JPS59149786A - Modulation drive type ac motor - Google Patents

Modulation drive type ac motor

Info

Publication number
JPS59149786A
JPS59149786A JP57188838A JP18883882A JPS59149786A JP S59149786 A JPS59149786 A JP S59149786A JP 57188838 A JP57188838 A JP 57188838A JP 18883882 A JP18883882 A JP 18883882A JP S59149786 A JPS59149786 A JP S59149786A
Authority
JP
Japan
Prior art keywords
frequency
magnetic field
motor
modulation
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57188838A
Other languages
Japanese (ja)
Inventor
Takashi Take
武 隆志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57188838A priority Critical patent/JPS59149786A/en
Priority to EP83306542A priority patent/EP0110561B1/en
Priority to DE8383306542T priority patent/DE3376173D1/en
Publication of JPS59149786A publication Critical patent/JPS59149786A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To improve the rotating characteristic, responsiveness and to enable to synchronously operate in high efficiency by exciting a stator winding with a waveform amplitude-modulated for a carrier voltage. CONSTITUTION:Modulated voltages 5, 6 are respectively applied to exciting windings 1, 2. In this case, the instantaneous value of the rotary magnetic field is not constant, but becomes alternating magnetic field of the type continued in carrier frequency, and rotated by the modulation frequency. The secondary winding 7 coupled electromagnetically to the windings 1, 2 is provided at the rotor side, and an induced voltage is generated in a shortcircuit of the secondary winding to flow a shortcircuiting current. This shortcircuiting current has carrier frequency, electromagnetic force is generated to the alternating current to obtain a rotary force.

Description

【発明の詳細な説明】 機械的偏位並に速度の自動追縦制御を行わせる電動機が
所謂サーボモーターであって、直流電動機と♀流電動機
との二つの型式がある。その必要性能は速度の可変範囲
が広く連応性を備えていることである。一般に電動機の
連応性は油圧並に空気圧制御に劣るが、最近の電子制御
技術の進歩で著しく普及しつつある。然し直流電動機で
は整流子が保守の欠点になるので、整流子を半導体電子
スイッチに置き換えた所謂プラソシレス電動機がある。
[Detailed Description of the Invention] A motor that performs automatic tracking control of mechanical displacement and speed is a so-called servo motor, and there are two types: a DC motor and a male current motor. The required performance is that the variable speed range is wide and has coordination. In general, the coordination of electric motors is inferior to that of hydraulic or pneumatic control, but with recent advances in electronic control technology, they are becoming increasingly popular. However, in DC motors, the commutator is a drawback in maintenance, so there are so-called plastic motors in which the commutator is replaced with a semiconductor electronic switch.

この場合には直流界磁を回転子側に設けるので、原理的
には同期電動機の固定子励磁巻線に半導体電子スイッチ
回路を追加した構造に々る。これに対して誘導電動機は
同期電動機の場合の固定子側励磁巻線に電磁結合を有す
る2次巻線を回転子側に設けるので両巻線の関係は変圧
器に相当し、同期電動機とは構造原理が相違する。然し
何れの電動機でも固定子と回転子にある磁極間に働く電
磁的吸引力が回転力になり、直流電動機では電機子に、
同期電動機では固定子に、誘導電動機では回転子に、夫
々発生する回転磁界の回転速度が変化して回転数が加減
される。これは回転磁界を発生する交流電圧の周波数を
変えて回転数が制御されると言ってもよい。従って共通
的な性質は起動時並に回転数が著しく低い時には、交流
電圧の周波数が減少するので磁化電流が異常に増加する
ことである。また異常々磁化電流を制限すれば回転力不
足が発生して回転が不安定になる欠点がある。この弊害
を避けるには増速歯車を併用して、サーボモーターの平
均回転数を高く使用せねばならないが、低速時の回転力
特性が改善される訳ではない。
In this case, since the DC field is provided on the rotor side, the principle is that a semiconductor electronic switch circuit is added to the stator excitation winding of the synchronous motor. On the other hand, in an induction motor, a secondary winding with electromagnetic coupling is provided on the rotor side to the excitation winding on the stator side in the case of a synchronous motor, so the relationship between both windings corresponds to a transformer. The structural principles are different. However, in any electric motor, the electromagnetic attractive force acting between the magnetic poles of the stator and rotor becomes rotational force, and in a DC motor, the armature
The rotational speed of the rotating magnetic field generated in the stator of a synchronous motor and the rotor of an induction motor changes to adjust the number of rotations. This can be said to be that the rotational speed is controlled by changing the frequency of the alternating current voltage that generates the rotating magnetic field. Therefore, a common characteristic is that when the rotational speed is extremely low, such as during startup, the frequency of the alternating current voltage decreases, so that the magnetizing current increases abnormally. Further, if the abnormal magnetizing current is limited, there is a drawback that insufficient rotational force occurs and rotation becomes unstable. To avoid this problem, it is necessary to use a speed-increasing gear to increase the average rotational speed of the servomotor, but this does not improve the rotational force characteristics at low speeds.

本発明は従来の電動機にある上記の欠陥を除くのが目的
で、特に起動時並に低回転数に於け、る優れた回転力特
性を特長とする新しい交流電動機の開発に係るものであ
る。その基本原理は回転磁界を発生する交流電圧の周波
数変化が回転力に与える従来の電動機の悪影響を絶ち切
る方法であり、通信技術の常識である変調型搬送波を導
入してこれを可能にしている。従って構造的にも動作原
理に於ても従来の交流電動とは相異する。第1図は簡単
な実施例でこれを具体的に説明するために示した各巻線
配置の略図である。即ち巻線軸が互に垂直に交叉する2
組の励磁巻線(11(21を有し、とれらを同一周波数
の交流電圧で励磁する場合には、合成磁界の方向が夫々
の励磁電圧の大きさで変化する。合成磁界と一方の励磁
巻線(1)が発生する磁界との方向が作る電気角をθと
仮定し、両巻線の電圧瞬時値を夫々画θ並にmθに従っ
て変化させれば合成磁界は回転磁界になる。第2図の点
線(3)並に(4)で示す波形がこの場合の励磁電圧に
相当し、相互間には90°の位相差がある。壕だ実線(
5)並に(6)は同じ位相と周波数を有する搬送波電圧
を振幅変調した波形で、その波高値は夫々点線(3)並
に(4)の瞬時値に一致するものと仮定する。本発明に
於ては第1図の励磁巻線tl) +21に夫々第2図の
変調波電圧(5) (6)を加えて使用されるが、回転
磁界の瞬時値は一定ではなく、搬送周波数で断続される
形で交番磁界になり、これが変調周波数で回転されるこ
とになる。従って仮りに交番回転磁界と呼びこれを使用
した電動機を変調駆動型電動機と呼ぶことにする。両巻
線+11 +21の磁化電流は(51(f3)に従って
波高値が変化しても合成磁界である交番回転磁界の波高
値は常に一定になる。第1図の場合に励磁巻線(1)+
21は固定子側にあり、これに電磁結合される2次巻線
(7)を回転子側に設ければ、2次巻線の短絡回路には
誘起電圧が発生して短絡電流が流れる。この短絡電流は
搬送周波数を有するもので、交番磁界との間で電磁力を
発生して回転力になる。然し誘起電圧の大きさは両巻線
の相対位置で相異し、2次巻線(力の軸が交番磁界の方
向に垂直になる位置では発生しないが、平行に々る位置
では最大になる。即ち回転力は短絡電流が流れなくなる
安定位置を占めようとする性質がある。また励磁巻線と
2次巻線の関係は変圧器に相当するもので密接な電磁結
合で強力な回転力が得られる。これは第3図の方法で確
かめられるが、第3図に示す断面図に於て鉄心閉磁路(
8)の中央部に空隙を設け、この空隙内には回転軸が軸
受(9)I f101$支えられる回転可能な短絡巻線01)が挿入
されている。鉄心磁路(8)に施される2個の励磁巻線
+121 (131を直列にして、交流電圧でこれを励
磁すれば、空隙に発生する交番磁界は短絡回路に電流を
流して回転力が得られる。この回転力は短絡電流が減少
する安定位置まで短絡巻線(11)を回動させることが
実験的に確められている。更に外力で強制的に短絡巻線
(lli安定位置から何れの方向に偏位させても、安定
位置を占める方向の復元力を有することも実験によって
確められている。この場合の交番磁界を回転させるのが
交番回転磁界であるから、第1図の場合の2次巻線(力
が交番回転磁界に追縦して同期運転されることは極めて
明瞭である。交番磁界は方向が常に回転子の中心軸の方
向にあって、2次巻線(力の中心点を通過しているので
、交番磁界の方向が変っても安定位置を常に維持する力
が回転子の同期回転力として利用されることになる。
The purpose of the present invention is to eliminate the above-mentioned defects in conventional electric motors, and it relates to the development of a new AC electric motor that is characterized by excellent rotational force characteristics, especially at startup and at low rotational speeds. . The basic principle is a way to eliminate the negative influence of conventional electric motors on rotational force due to frequency changes in the alternating current voltage that generates the rotating magnetic field, and this is made possible by introducing a modulated carrier wave, which is common knowledge in communication technology. . Therefore, both in structure and operating principle, it is different from conventional AC electric motors. FIG. 1 is a schematic diagram of each winding arrangement shown in a simple embodiment for specifically explaining the same. In other words, the winding axes cross each other perpendicularly.
When a set of excitation windings (11 (21) are excited with an alternating current voltage of the same frequency, the direction of the combined magnetic field changes depending on the magnitude of each excitation voltage. Assuming that the electrical angle formed by the direction of the magnetic field generated by the winding (1) is θ, if the instantaneous voltage values of both windings are changed according to the image θ and mθ, the combined magnetic field becomes a rotating magnetic field. The waveforms shown by dotted lines (3) and (4) in Figure 2 correspond to the excitation voltage in this case, and there is a phase difference of 90° between them.
It is assumed that 5) and (6) are waveforms obtained by amplitude modulating carrier voltages having the same phase and frequency, and that their peak values match the instantaneous values of dotted lines (3) and (4), respectively. In the present invention, modulated wave voltages (5) and (6) shown in Fig. 2 are added to the excitation winding tl) +21 shown in Fig. 1, respectively, but the instantaneous value of the rotating magnetic field is not constant, This results in an alternating magnetic field that is interrupted by the frequency and is rotated at the modulation frequency. Therefore, we will call it an alternating rotating magnetic field and a motor using this field will be called a modulation drive type motor. Even if the peak value of the magnetizing current of both windings +11 and +21 changes according to (51(f3)), the peak value of the alternating rotating magnetic field, which is the composite magnetic field, is always constant.In the case of Fig. 1, the exciting winding (1) +
21 is on the stator side, and if a secondary winding (7) electromagnetically coupled to this is provided on the rotor side, an induced voltage will be generated in the short circuit of the secondary winding and a short circuit current will flow. This short circuit current has a carrier frequency and generates an electromagnetic force between it and the alternating magnetic field, resulting in a rotational force. However, the magnitude of the induced voltage differs depending on the relative position of both windings, and it does not occur in the secondary winding (where the axis of force is perpendicular to the direction of the alternating magnetic field, but it is maximum in the position where the axis of force is parallel to the direction of the alternating magnetic field). In other words, the rotational force has the property of trying to occupy a stable position where short circuit current no longer flows.Also, the relationship between the excitation winding and the secondary winding is equivalent to that of a transformer, and a strong rotational force is generated due to close electromagnetic coupling. This can be confirmed by the method shown in Figure 3, but in the cross-sectional view shown in Figure 3, the iron core closed magnetic path (
A space is provided in the center of the winding 8), and a rotatable short-circuit winding 01) whose rotating shaft is supported by a bearing (9) is inserted into this space. If the two excitation windings +121 (131) applied to the iron core magnetic path (8) are connected in series and excited with an alternating current voltage, the alternating magnetic field generated in the air gap will cause a current to flow through a short circuit and a rotational force will be generated. It has been experimentally confirmed that this rotational force rotates the short-circuit winding (11) to a stable position where the short-circuit current decreases.Furthermore, the short-circuit winding (11) is forcibly rotated from the stable position by an external force. It has also been confirmed through experiments that no matter which direction it is deflected, it has a restoring force in the direction that occupies a stable position.Since it is an alternating rotating magnetic field that rotates the alternating magnetic field in this case, as shown in Figure 1. It is very clear that the secondary winding in the case of (Since it passes through the center of force, the force that always maintains a stable position even if the direction of the alternating magnetic field changes is used as the synchronous rotational force of the rotor.

この場合に回転子の機械的負荷は2次巻線(7)の安定
位置からの偏差角、従って短絡電流の値を支配し、更に
励磁巻線(11[2+の負荷電流を変化させる訳である
。負荷が増加すれば自然に短絡電流が増加して、負荷に
平衡するために回転力を強めるが、これは回転数には直
接関係しない。
In this case, the mechanical load on the rotor governs the angle of deviation of the secondary winding (7) from its stable position, and thus the value of the short-circuit current, and also changes the load current of the excitation winding (11 [2+). Yes, as the load increases, the short circuit current naturally increases, increasing the rotational force to balance the load, but this is not directly related to the rotation speed.

従って従来の電動機の欠陥である起動盤に低回転数に於
ける回転力不足は、これによって除かれ、これが本発明
の優れた特長でもある。然し負荷に伴い上記の偏差角は
増加するが、励磁巻線の極数を増加することによって偏
差角を減少できる。次に励磁巻線の磁化電流に与える周
波数の影響は搬送周波数によって決り変調周波数ではな
い。例えば第2図で任意の瞬間に変調波形の変化を中止
して、搬送波形の波高値が一定の連続波形になっても、
磁化電流が異常に増加することはない。また短絡電流の
作用は失われないから回転力は存在し、瞬時的に電動機
を止めたり、断続運転を行わせることもできる。これが
従来の電動機とは異る点で、これ捷では殆んど期待でき
なかった欠陥の排除を可能にしたことになる。
Therefore, the lack of rotational force of the starting board at low rotational speeds, which is a defect of conventional electric motors, is thereby eliminated, and this is also an excellent feature of the present invention. However, although the deviation angle increases with load, it can be reduced by increasing the number of poles of the excitation winding. Next, the influence of frequency on the magnetizing current of the excitation winding is determined by the carrier frequency and not by the modulation frequency. For example, in Figure 2, even if the change in the modulation waveform is stopped at an arbitrary moment and the carrier waveform becomes a continuous waveform with a constant peak value,
The magnetizing current does not increase abnormally. Furthermore, since the effect of the short-circuit current is not lost, rotational force is present, and the motor can be stopped instantaneously or operated intermittently. This is different from conventional electric motors, and makes it possible to eliminate defects that could hardly be expected with this method.

要するに変調駆動型電動機は同期電動機の同期的駆動特
性を備えているが、回転子側には直流励磁巻線も永久磁
石もないから、構造的には寧ろヒステリシス電動機に近
い。ヒステリシス電動機の回転子は円筒状磁性材料だけ
から成り、これが回転磁界で磁化され乍ら同期運転が行
われる。この回転子は磁界が励磁巻線によって作られる
が、変調駆動型電動機の回転子も交番磁界が同様に励磁
巻線によって作られる。短絡巻線はあってもその電流が
発生する起磁力は変圧器の場合と同じように励磁巻線の
負荷電流によって相殺されるから、交番磁界には変化が
なく、この意味で短絡巻線の存在には関係が無い。然し
第3図の原理によって交番磁界の方向に対して短絡巻線
の位置が規正される平衡作用が働くので強力な同期化力
が追加されている。或はヒステリシス電動機に一種の交
流電磁石を利用した強力な同期化力を与えたものが変調
駆動型電動機であると考えることもできる。特に搬送周
波数をヒステリシス電動機の励磁巻線に加える交流電圧
の周波数と一致させれば、当然回転数は著しく下る性質
がある。然し増速歯車を使用し々い直接駆動方式のサー
ボモーターにとっては、寧ろこれが適していると言える
。サーボモーターでは歯車の摩耗が避けられないので、
最近これを除いた直接駆動方式が採用される気運もある
。両者の場合の回転数を一致させるには、相対的に搬送
周波数を増加すればよい訳で、これは容易である許りで
なく搬送電源は単相電源であって設備が比較的簡単にな
る。第1図の場合には2組の巻線で回転磁界が得られた
が、6相若くは多相励磁巻線を使用する回転磁界発生に
ついても本発明の原理に相異はない。構造的には回転子
に外部から電流を導くことを避けるために短絡2次巻線
を利用しているが、これまでの説明では専らこの場合だ
けが対象になっている。然し実際には力率並に回転力の
補償用として適当なインピーダンスを2次巻線に負荷し
たり整流器を介入することもできる。例へば整流器を短
絡回路に直列に挿入して、電流に含まれる直流分と交番
磁界の直流磁界成分との間の電磁力を従来の同期電動機
として同時に併用する方法がある。
In short, a modulation drive motor has the synchronous drive characteristics of a synchronous motor, but since there is no DC excitation winding or permanent magnet on the rotor side, it is structurally closer to a hysteresis motor. The rotor of a hysteresis motor consists solely of a cylindrical magnetic material, which is magnetized by a rotating magnetic field and operates synchronously. In this rotor, the magnetic field is created by the excitation winding, but in the rotor of a modulation drive motor, the alternating magnetic field is likewise created by the excitation winding. Even if there is a shorted winding, the magnetomotive force generated by the current is canceled out by the load current of the excitation winding, just as in the case of a transformer, so there is no change in the alternating magnetic field, and in this sense, the shorted winding It has nothing to do with existence. However, due to the principle of FIG. 3, a strong synchronizing force is added because of the balancing effect that regulates the position of the shorted winding with respect to the direction of the alternating magnetic field. Alternatively, a modulation drive type motor can be considered to be a hysteresis motor that is given a strong synchronizing force using a type of AC electromagnet. In particular, if the carrier frequency is made to match the frequency of the alternating current voltage applied to the excitation winding of the hysteresis motor, the rotational speed naturally tends to drop significantly. However, it can be said that this is more suitable for direct drive type servo motors that often use speed increasing gears. Since gear wear is unavoidable in servo motors,
Recently, there are signs that a direct drive system other than this is being adopted. In order to match the rotation speed in both cases, it is only necessary to relatively increase the carrier frequency, which is not easy, but the carrier power source is a single-phase power source, which makes the equipment relatively simple. . In the case of FIG. 1, a rotating magnetic field was obtained with two sets of windings, but the principle of the present invention is the same even when generating a rotating magnetic field using six-phase or multi-phase excitation windings. Structurally, a short-circuited secondary winding is used to avoid introducing current into the rotor from the outside, but the explanation so far has focused exclusively on this case. However, in reality, it is also possible to load an appropriate impedance to the secondary winding or intervene with a rectifier to compensate for the power factor and rotational force. For example, there is a method in which a rectifier is inserted in series in a short circuit, and the electromagnetic force between the DC component included in the current and the DC magnetic field component of the alternating magnetic field is simultaneously used as a conventional synchronous motor.

次にサーボモーターの連応性は回転子の慣性と回転数に
よって大きく相異し、これらを減少する必要がある。−
1だ慣性を減少するには小形化と軽量化が必要である。
Next, the responsiveness of a servo motor varies greatly depending on the inertia and rotational speed of the rotor, and these must be reduced. −
To reduce inertia by 1, it is necessary to reduce the size and weight.

一般に従来の電動機でも電源周波数を増加して小形軽量
化されるのは常識であるが、同時に回転数も増加してサ
ーボモーターが蓄積する慣性エネルギー増加が連応性を
阻害する反面があるので実際には採用されない。これに
対して変調駆動型電動機では既述のように搬送周波数の
増加は回転数に無関係であるから、任意に周波数を上げ
て小形軽量化できる特長がある。然し周波数の増加によ
ってインピーダンス降下が増加することは高周波変圧器
の場合と同様で、無制限に周波数を増加できる訳でtf
′i々い。短絡2次巻線に適轟なインピーダンスを負荷
して共振作用を利用し乍ら短絡電流の減少を防がねばな
らない場合もある。更に磁気回路に高周波用圧粉成型磁
性材料を採用すれば、従来の電動機の積層型珪素鋼板と
の比重の差で余分に軽量化が可能である。例えばフェラ
イト系磁性材料では電動機を30%以上軽量化できる見
込がある。まだ成型鉄心は電動機の組立てを簡単にする
ので、間接的に電動機の経済生産を可能にしたり、ロボ
ット生産を容易にする別の効果もある。特に直接駆動方
式では平均回転数が低くなるので、更に搬送周波数の増
加で鉄心の小形軽量化と圧粉成型磁性材料の比重の減少
との相乗効果を利用して、回転慣性エネルギーを著しく
減少することができるので理想的なサーボモーターの実
現が可能になる。これは従来の電動機では不可能である
が、変調駆動型電動機の回転力特性と小形軽量化の可能
性によってのみ期待できる特長である。また本発明の動
作原理は波形歪が少く損失が少いために高能率の性能が
これを助ける面もあることを附は加えねばなら々い。
It is common knowledge that conventional electric motors can be made smaller and lighter by increasing the power frequency, but at the same time the rotational speed increases and the inertial energy accumulated by the servo motor impedes coordination, so this is not practical. will not be adopted. On the other hand, in a modulation drive type electric motor, as mentioned above, the increase in carrier frequency is unrelated to the number of revolutions, so it has the advantage that the frequency can be increased arbitrarily to make the motor smaller and lighter. However, the impedance drop increases as the frequency increases, as in the case of high-frequency transformers, and since the frequency can be increased without limit, tf
It's so cool. In some cases, it may be necessary to load the short-circuit secondary winding with a suitable impedance to take advantage of the resonance effect while preventing the short-circuit current from decreasing. Furthermore, if a high-frequency powder-molded magnetic material is used in the magnetic circuit, the weight can be reduced due to the difference in specific gravity from the laminated silicon steel plates of conventional motors. For example, ferrite-based magnetic materials are expected to reduce the weight of electric motors by more than 30%. In addition, the molded iron core simplifies the assembly of the electric motor, which indirectly enables economical production of electric motors and facilitates robot production. In particular, since the average rotational speed is low in the direct drive system, the rotational inertia energy can be significantly reduced by increasing the carrier frequency, making use of the synergistic effect of reducing the size and weight of the iron core and reducing the specific gravity of the compacted magnetic material. This makes it possible to create an ideal servo motor. This is not possible with conventional electric motors, but it is a feature that can only be expected due to the rotational force characteristics of modulation drive type electric motors and the possibility of making them smaller and lighter. It must be added that the operating principle of the present invention is that the waveform distortion is low and the loss is low, so the high efficiency performance helps in this respect.

結論として変調駆動型電動機は性能上では回転力特性が
優れ、連応性を向上し、高能率で、同期運転が行われる
のでデジタル制御には最も適している。これが間接的に
電源用の電子装置並に増幅器の製作を容易にする効果が
ある。また構造上では整流子並にスリップリング等の機
械的導電部分を一切必要とせず構造が簡単に々るので信
頼度を向上できる利点があり、電動機の容量にも制限を
受けない。特にその動作原理に於て従来の電動機の欠陥
を抜本的に排除できる理論的根拠を提供する意義は大き
いと言える。
In conclusion, modulation drive motors have excellent torque characteristics, improved coordination, high efficiency, and synchronous operation, making them the most suitable for digital control. This indirectly has the effect of facilitating the manufacture of electronic devices for power supplies as well as amplifiers. In addition, since the structure is simple and does not require any mechanical conductive parts such as commutators or slip rings, it has the advantage of improving reliability and is not limited by the capacity of the motor. In particular, it can be said that it is of great significance to provide a theoretical basis that can fundamentally eliminate the defects of conventional electric motors in terms of its operating principle.

従って広く一般制御装置の技術水準向上のための実施効
果と期待も大きいことが指摘できる。
Therefore, it can be pointed out that there are great implementation effects and expectations for improving the technical level of general control equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は簡単な巻線配置の略図で示した本発明の一実施
例で、第2図はその場合の交番回転磁界発生に必要な互
に垂直に交叉する2組の励磁巻線の電圧の変調波形、第
3図は励磁巻線に電磁結合される短絡2次巻線が交番磁
界から受ける回転力を説明するための参考図′ヤあって
、flN21・・・・・・・・・・・・固定子側励磁巻
線、f3)(4)・・・・・・・・・・・・・・・従来
の交流電動機が回転磁界発生に必要な交流電圧波形、(
5)(6)・・・・・・・・・・・・本発明が交番回転
磁界発生に必要な交流電圧波形、(力・・・・・・・・
・・・・本発明の励磁巻線に電磁結合を有する回転子側
短絡2次巻線、(8)・・・・・・・・・・・・参考図
の鉄心磁路、(9)(101・・・・・・・・・・・・
・・・鉄心磁路の空隙に回転軸を支える軸受、(I9・
・・・・・・・・・・・・・・・・・・回転軸に直結さ
れる短絡巻線、Q2 +l渇・・・・・・・・・・・・
・・・・・・・鉄心磁路を励磁する励磁巻線。 特許出願人  武  隆志 手続補正書(方式) 昭和58年3月16日 1、事件の表示  昭オロ57年特許願第188838
号2、発明の名称 変調駆動型交流電動機   ・3、
補正をする者 電話 (03)4 ] 4−5080 4、補正命令の日付  昭和58年2月2日5、補正命
令発送日  昭和58年2月22日6、補正の対称  
図面の簡単な説明 7、補正の内容 明細書の第13頁上から2行目の「回転力を説明するた
め手  続  補  正  書 昭和59年1月2ρ日 1、事件の表示 昭和57年特許願第188838号 2、発明の名称 変調駆動型交流電動機 3、補正をする者 事件との関係  特許出願人 セ タ ガヤクダイタ (住所)東京都世田谷区代田5丁目20番13号電話(
03)(414)5080 4、補正の対象  明細書 訂  正  個  所 1. 1頁14行目のrlJを「従」に訂正2.2頁3
行目の「縦」を「従」に訂正3.2頁7行目の「の連応
性は」を「は連応性が」に訂正 4.3頁6行目の「従って」を削除 5.3頁7乃至8行目の「交流電圧の用波数が減少する
ので磁化」ヲ[電源電圧が一定在らば起動]に訂正 6.3頁9行目の「磁化」を削除 73頁11行目の「この弊害を避ける」ヲ「一般に電動
機」に訂正 8.4頁7行目の「同一周波数」の次に「並に位相」を
挿入 9.5頁2行目の「交番磁界」の前に「その交流成分は
」を挿入 】0.5頁14行目の「の大きさは両巻線の相対位置で
相異し」を「は」に訂正 11.6頁16行目の「縦」を「従」に訂正12、 9
 頁3 行目の1ヒステリシス」を「同期」に訂正 13.100頁4行目「交番磁界の直流磁界成分」を「
第2図(5)(6)に含まれる変調波成分が発生する回
転磁界」に訂正 14.100頁8行目「回転数」を「回転力」に、「こ
れら」ヲ「慣性」に夫々訂正 15.11頁18行目の「の可能性」を削除16.13
頁18行目の「参考図の」を削除(以 上) 手続補正書 特許庁長官殿 1、事件の表示  昭和57年特許願第188838号
2、発明の名称  変調駆動型交流電動機3、補正する
者 事件との関係  特許出願人   ′ 4、補正命令の日付 昭和59年2月24日 (発送日 昭和59年2月28日) 5、補正の対象 昭和59年1月20日提出の手続補正書の補正対象欄6
、補正の内容 手続補正指令書に基き、昭和59年1月20日提出の手
続補正書に添付した訂正個所の内の1項並に16項を別
紙の通り補゛′−1 正(内容に変更なし)。            1.
、l’、i5G、 3.28 別   紙 1゜ 2、特許請求の範囲 (1)任意の周期で振幅変調できる所定周波数搬送波交
流電圧で励磁される固定子側励磁巻線と励磁巻線に電磁
結合を有する回転子側短絡2次巻線とから成り、搬送周
波数と変調周波数が磁気回路に発生する2組の磁界の内
、変調周波数で回転磁界を構成するに必要な励磁巻線配
置と搬送周波数の電磁誘導作用によって短絡電流を流す
に必要な2次巻線配置とを備え、短絡電流が界磁との間
で発生する電磁力を利用し乍ら回転子を回転磁界に同期
的に追従させ、且つ変調周波数を変えて回転数を加減す
ることを特長とする変調駆動型交流電動機。 (2)変調駆動型交流電動機に於ける搬送周波数が回転
数に影響を及ぼさない特性を利用して、その周波数を増
加することにより小形軽量化を可能にした電動機の構造
。 16″                      
                       カリ
13頁8行目の「参考図の」を\除。
Fig. 1 shows an embodiment of the present invention shown in a simple diagram of the winding arrangement, and Fig. 2 shows the voltages of two sets of excitation windings that intersect perpendicularly to each other, which are necessary to generate an alternating rotating magnetic field. The modulation waveform of FIG. 3 is a reference diagram for explaining the rotational force that the short-circuited secondary winding that is electromagnetically coupled to the excitation winding receives from the alternating magnetic field, flN21...・・・Stator side excitation winding, f3) (4) ・・・・・・・・・・・・・・・AC voltage waveform required for a conventional AC motor to generate a rotating magnetic field, (
5)(6)・・・・・・・・・The present invention uses the AC voltage waveform and (force) necessary for generating an alternating rotating magnetic field.
...Rotor side short-circuited secondary winding having electromagnetic coupling to the excitation winding of the present invention, (8) ...... Iron core magnetic path in the reference diagram, (9) ( 101・・・・・・・・・・・・
...Bearing that supports the rotating shaft in the air gap of the iron core magnetic path, (I9・
・・・・・・・・・・・・・・・ Short-circuited winding directly connected to the rotating shaft, Q2 +l dry ・・・・・・・・・・・・
・・・・・・Excitation winding that excites the iron core magnetic path. Patent Applicant Takashi Take Procedural Amendment (Method) March 16, 1981 1, Case Description 1982 Patent Application No. 188838
No. 2, Title of the invention Modulation drive type AC motor ・3,
Phone number of the person making the amendment: (03) 4] 4-5080 4. Date of amendment order: February 2, 1980 5. Date of sending of amendment order: February 22, 1980 6. Target of amendment
Brief explanation of the drawings 7, ``Procedures to explain rotational force'' in the second line from the top of page 13 of the specification of the contents of the amendment Amendment document January 2nd, 1980 1, Indication of the case 1982 patent Application No. 188838 2, Name of the invention Modulation drive type AC motor 3, Relationship with the amended case Patent applicant Seta Gayakudaita (Address) 5-20-13 Daita, Setagaya-ku, Tokyo Telephone (
03) (414) 5080 4. Subject of amendment Specification correction Part 1. Correct rlJ in line 14 of page 1 to “follow” 2. Page 2 3
Corrected "vertical" to "subordinate" in line 3. Corrected "correspondence of" in line 7 of page 2 to "correspondence of" 4. Delete "therefore" in line 6 of page 3. 5. 6. Corrected "Magnetization because the wave number of AC voltage decreases" in lines 7 to 8 on page 3 to [starts up if the power supply voltage remains constant] 6. Delete "magnetization" on line 9 on page 3, line 11 on page 73 8. Insert “common phase” after “same frequency” in line 7 on page 4. 9. Add “alternate magnetic field” in line 2 on page 5. Insert "The alternating current component is" in front] 0.5, line 14, "The size of is different depending on the relative position of both windings" is changed to "ha" 11.6, line 16, "is" Corrected “vertical” to “subordinate” 12, 9
Page 3, line 1 hysteresis" was corrected to "synchronization" 13. Page 100, line 4, "DC magnetic field component of alternating magnetic field" was changed to "
Corrected to "Rotating magnetic field generated by modulated wave components included in Figure 2 (5) and (6)" 14. On page 100, line 8, "rotational speed" is replaced with "rotational force", and "these" are replaced with "inertia", respectively. Correction 15. Delete “possibility” on page 11, line 18 16.13
Delete “Reference figure” on page 18 line (above) Procedural amendment to the Commissioner of the Japan Patent Office 1, Indication of case: Patent Application No. 188838 of 1982, 2, Title of invention Modulation drive type AC motor 3, Amended Relationship with the patent applicant's case 4. Date of amendment order: February 24, 1980 (Delivery date: February 28, 1980) 5. Subject of amendment: Procedural amendment filed on January 20, 1980 Correction target column 6
Based on the instruction for amending the content of the amendment, paragraphs 1 and 16 of the corrections attached to the procedural amendment submitted on January 20, 1980, have been amended as shown in the attached document. No change). 1.
, l', i5G, 3.28 Attachment 1゜2, Claims (1) An electromagnetic coil is connected to the stator-side excitation winding and the excitation winding, which are excited by a predetermined frequency carrier AC voltage that can be amplitude modulated at any period. The excitation winding arrangement and transport necessary to form a rotating magnetic field at the modulation frequency of two sets of magnetic fields generated in the magnetic circuit with a carrier frequency and a modulation frequency. Equipped with a secondary winding arrangement necessary to flow a short-circuit current by the electromagnetic induction effect of the frequency, the rotor follows the rotating magnetic field synchronously while utilizing the electromagnetic force generated between the short-circuit current and the field. A modulation drive type AC motor characterized by adjusting the rotation speed by changing the modulation frequency. (2) A motor structure that makes it possible to reduce the size and weight by increasing the frequency by utilizing the characteristic that the carrier frequency in a modulation drive type AC motor does not affect the rotation speed. 16″
Remove ``reference figure'' on page 13, line 8.

Claims (2)

【特許請求の範囲】[Claims] (1)任意の周期で振幅変調できる所定周波数搬送波交
流電圧で励磁される固定子側励磁巻線と励磁巻線に電磁
結合を有する回転子側短絡2次巻線とから成9、搬送周
波数と変調周波数が磁気回路に発生する2組の界磁の内
、変調周波数で回転磁界を構成するに必要な励磁巻線配
置と搬送周波数の電磁誘導作用によって短絡電流を流す
に必要な2次巻線配置とを備え、短絡電流が界磁との間
で発生する電磁力を利用し乍ら回転子を回転磁界に同期
的に追縦させ、且つ変調周波数を変えて回転数を加減す
ることを特長とする変調駆動型交流電動機っ
(1) Consisting of a stator-side excitation winding excited with a predetermined frequency carrier AC voltage whose amplitude can be modulated at any period, and a rotor-side short-circuited secondary winding having electromagnetic coupling to the excitation winding, the carrier frequency and Among the two sets of fields generated in the magnetic circuit at the modulation frequency, the excitation winding arrangement is necessary to form a rotating magnetic field at the modulation frequency, and the secondary winding is necessary to flow a short-circuit current through the electromagnetic induction effect of the carrier frequency. The rotor is made to follow the rotating magnetic field synchronously by using the electromagnetic force generated between the short-circuit current and the field, and the number of rotations is adjusted by changing the modulation frequency. A modulation-driven AC motor with
(2)変調駆動型交流電動機に於ける搬送周波数が回転
数に影響を及ぼさない特性を利用して、その周波数を増
加することにより小形軽量化を可能にした電動機の構造
(2) A motor structure that makes it possible to reduce the size and weight by increasing the frequency by utilizing the characteristic that the carrier frequency in a modulation drive type AC motor does not affect the rotation speed.
JP57188838A 1982-10-27 1982-10-27 Modulation drive type ac motor Pending JPS59149786A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57188838A JPS59149786A (en) 1982-10-27 1982-10-27 Modulation drive type ac motor
EP83306542A EP0110561B1 (en) 1982-10-27 1983-10-27 Rotary machine system having an electric motor controlled by a modulated exciting voltage
DE8383306542T DE3376173D1 (en) 1982-10-27 1983-10-27 Rotary machine system having an electric motor controlled by a modulated exciting voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57188838A JPS59149786A (en) 1982-10-27 1982-10-27 Modulation drive type ac motor

Publications (1)

Publication Number Publication Date
JPS59149786A true JPS59149786A (en) 1984-08-27

Family

ID=16230722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57188838A Pending JPS59149786A (en) 1982-10-27 1982-10-27 Modulation drive type ac motor

Country Status (1)

Country Link
JP (1) JPS59149786A (en)

Similar Documents

Publication Publication Date Title
US4896063A (en) Electromagnetic induction devices with multi-form winding and reflected magnetizing impedance
US4446416A (en) Polyphase electric machine having controlled magnetic flux density
Yang et al. Design synthesis of switched flux hybrid-permanent magnet memory machines
CN110829662B (en) Parallel structure hybrid excitation brushless motor and power generation system thereof
CN105305757B (en) Double cross hybrid excitation motor
US20060097594A1 (en) Synchronous electrical machine comprising a stator and at least one rotor, and associated control device
US20150008777A1 (en) Synchronous electric machine
WO2022161375A1 (en) Rotor magnetic pole modulation-type induction hybrid excitation brushless motor and power generation system
CN110739891B (en) Electric excitation synchronous reluctance brushless power generation system
Liu et al. Winding configurations and performance investigations of 12-stator pole variable flux reluctance machines
Saeed et al. Design and analysis of dual rotor multi-tooth flux switching machine for wind power generation
CN113489178B (en) Wide-area-running alternating pole type permanent magnet auxiliary synchronous reluctance motor
Chiba et al. Effects of magnetic saturation on radial force of bearingless synchronous reluctance motors
US9831753B2 (en) Switched reluctance permanent magnet motor
Shriwastava et al. Literature review of permanent magnet AC motors and drive for automotive application
Broadway et al. Brushless stator-controlled synchronous-induction machine
Pratap et al. Compensation in pulsed alternators
CN111953163B (en) Multiphase permanent magnet synchronous motor system and magnetic field adjusting method thereof
JPS59149786A (en) Modulation drive type ac motor
CN101976923A (en) Hybrid excitation permanent magnet motor with secondary harmonic excitation
JP2002034182A (en) Motor rotor and manufacturing method therefor, induction motor, and synchronous motor
CN113131491B (en) Reactive power regulation method and device for phase modulator rotor in static state
Moncada et al. Saliency analysis of PM machines with flux weakening capability
Rao et al. Brushless induction synchronous generator
Shibata et al. Performance of induction motor with free-rotating magnets inside its rotor