
れるが、極数変換方式によるものかが使用される。前者
一定速度のものは、圧縮機の能力自体が変化しない為に
、多室運転の台数によっても入力が変化せず、小数室内
機運転時には、余分な冷媒循環量をバイパスする等によ
り変量するため、EER(消費効率)が悪くなる欠点を
有する。又、後者の極数変換による方式は4極運転から
2極運転の2段階切替方式であって一定速のものよりは
、少数運転台数の時に、入力を約半分に落せる為に、E
ERは良くなっている。Conventional configuration and its problems Conventionally, in multi-room air conditioners in which multiple indoor units are connected to one outdoor unit, a compressor is installed in the outdoor unit, and this compressor operates at a constant speed. It is operated at a rotation speed of 1, but a pole conversion method is used. The former constant speed type does not change the compressor capacity itself, so the input does not change depending on the number of units in multi-room operation, and when operating with a small number of indoor units, it changes due to bypassing excess refrigerant circulation, etc. , it has the disadvantage of poor EER (consumption efficiency). In addition, the latter method by changing the number of poles is a two-step switching method from 4-pole operation to 2-pole operation, and is better than the constant speed method because it can reduce the input to about half when a small number of machines are operated.
ER is getting better.
この極数変換方式は、第1図及び第2図に示す如く、暖
房時(第1図)の吐出圧力、冷房時(第2図)の吸入圧
力を圧力スイッチで検出し、一定圧力を境に、2極から
4極に、4極から2極にと云った具合に切替えられる。As shown in Figures 1 and 2, this pole number conversion method uses a pressure switch to detect the discharge pressure during heating (Figure 1) and the suction pressure during cooling (Figure 2), and then , from 2 poles to 4 poles, from 4 poles to 2 poles, and so on.
ところが、この方式では、2極と、4極では約倍の能力
変化があり、この中間の、例えば75%の負荷時等にお
いては、2極又は4極のどちらかで運転することになり
、能力不足、或いは過大となり、いずれで運転されても
、負荷に対して正確に対応出来ない欠点を有していた。However, in this system, the capacity change is about twice that between 2-pole and 4-pole, and when the load is in between, for example, 75%, it will be operated with either 2-pole or 4-pole. They either lacked capacity or had excessive capacity, and had the disadvantage that they could not respond accurately to the load no matter which way they were operated.
発明の目的
本発明は上記従来の欠点を解消するもので、圧縮機の制
御を周波数変化等のインバーター制御を行なうものにお
ける、圧縮機運転周波数を決める為のより正確な負荷検
出構成を提供することを目的とする。OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks, and provides a more accurate load detection configuration for determining the compressor operating frequency in a compressor that performs inverter control such as frequency change. With the goal.
発明の構成
ベローズに装着された永久磁石と、この永久磁石の近傍
に設けられた磁気抵抗変換素子とにより圧力を電気的に
変換する電気信号変換器を介して圧縮機を制御せしめる
と共に、前記ベローズは細管を介して、暖房時、吐出圧
力を検出し、冷房時は吸入管圧力を検出するべく、冷凍
サイクル中に接続してなるものである。Structure of the Invention The compressor is controlled via an electric signal converter that electrically converts pressure by a permanent magnet attached to the bellows and a magnetoresistive conversion element provided near the permanent magnet. is connected to the refrigeration cycle through a thin tube to detect the discharge pressure during heating and to detect the suction pipe pressure during cooling.
実施例の説明
以下本発明による一実施例を第3図〜第6図にもとづい
て説明する。DESCRIPTION OF THE EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. 3 to 6.
1台の室外ユニット内で、1は圧縮機、2は四方弁、3
は室外熱交換器、4は暖房用膨張弁、5は冷房時通の逆
止弁、6は受液器、7は源側三方弁、8,9は源側電磁
弁、10.11は冷房用膨張弁、12.13は暖房時通
の逆止弁、14.16は室内熱交換器、16.17はガ
ス側電磁弁、18はガス側三方弁、19I′iアキユウ
ムレータ、20はベロースハウジングで、この中にベロ
ーズ21を設け、接続管22の一方側に、暖房細管22
aと、その途中に暖房時、開となる電磁弁23を。In one outdoor unit, 1 is a compressor, 2 is a four-way valve, and 3 is a compressor.
is an outdoor heat exchanger, 4 is an expansion valve for heating, 5 is a check valve for cooling, 6 is a liquid receiver, 7 is a three-way valve on the source side, 8 and 9 are solenoid valves on the source side, and 10.11 is a cooling valve. 12.13 is the check valve for heating, 14.16 is the indoor heat exchanger, 16.17 is the gas side solenoid valve, 18 is the gas side three-way valve, 19I′i accumulator, 20 is the bellows A bellows 21 is provided in the housing, and a heating thin tube 22 is installed on one side of the connecting tube 22.
a, and in the middle there is a solenoid valve 23 that opens during heating.
設け、その端部か暖房時、高圧となる配管24に接続し
ている。又、接続管22の他方側に、冷房細管22bと
、その途中に冷房時開となる電磁弁25を設け、その端
部が冷房時(暖房時も同じ)低圧となる吸入管26に接
続している。ベローズ21において、27はベローズ2
1に装着された永久磁石、28は磁気抵抗変換素子で、
電子制御を装備したプリント基板29に設けられ、前記
ベローズ21が圧力によって伸縮する時、永久磁石27
も同時に左右に移動し、その時、磁気抵抗変換素子28
において、抵抗値が変化し、プリント基板29において
演算され、電気信号に変換する。The end thereof is connected to a pipe 24 which becomes high pressure during heating. Further, on the other side of the connecting pipe 22, a cooling thin pipe 22b and a solenoid valve 25 which is opened during cooling are provided in the middle thereof, and the end thereof is connected to the suction pipe 26 whose pressure is low during cooling (same as during heating). ing. In bellows 21, 27 is bellows 2
1 is a permanent magnet attached, 28 is a magnetoresistance conversion element,
A permanent magnet 27 is installed on a printed circuit board 29 equipped with electronic control, and when the bellows 21 expands and contracts due to pressure, the permanent magnet 27
simultaneously moves left and right, and at that time, the magnetoresistive conversion element 28
, the resistance value changes, is calculated on the printed circuit board 29, and converted into an electrical signal.
30はリード線で、電気信号変換器31に接続され、こ
の電気信号変換器31より、圧縮機1(第1図ンをイン
バーターによる周波数変換制御を行なうのである。A lead wire 30 is connected to an electric signal converter 31, and the electric signal converter 31 controls the frequency conversion of the compressor 1 (FIG. 1) using an inverter.
上記構成において、暖房運転時、暖房負荷が大きくなる
と、吐出圧力は下がり、暖房負荷が小さくなれば、吐出
圧力は上る傾向となり、冷房運転時は冷房負荷が大きく
なると、吸入圧力は上り、冷房負荷が小さくなれば、吸
入圧力は下る傾向となる。従って、暖房時は、電磁弁2
3を開としておき、暖房細管22aは暖房時、吐出管と
なる配管24に接続しているから、暖房時の負荷の大小
による圧力を連続的に検出することによりベローズ21
か伸縮し、永久磁石27の移動によシ、磁気抵抗変換素
子28の抵抗値が変換し、電気信号変換器31によって
、第4図の暖房時に示すように、圧力が一定範囲内に入
るように、圧縮機能力を制御し1.弁荷に対応した圧縮
機能力を取出すことが出来るのである。これは又、冷房
時においても同様であって、冷房時は電磁弁26を開と
しておへ、冷房細管22bは、吸入管26に接続してい
るから、冷房時の負荷の大小による吸入管の圧力を連続
的に検出することにより、ベローズ21が伸縮し、永久
磁石27の移動により、磁気抵抗変換素子28の抵抗値
が変換し、電気信号変換器31によって、第6図の冷房
時に示すように、圧力が一定範囲内に入るように、圧縮
機能力を制御し、負荷に対応した圧縮機能力を取出すこ
とが出来るのである。即ち、ベローズ21、永久磁石2
7、磁気抵抗変換素子28等は暖房時は吐出圧力を、冷
房時は吸入圧力の変化を、連続的電気信号の変化に変換
する為の圧力センサーであって、これらの圧力を検出し
、第4図及び第6図の如き、広い範囲にわたって圧縮機
を、最適負荷運転となるように制御するのである。In the above configuration, during heating operation, when the heating load increases, the discharge pressure tends to decrease, and when the heating load decreases, the discharge pressure tends to increase; during cooling operation, when the cooling load increases, the suction pressure increases, and the cooling load As the value decreases, the suction pressure tends to decrease. Therefore, during heating, solenoid valve 2
3 is left open, and the heating thin tube 22a is connected to the piping 24 which becomes a discharge pipe during heating, so the bellows 21 is opened by continuously detecting the pressure depending on the magnitude of the load during heating.
As the permanent magnet 27 moves, the resistance value of the magnetoresistive conversion element 28 changes, and the electric signal converter 31 causes the pressure to fall within a certain range as shown in FIG. 4 during heating. In order to control the compression function, 1. It is possible to extract the compression function force corresponding to the valve load. This also applies during cooling; the solenoid valve 26 is opened during cooling, and the cooling thin tube 22b is connected to the suction pipe 26, so the suction pipe changes depending on the load during cooling. By continuously detecting the pressure, the bellows 21 expands and contracts, and the movement of the permanent magnet 27 changes the resistance value of the magnetoresistive conversion element 28, and the electric signal converter 31 converts the resistance value as shown in FIG. 6 during cooling. In addition, it is possible to control the compression force so that the pressure falls within a certain range, and extract the compression force corresponding to the load. That is, bellows 21, permanent magnet 2
7. The magnetoresistive conversion element 28 is a pressure sensor that converts changes in discharge pressure during heating and changes in suction pressure during cooling into continuous electrical signal changes. As shown in FIGS. 4 and 6, the compressor is controlled over a wide range to achieve optimum load operation.
発明の効果
このように本発明は、暖房時は吐出圧力を検出し、冷房
時は吸入管圧力を検出するベローズと、このベローズに
永久磁石を装着し、前記永久磁石の近傍に磁気抵抗変換
素子を設けて、前記暖房時の吐出圧力、冷房時の吸入管
圧力を連続的に検出し、電気信号変換器によって、圧縮
機をインバーターによる広い範囲の周波数変換制御を行
なうようにしたものであるから、インバ〜りの能力連続
可変である特徴を十分に発揮し、冷凍サイクル(冷房)
時、及びヒートポンプサイクル(暖房)時のいずれの時
も、負荷に対応したサイクルが安定的に、月、経済的に
運転されるなどすぐれた効果を発揮するものである。Effects of the Invention As described above, the present invention provides a bellows that detects discharge pressure during heating and detects suction pipe pressure during cooling, a permanent magnet attached to this bellows, and a magnetoresistive conversion element near the permanent magnet. is installed to continuously detect the discharge pressure during heating and the suction pipe pressure during cooling, and use an electric signal converter to control the compressor over a wide range of frequency conversion using an inverter. , takes full advantage of the continuously variable capacity of the invar, and is capable of refrigerating the refrigeration cycle (cooling).
The cycle that corresponds to the load can be operated stably, monthly, and economically during both the heat pump cycle (heating) and the heat pump cycle (heating).
第1図及び第2図は従来の多室形ヒートポンプ式空気調
和機の暖房時と冷房時の極数変換式切替説明図、第3図
は本発明の一実施例である多室形ヒートポンプ式空気調
和機の構成概要図、第4図及び第5図は同機の暖房時と
冷房時のインバータ周波数変化の説明図である。
21・・・・・・ベローズ、27・・・・・・永久磁石
、28・・・・・・磁気抵抗変換素子。
第1図
第2図
4図
5図Figures 1 and 2 are explanatory diagrams for switching the number of poles during heating and cooling in a conventional multi-chamber heat pump type air conditioner, and Figure 3 is a multi-chamber heat pump type air conditioner that is an embodiment of the present invention. The schematic diagram of the configuration of the air conditioner, FIGS. 4 and 5, are explanatory diagrams of changes in the inverter frequency during heating and cooling of the air conditioner. 21... Bellows, 27... Permanent magnet, 28... Magnetoresistive conversion element. Figure 1 Figure 2 Figure 4 Figure 5
Claims (1)
るベローズと、このベローズに永久磁石を装着し前記ベ
ローズが圧力によって伸縮する時前記永久磁石も同時に
移動して抵抗値を演算する磁気抵抗変換素子とを備え、
前記暖房時の吐出圧力、冷房時の吸入圧力を連続的に検
出し、電気信号変換器によって圧縮機をインバーター周
波数変換制御するようにした多室形ヒートポンプ式空気
調和機。A bellows detects discharge pressure during heating and suction pipe pressure during cooling, and a permanent magnet is attached to this bellows, and when the bellows expands and contracts due to pressure, the permanent magnet also moves at the same time to calculate the resistance value. Equipped with a resistance conversion element,
The multi-chamber heat pump air conditioner continuously detects the discharge pressure during heating and the suction pressure during cooling, and controls the compressor by inverter frequency conversion using an electric signal converter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58024138A JPS59150263A (en) | 1983-02-15 | 1983-02-15 | Multi-chanber type heat pump system air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58024138A JPS59150263A (en) | 1983-02-15 | 1983-02-15 | Multi-chanber type heat pump system air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59150263A true JPS59150263A (en) | 1984-08-28 |
JPH0357380B2 JPH0357380B2 (en) | 1991-08-30 |
Family
ID=12129954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58024138A Granted JPS59150263A (en) | 1983-02-15 | 1983-02-15 | Multi-chanber type heat pump system air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59150263A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61134545A (en) * | 1984-12-01 | 1986-06-21 | 株式会社東芝 | Refrigeration cycle device |
JPH031060A (en) * | 1989-05-27 | 1991-01-07 | Tokin Corp | Pressure sensor for air conditioner |
JP2002051665A (en) * | 2000-08-09 | 2002-02-19 | Asahi Kasei Corp | Floating fishing bank |
JP2007327717A (en) * | 2006-06-09 | 2007-12-20 | Mitsubishi Electric Building Techno Service Co Ltd | Air conditioner |
US11666344B2 (en) | 2016-08-31 | 2023-06-06 | Medtronic Ps Medical, Inc. | Multiple connection drive shaft |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5587021A (en) * | 1978-12-25 | 1980-07-01 | Japan Electronic Control Syst Co Ltd | Gas pressure sensor |
JPS5713293A (en) * | 1980-06-27 | 1982-01-23 | Matsushita Electric Ind Co Ltd | Air conditioner |
JPS57204765A (en) * | 1981-06-12 | 1982-12-15 | Hitachi Ltd | Air-cooled heat pump type air conditioner |
-
1983
- 1983-02-15 JP JP58024138A patent/JPS59150263A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5587021A (en) * | 1978-12-25 | 1980-07-01 | Japan Electronic Control Syst Co Ltd | Gas pressure sensor |
JPS5713293A (en) * | 1980-06-27 | 1982-01-23 | Matsushita Electric Ind Co Ltd | Air conditioner |
JPS57204765A (en) * | 1981-06-12 | 1982-12-15 | Hitachi Ltd | Air-cooled heat pump type air conditioner |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61134545A (en) * | 1984-12-01 | 1986-06-21 | 株式会社東芝 | Refrigeration cycle device |
JPH031060A (en) * | 1989-05-27 | 1991-01-07 | Tokin Corp | Pressure sensor for air conditioner |
JP2002051665A (en) * | 2000-08-09 | 2002-02-19 | Asahi Kasei Corp | Floating fishing bank |
JP2007327717A (en) * | 2006-06-09 | 2007-12-20 | Mitsubishi Electric Building Techno Service Co Ltd | Air conditioner |
US11666344B2 (en) | 2016-08-31 | 2023-06-06 | Medtronic Ps Medical, Inc. | Multiple connection drive shaft |
Also Published As
Publication number | Publication date |
---|---|
JPH0357380B2 (en) | 1991-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59170653A (en) | Air conditioner | |
JPS61134545A (en) | Refrigeration cycle device | |
JPS59150263A (en) | Multi-chanber type heat pump system air conditioner | |
JPS602505Y2 (en) | air conditioner | |
JPS62116862A (en) | Refrigerator | |
JPS62134464A (en) | Controller for air conditioner | |
JPS5826945A (en) | Air-conditioning machine | |
JPS62294852A (en) | Refrigerator | |
CA1198905A (en) | Heat pump apparatus and method of operating the same | |
JPS6315718Y2 (en) | ||
JPS62116861A (en) | Air conditioner | |
JPH035826Y2 (en) | ||
JPH0633910B2 (en) | Heat pump refrigeration system | |
JPS58183465U (en) | Heat pump air conditioner | |
JPS5977268A (en) | Air conditioner | |
JPS59148542U (en) | air conditioner | |
JPS59193970U (en) | air conditioner | |
JPS6096546U (en) | air conditioner | |
JPS58129466U (en) | Heat pump air conditioner | |
JPS6035171U (en) | Air conditioning equipment | |
JPH0245796B2 (en) | ||
JPS5994265U (en) | Air conditioning equipment | |
JPS61110846A (en) | Control system of operation of refrigerator | |
JPH0612199B2 (en) | Expansion valve control device for air conditioner | |
JPS6035170U (en) | Air conditioning equipment |