JPS59149650A - Lead storage battery - Google Patents

Lead storage battery

Info

Publication number
JPS59149650A
JPS59149650A JP58024091A JP2409183A JPS59149650A JP S59149650 A JPS59149650 A JP S59149650A JP 58024091 A JP58024091 A JP 58024091A JP 2409183 A JP2409183 A JP 2409183A JP S59149650 A JPS59149650 A JP S59149650A
Authority
JP
Japan
Prior art keywords
battery
pressure
spacer
electrode plate
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58024091A
Other languages
Japanese (ja)
Inventor
Takao Ozaki
隆生 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58024091A priority Critical patent/JPS59149650A/en
Publication of JPS59149650A publication Critical patent/JPS59149650A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/16Suspending or supporting electrodes or groups of electrodes in the case
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To obtain a lead storage battery employing paste type positive electrodes with virtually the same life span as the life span of the battery employing clad type positive electrodes, by providing pressure spacers made of an acidproof resin, each having a hollow portion, disposed at both sides within each cell and sealing compressed air in the hollow portion of the spacer for giving pressure on the electrode group. CONSTITUTION:The body of the pressure spacer 1 is made from acidproof soft resin, such as polyethylene or polypropylene, in a bag form. Paste type negative electrode plates 5, paste type positive electrode plates 6, separators 7, and glass mats 8 are arranged one after another, and the lugs 11 of the electrodes of the same polarity are welded into the rack portions 9, and the pressure spacers 1 are put in the battery case 12 at both sides of the electrode group. After the interconnection of the cells are finished and the cover 13 is attached, compressed air is filled in from the end 4 of the tube 3. Then the body of the pressure spacer 1 is inflated and inwardly presses the electrode group. After the air is pressed in, the end 3 of the tube 4 is melted to seal off the pressure spacer, and the tube 3 is pushed inside the cell from the hole 13 provided for fitting in the plug for the electrolyte inlet. The battery is made ready if then the electrolyte is filled in and the battery is charged with electricity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ペースト式極板を用いた鉛蓄電池の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in lead-acid batteries using paste-type plates.

従来例の構成どその問題点 二次電池として長い歴史をもつ鉛蓄電池は、現在でもな
おニッケルーカドミウム電池とともに最も広く用いられ
ている電池である。特に大容量の電池にあっては、新し
い電池系も検討さ:fしてはいるが、電池系としての安
全性9価格、資#を量など総合的な見地から判断する限
り、鉛蓄電池は最もすぐれた電池といえる。
Problems with the structure of conventional examples Lead-acid batteries, which have a long history as secondary batteries, are still the most widely used batteries, along with nickel-cadmium batteries. Especially for large-capacity batteries, new battery systems are being considered, but lead-acid batteries are It can be said to be the best battery.

このようにすぐれた特徴を有する鉛蓄電池ではあるが、
その公魚としては、鉛自体の重量が重く、いわゆるエネ
ルギー密度が低いこと、また過放電。
Although lead-acid batteries have such excellent characteristics,
As a public fish, the weight of lead itself is heavy, so-called low energy density, and over-discharge.

過充電によって反応活物質集電体(格子体)が著しく劣
化すること、電池の寿命が知く、電池交換の費用がかか
ることなどかあげられる。
Overcharging causes significant deterioration of the reactive active material current collector (lattice), increases the battery lifespan, and increases the cost of battery replacement.

鉛蓄電池のこれらの欠点を改良するため、従来いろいろ
な試みがなされてきた。たとえばエネルギー密度を向上
させるため、活物質組成の改良。
Various attempts have been made in the past to improve these drawbacks of lead-acid batteries. For example, improving the active material composition to improve energy density.

電池構成物−たとえば電槽、格子体などの材料の軽量化
か行われ、エネルギー密度は著しく向上した。寸だ、面
1過充電、耐過放電性能を向−ヒさせるため、各種深加
剤あるいは格子体の合金組成について検討かなされ、電
池の寿命は一段と向−ヒした。
The weight of materials used in battery components, such as containers and grids, has been reduced, and energy density has been significantly improved. In order to improve surface 1 overcharge and overdischarge resistance, various deepening agents and alloy compositions of the lattice bodies have been investigated, and battery life has been further improved.

このように鉛蓄電池の改良に対して各種の試みがなされ
るなかにあって、依然として大きな課題として残ってい
るのは、正極板の寿命の問題である。現在実用に供され
ている鉛蓄電池の正極板はペースト式とクラッド式の二
種類である。クラッド式は、その構造から長寿命ではあ
るが、製造が難しく一価格が非常に高いという欠点があ
る。ペースト式はクラッド式にくらべて製造コストが安
価であるが、活物質が膨張、脱落しゃすく電池の寿命が
短い。
While various attempts have been made to improve lead-acid batteries, one major issue that still remains is the lifespan of the positive electrode plate. There are two types of positive electrode plates for lead-acid batteries currently in practical use: paste type and clad type. Although the clad type has a long life due to its structure, it has the disadvantage that it is difficult to manufacture and is extremely expensive. The paste type is cheaper to manufacture than the clad type, but the active material expands and falls off, resulting in a shorter battery life.

従来−ペースト式正極板の欠点、すなわち寿命が短い点
を改良するため、正極板にガラス繊維など耐酸性の材質
からなるマット状のものを配し、このマットの圧力で正
極活物質の脱落を防止していた。このような構成をとる
ことによって、正極板の寿命は著しく向−ヒした。(−
がし−マット状の材質を使い、正極活物質を圧迫し一膨
張、脱落を防止する方法では電池組立時の問題もあり、
クラッド式のチューブのように十分な圧力を加えること
ができず、正極板の寿命はクラッド式の1/2〜4であ
った。
In order to improve the drawback of the conventional paste-type positive electrode plate, namely its short lifespan, a mat-like material made of acid-resistant material such as glass fiber is placed on the positive electrode plate, and the pressure of this mat prevents the positive electrode active material from falling off. It was being prevented. By adopting such a configuration, the life of the positive electrode plate was significantly extended. (−
The method of using a mat-like material to press the positive electrode active material to prevent it from expanding and falling off has problems when assembling the battery.
Unlike clad type tubes, sufficient pressure could not be applied, and the life of the positive electrode plate was 1/2 to 4 times that of clad type tubes.

発明の目的 本発明は、このようなペースト式正極板を用いた鉛蓄電
池の問題点を解消し、鉛蓄電池としての寿命をクラッド
式正極板を用いたそれと同等か−あるいはそれ以上とす
ることを目的とする。
Purpose of the Invention The present invention aims to solve the problems of lead-acid batteries using paste-type positive electrode plates, and to make the life of lead-acid batteries equal to or longer than that of lead-acid batteries using clad-type positive electrode plates. purpose.

発明の構成 上記目的を達成するため本発明は、ペースト式正極板を
用いた極板群を備える単位電池の両側端に、耐酸性樹脂
よりなる中空の加圧スペーサを配し、この加圧スペーサ
の中空部IC圧縮気体を封じて単位電池を圧迫するよう
構成したことを特徴としたものである。
Structure of the Invention In order to achieve the above object, the present invention provides hollow pressurized spacers made of acid-resistant resin at both ends of a unit battery equipped with an electrode plate group using a paste-type positive electrode plate. This device is characterized in that the hollow part of the IC is configured to seal compressed gas and compress the unit battery.

実施例の説明 以下、本発明の詳細は図に示す実施例で説明する。Description of examples Hereinafter, details of the present invention will be explained with reference to embodiments shown in the drawings.

第1図は本発明の実施例における鉛蓄電池に用いる加圧
スペーサを示し1図中1は加圧スペーサ本体で、その材
質は耐酸性を有する柔軟な樹脂。
FIG. 1 shows a pressurized spacer used in a lead-acid battery according to an embodiment of the present invention, and numeral 1 in the figure indicates the pressurized spacer main body, which is made of a flexible acid-resistant resin.

た吉えばポリエチレン又はポリプロピレンよすする。ス
ペーサ本体1(d袋状になっており、上部の開口部2を
通じて、本体1と同材質よりなる管3に連結している。
Preferably polyethylene or polypropylene. A spacer body 1 (shaped like a d-bag) is connected to a tube 3 made of the same material as the body 1 through an opening 2 at the top.

管3は電池組立後その末端4が電池カバーの開口部を通
じて外部に延び出るように十分長く作っておく。なお管
3の末端4は電池組立時には開放しておく。
The tube 3 is made long enough so that its end 4 extends out through the opening in the battery cover after the battery is assembled. Note that the end 4 of the tube 3 is left open when assembling the battery.

第2図、第3図に極板群の斜視図及び側面図を示す。こ
の極板群自体は従来のペースト式鉛蓄電池のそれと変わ
りなく、ペースト式負極板6.ペースト式正極板6.セ
パレータ7、ガラスマット8から構成されている。9は
負極接続棚、10は正極接続棚である。極板群をどのよ
うな状態に組みあげるかは、鉛蓄電池の使用用途によっ
てオΦ々異なってくるが、一般には電槽に極板群を挿入
した際−ある程度の圧力が極板にかかるように士パレー
タ、マット類の厚さを選ぶのが通例である。
FIGS. 2 and 3 show a perspective view and a side view of the electrode plate group. This electrode plate group itself is no different from that of a conventional paste-type lead-acid battery, and the paste-type negative electrode plate 6. Paste type positive electrode plate6. It is composed of a separator 7 and a glass mat 8. 9 is a negative electrode connection shelf, and 10 is a positive electrode connection shelf. The state in which the electrode plates are assembled varies depending on the intended use of the lead-acid battery, but in general, when the electrode group is inserted into the battery case, it is assembled so that a certain amount of pressure is applied to the electrode plates. It is customary to choose the thickness of the pallets and mats.

すなわち、極板群を組みあげた際、その極板群の厚みが
電槽巾よりも広くなるようにセパレータ。
In other words, when assembling a group of electrode plates, the separator is set so that the thickness of the group of electrode plates is wider than the width of the battery case.

マットの厚さを調整する。第2図にはかなり厚いセパレ
ータ、マットを使用して組みあげた極板群の一例を示し
た。この第2図のような極板群にあっては−これを電槽
に入れる際、極板群の両端を強く圧縮して電槽に入れな
ければならない。
Adjust the thickness of the mat. Figure 2 shows an example of a group of electrode plates assembled using fairly thick separators and mats. In the case of the electrode plate group shown in FIG. 2, when it is placed in a battery case, both ends of the electrode plate group must be strongly compressed before being placed in the battery case.

第2図かられかるように、極板の耳部11は他よりも細
くなっており、またその材質も鉛合金であるので極板群
に圧力を加えれば容易に変形する。
As can be seen from FIG. 2, the ear portion 11 of the electrode plate is thinner than the other portions, and since the material thereof is a lead alloy, it easily deforms when pressure is applied to the electrode plate group.

従って極板群に加えた圧力は、正極板と負極板の間に配
したセパレータ、マットにより吸収され一群厚は電槽巾
と等しくなり、極板群の挿入が可能となる。従来より経
験的に電池組立の際−極板特に正極板に圧力を加えた方
が寿命が長く保てることがわかっており、寿命を長くす
ることを考えればできるだけ極板群の厚さを電槽巾に対
し犬きく作り、これを電槽に強制的に押し入れるほうが
良い。しかしながら−実際に電池を組立る工程を考える
と一極板群を強い圧力で締めつけて電槽内に入れなけれ
ばならないので一人手で行うにはおのずと限界があり−
また機械で行うにしても極板を破壊することなく、電槽
に極板群の挿入を行うことはこれ寸でのところ不可能で
ある。どくに人手で極板群の電槽への挿入を行う際、極
板群にかかる圧力がo、 1k”ra 以上となると、
はとんど不可能である。
Therefore, the pressure applied to the electrode plate group is absorbed by the separator and mat placed between the positive electrode plate and the negative electrode plate, and the thickness of the group becomes equal to the battery case width, making it possible to insert the electrode plate group. It has been known from experience that applying pressure to the electrode plates, especially the positive electrode plates, during battery assembly will extend the life of the battery. It is better to make a dog-tight line against the width and force it into the battery container. However, when considering the process of actually assembling a battery, it is necessary to tighten the monopolar plate group with strong pressure and place it into the battery case, so there is a limit to how much it can be done by one person.
Furthermore, even if it were done mechanically, it would be impossible at this scale to insert a group of electrode plates into a battery case without destroying the electrode plates. When manually inserting the electrode plate group into the battery case, if the pressure applied to the electrode plate group exceeds 1k"ra,
is almost impossible.

第4図は前述した加圧スペーサを使って組立てた鉛蓄電
池であり、その加圧前の状態を示す。又第5図はスペー
サに圧縮気体を封じて、極板群全加圧した後の状態を示
した。図中12は電槽、13はふた、14は液栓取付孔
である。
FIG. 4 shows a lead-acid battery assembled using the above-described pressurization spacer, and shows its state before pressurization. Further, FIG. 5 shows the state after the spacer is filled with compressed gas and the entire electrode plate group is pressurized. In the figure, 12 is a battery case, 13 is a lid, and 14 is a liquid stopper mounting hole.

正極板、負極板、セパレータ、マントを順に配して同極
性極板の耳部を溶接して棚部9を形成した後、管3の末
端4を開放した壕まの加圧スペーサ1を極板群の両端に
配して電槽12内に挿入する。この時極板群と加圧スペ
ーサを合わせた厚みが電槽中と同じか−やや狭くなるよ
うにセパレータ、マットの厚さを調整しておく。こうす
ることで極板群の電槽への挿入は極めて簡単に行える。
After placing a positive electrode plate, a negative electrode plate, a separator, and a cape in this order and welding the ears of the same polarity plates to form a shelf 9, the pressurizing spacer 1 in the trench with the end 4 of the tube 3 open is attached to the pole. They are arranged at both ends of the board group and inserted into the battery case 12. At this time, adjust the thickness of the separator and mat so that the combined thickness of the electrode plate group and pressurized spacer is the same as the inside of the battery case, or slightly narrower. This makes it extremely easy to insert the electrode plate group into the battery case.

極板群挿入後−セル間の接続及びふた13の取付は等を
行う。この後液栓取付孔13より加圧スペーサに連結し
ている管3を外部へ引き出し一末端4より圧縮空気を送
り込む。こうすることで電槽内の加圧スペーサ本体1が
電槽と極板群との間で膨張し極板群を圧迫する。加圧ス
ペーサが膨張することによって生じた圧力は、一部は電
槽壁の変形に作用するが、大部分は極板群を圧迫する力
となる。前述したように極板自体はその耳部先端が棚に
溶接されているものの、棚直下の耳部分は容易に変形す
るので、極板群の端の極板は容易に変形し、その圧力を
内側のセパレータ及びマットに伝える。力0圧されるセ
パレータ及びマットは若干圧力を吸収し、吸収しきれな
い分を内側の次の極板に伝え、この一連の現象が順次極
板群の中心部捷で伝わり、加圧スペーサの圧力と均衡す
るところで停止する。このような状態を示したのが第6
図である。加圧スペーサに送り込む空気の圧力は一〇、
05〜1 kg/ra とし、空気圧入後管3の末端4
を溶融するとともに封止する。この後管3を液口栓取付
孔13より電池内部に強制的に押し入れ一電解液を注入
し充電を行って電池とする。なお管3の太さは取付孔1
3より電池内部へ入れやすくするため、細くしておくの
が好寸しい。
After inserting the electrode plate group, the connections between the cells and the lid 13 are performed. Thereafter, the pipe 3 connected to the pressurizing spacer is pulled out from the liquid stopper mounting hole 13 and compressed air is fed from one end 4. By doing so, the pressurizing spacer main body 1 inside the battery case expands between the battery case and the electrode plate group, and presses the electrode plate group. The pressure generated by the expansion of the pressure spacer partially acts on the deformation of the battery case wall, but mostly acts as a force that presses the electrode plate group. As mentioned above, although the tip of the ear of the electrode plate itself is welded to the shelf, the ear directly below the shelf is easily deformed, so the electrode plate at the end of the electrode plate group is easily deformed and the pressure is absorbed. Transfer to the inner separator and mat. The separator and mat subjected to zero pressure absorb some pressure, and the amount that cannot be absorbed is transmitted to the next electrode plate inside, and this series of phenomena is sequentially transmitted to the central part of the electrode plate group, and the pressurized spacer is It stops when the pressure is balanced. The 6th model showed this kind of situation.
It is a diagram. The pressure of the air sent into the pressurized spacer is 10,
05 to 1 kg/ra, and the end 4 of the pipe 3 after air pressure is inserted.
is melted and sealed. After this, the tube 3 is forcibly pushed into the battery through the liquid port attachment hole 13, an electrolytic solution is injected, and the battery is charged. The thickness of tube 3 is the same as that of mounting hole 1.
It is better to make it thinner than 3 to make it easier to insert it inside the battery.

このような本発明の鉛蓄電池の一例として、サイクルサ
ービス用蓄電池EB100形につ藝て以下説明する。厚
さ1mmのポリプロピレン樹脂を使用し、これを袋状に
加圧して加圧スペーサ本体とした。スペーサ本体上部に
は同材質からなる管を溶着して加圧スペーサとした。こ
の加圧スペーサを使って電池を組立てた後、加圧スペー
サ内壁にかかる圧力が大気圧に対し0 、2 kg/c
a となるまで圧縮空気を送り込み封止して電池Aとし
た。この電池を30゛Cの雰囲気中で放電(26Aで3
時間)−充電(18Aで6時間)をくり返し、その容量
変化を測定した。
As an example of such a lead-acid battery of the present invention, a cycle service storage battery EB100 type will be described below. A polypropylene resin having a thickness of 1 mm was used and was pressed into a bag shape to form a pressurized spacer body. A tube made of the same material was welded to the upper part of the spacer body to form a pressurized spacer. After assembling a battery using this pressurized spacer, the pressure applied to the inner wall of the pressurized spacer is 0.2 kg/c relative to atmospheric pressure.
Compressed air was fed into the battery until the battery was sealed, forming a battery A. Discharge this battery in an atmosphere of 30°C (30°C at 26A)
Time)-charging (6 hours at 18 A) was repeated, and the change in capacity was measured.

これと比較のため、従来のEB100形電池B−ならび
に加圧スペーサに入れる圧縮空気圧力を0.05 kg
/ rヂ、 1kg/r4  としたEB1oo形電池
C,Dについても同様の試験を行った。空気の圧力とし
て上記の値を選んだのは、0.05 kg/+4 につ
いてはほぼ従来の蓄電池の極板群にかかる圧力に等しい
ことから−1だ1kg/r4はこれ以上の圧力では圧力
に耐え得る適当なスペーサ材質がないこと、また電槽自
体もこれ以上の圧力に対してはあまりに圧力を高くした
場合は極板間のマットが電解液を保持できなくなり、電
池の劣化をきたすからである。
For comparison, the compressed air pressure put into the conventional EB100 type battery B- and the pressurized spacer was 0.05 kg.
Similar tests were also conducted on EB1OO type batteries C and D, each of which was set at 1 kg/r4. The above value was chosen for the air pressure because 0.05 kg/+4 is approximately equal to the pressure applied to the electrode group of a conventional storage battery, so 1 kg/r4 is approximately equal to the pressure applied to the electrode group of a conventional storage battery. There is no suitable spacer material that can withstand this pressure, and if the pressure is too high for the battery case itself, the mat between the electrode plates will no longer be able to hold the electrolyte and the battery will deteriorate. be.

充放電をくり返した時の容量変化を第6図に示した。加
圧スペーサ内の圧力が0.05kg/ryJの電池Cの
容量の推移は、従来の電池Bとほぼ同等である。また圧
力1kg/Jの電池りの容量は従来の電池Bよりもやや
少い範囲で推移する。ただし寿命末期では容量の低下度
合は、従来の電池Bよりもゆるやかである。圧力o 、
2 kg/ 、、、M■Aでは初期容量は従来電池Bに
くらべやや低いものの容量の低下はほとんどなく、約1
000回の充放電が可能となり、従来電池の2倍近い寿
命となった。
Figure 6 shows the change in capacity when charging and discharging were repeated. The change in capacity of battery C in which the pressure inside the pressurizing spacer is 0.05 kg/ryJ is almost the same as that of conventional battery B. Furthermore, the capacity of the battery at a pressure of 1 kg/J changes in a slightly smaller range than that of the conventional battery B. However, at the end of its life, the capacity decreases more slowly than in the conventional battery B. pressure o,
Although the initial capacity of 2 kg/ , , M A is slightly lower than that of conventional battery B, there is almost no decrease in capacity, about 1
The battery can be charged and discharged 1,000 times, making it nearly twice as long as conventional batteries.

発明の効果 以上のように本発明の鉛蓄電池は、従来電池にくらべて
高い圧力で極板群を圧迫することができ一ペースト式正
極板を用いてもクラッド式正極板を用いた電池とほぼ同
等の寿命を期待できるようになった。
Effects of the Invention As described above, the lead-acid battery of the present invention can compress the electrode plate group with higher pressure than conventional batteries, and even if a paste-type positive electrode plate is used, it is almost as strong as a battery using a clad-type positive electrode plate. Now you can expect the same lifespan.

第1図は本発明の実施例における鉛蓄電池に用いる加圧
スペーサを示す図、第2図は極板群の斜視図−第3図は
同極板群の側面略図−第4図は加圧スペーサを両側端に
配した極板群を電槽内に挿入した状態を示す断面図、第
5図は同加圧スペーサに圧縮気体を封じて極板群を加圧
した断面図−第6図は同蓄電池の寿命特性を示す図であ
る。
Fig. 1 is a diagram showing a pressurized spacer used in a lead-acid battery according to an embodiment of the present invention, Fig. 2 is a perspective view of the electrode plate group, Fig. 3 is a schematic side view of the same electrode plate group, and Fig. 4 is a pressurized spacer. A cross-sectional view showing a state in which an electrode plate group with spacers arranged at both ends is inserted into a battery case. Figure 5 is a cross-sectional view showing a state in which the electrode plate group is pressurized by sealing compressed gas in the pressurizing spacer. - Figure 6 is a diagram showing the life characteristics of the storage battery.

1−・・・加圧スペーサ、6・・・・ペースト式負極板
、6・・・・・ベースl一式正極板、7・・・・・セパ
レーター8・・・・・ガラスマット。
1-...Pressure spacer, 6...Paste type negative electrode plate, 6...Base l set positive electrode plate, 7...Separator 8...Glass mat.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図 第5図 Δ 第6図 免収欽回転帽)
Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4 Figure 5 Δ Figure 6 Tax exemption revolving cap)

Claims (1)

【特許請求の範囲】[Claims] ペースト式正極板を用いた極板群を備える単位電池の両
側端に一耐酸性樹脂よりなる中空の加圧スペーサを配し
、この加圧スペーサの中空部に圧縮気体を封じて単位電
池を圧迫するように構成した鉛蓄電池。
A hollow pressurized spacer made of acid-resistant resin is placed on both ends of a unit battery equipped with an electrode plate group using a paste-type positive electrode plate, and compressed gas is sealed in the hollow part of this pressurized spacer to compress the unit battery. A lead-acid battery configured to
JP58024091A 1983-02-15 1983-02-15 Lead storage battery Pending JPS59149650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024091A JPS59149650A (en) 1983-02-15 1983-02-15 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024091A JPS59149650A (en) 1983-02-15 1983-02-15 Lead storage battery

Publications (1)

Publication Number Publication Date
JPS59149650A true JPS59149650A (en) 1984-08-27

Family

ID=12128706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024091A Pending JPS59149650A (en) 1983-02-15 1983-02-15 Lead storage battery

Country Status (1)

Country Link
JP (1) JPS59149650A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2675635A1 (en) * 1991-04-20 1992-10-23 Daimler Benz Ag ELECTROCHEMICAL ACCUMULATOR WITH BOX PROTECTED AGAINST OVERPRESSIONS.
EP1238437A1 (en) * 1999-09-09 2002-09-11 Unibat Ltd. Chargeable electrochemical cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133761A (en) * 1979-04-03 1980-10-17 Japan Storage Battery Co Ltd Storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133761A (en) * 1979-04-03 1980-10-17 Japan Storage Battery Co Ltd Storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2675635A1 (en) * 1991-04-20 1992-10-23 Daimler Benz Ag ELECTROCHEMICAL ACCUMULATOR WITH BOX PROTECTED AGAINST OVERPRESSIONS.
US5272018A (en) * 1991-04-20 1993-12-21 Mercedes-Benz Ag Electrochemical storage device
EP1238437A1 (en) * 1999-09-09 2002-09-11 Unibat Ltd. Chargeable electrochemical cell
EP1238437A4 (en) * 1999-09-09 2006-10-04 Unibat Ltd Chargeable electrochemical cell

Similar Documents

Publication Publication Date Title
US4336314A (en) Pasted type lead-acid battery
US5677078A (en) Method and apparatus for assembling electrochemical cell using elastomeric sleeve
EP0771036A1 (en) Sealed alkaline storage battery
JPH09231950A (en) Sealed rectangular storage battery
US20020138971A1 (en) Method for producing a nickel metal-hydride storage battery
KR20010074765A (en) Cylindrical electrochemical cell with cup seal for separator
JPS59149650A (en) Lead storage battery
JP4126684B2 (en) Nickel metal hydride secondary battery
JP2000294201A (en) Enclosed square thin battery
JP2002025602A (en) Lead-acid battery
CN213816263U (en) Lithium iron phosphate core
JPS58129745A (en) Thin enclosed battery
CN218586196U (en) Electricity core module structure
CN214378751U (en) Modular lithium ion battery
JP2004047242A (en) Separator for sealed lead-acid storage battery and sealed lead-acid storage battery
JPH1173973A (en) Lithium ion battery
JPH06140019A (en) Clad type sealed lead acid battery
JPH09180701A (en) Storage battery
JP2001155722A (en) Sealed lead acid storage battery and method of fabricating it
JPS6049557A (en) Sealed lead storage battery
JPH0514464Y2 (en)
JP2809634B2 (en) Manufacturing method of sealed lead-acid battery
JPH0238375Y2 (en)
JPH0535578Y2 (en)
JPH0538540Y2 (en)