JPS59149616A - Method of treating vacuum valve insulating container - Google Patents

Method of treating vacuum valve insulating container

Info

Publication number
JPS59149616A
JPS59149616A JP1142083A JP1142083A JPS59149616A JP S59149616 A JPS59149616 A JP S59149616A JP 1142083 A JP1142083 A JP 1142083A JP 1142083 A JP1142083 A JP 1142083A JP S59149616 A JPS59149616 A JP S59149616A
Authority
JP
Japan
Prior art keywords
insulating container
vacuum
vacuum valve
container
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1142083A
Other languages
Japanese (ja)
Other versions
JPH0531244B2 (en
Inventor
哲 塩入
大島 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1142083A priority Critical patent/JPS59149616A/en
Publication of JPS59149616A publication Critical patent/JPS59149616A/en
Publication of JPH0531244B2 publication Critical patent/JPH0531244B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、真空バルブ絶縁容器の処理方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for treating a vacuum valve insulating container.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の真空バルブは、第1図に示すように絶縁筒1aを
軸方向に2個並設してなる絶縁容器1の両端に夫々端板
2,3を設けて内部を真空にした真空容器を形成してい
る。そして固定電極4は端板2を気密に貫通する通電軸
4aに接触子4bを有する電極4Cを設けている。また
、可動電極5は端板3にベローズ6を介して可動に密封
された通電軸5aに接触子5bを有する電極5Cを設け
ている。そして固定電極側に固定7−ルド7を、真空容
器の中間に中間シールド8を、可動側には固定シールド
7を設けている。
As shown in FIG. 1, a conventional vacuum valve has a vacuum container in which end plates 2 and 3 are provided at both ends of an insulating container 1, which is made up of two insulating cylinders 1a arranged side by side in the axial direction, and the inside is evacuated. is forming. The fixed electrode 4 is provided with an electrode 4C having a contact 4b on a current-carrying shaft 4a that passes through the end plate 2 in an airtight manner. Further, the movable electrode 5 is provided with an electrode 5C having a contactor 5b on an energizing shaft 5a movably sealed via a bellows 6 on the end plate 3. A fixed shield 7 is provided on the fixed electrode side, an intermediate shield 8 is provided in the middle of the vacuum container, and a fixed shield 7 is provided on the movable side.

このようなシールド7.8は電流しや′断時に電極4,
5間で発生する金属蒸気が絶縁容器1の内壁に付着する
のを防止するために大きな役割を果している。しかしな
がら、この固定シールド7と中間シールド8゛との近く
に絶縁筒1aがあるだめ破壊電圧が低下する。これは、
真空ノ<ルブに高電圧が印加されると絶縁筒1aの表面
で2次電子なだれを起す。この時の1次電子の衝突エネ
ルギーと2次電子放出効率δ(E)との関係は第2図に
示す特性曲線δ(Elとなる。第2図において縦軸は2
次電子放出効率δ(E)、横軸は電子の衝突エネルギー
E〔eV、lを示している。このfIJl線δ(E)に
従って絶縁筒laがアルミナ(A1203)の場合には
正の電荷が蓄積される。この絶縁筒1aから放出された
電子は2次電子なだれによって電子増殖し、ついには絶
縁破壊にいたる。したがって、比較的低電圧で電子なだ
れによる前駆破壊電流が流れこの結果、破壊電圧は低く
なってしまう。
Such a shield 7.8 protects the electrode 4,
This plays a major role in preventing the metal vapor generated between the holes 5 and 5 from adhering to the inner wall of the insulating container 1. However, since the insulating tube 1a is located near the fixed shield 7 and the intermediate shield 8', the breakdown voltage is reduced. this is,
When a high voltage is applied to the vacuum knob, a secondary electron avalanche occurs on the surface of the insulating tube 1a. The relationship between the primary electron collision energy and the secondary electron emission efficiency δ (E) at this time is the characteristic curve δ (El) shown in Figure 2. In Figure 2, the vertical axis is 2
The secondary electron emission efficiency δ(E), and the horizontal axis indicates the electron collision energy E [eV, l. According to this fIJl line δ(E), positive charges are accumulated when the insulating cylinder la is made of alumina (A1203). The electrons emitted from the insulating cylinder 1a multiply by a secondary electron avalanche, and eventually lead to dielectric breakdown. Therefore, a precursor breakdown current due to electron avalanche flows at a relatively low voltage, resulting in a low breakdown voltage.

このよりな、問題点を解決する方法として絶縁筒1aの
内面に酸化クロム(以下or、、o3という)をコーテ
ィング処理する方法が先に発見された。これは、第2図
に示すようにCr2O3のコーティング処理を行うと、
2次電子放出効率δ(E)が常に1以下となり2次電子
なだれが抑制され、破壊電圧が向上する。しかしながら
、このようなものでは次のような欠点がある。
As a method to solve this problem, a method was previously discovered in which the inner surface of the insulating cylinder 1a was coated with chromium oxide (hereinafter referred to as "or", "o3"). This is achieved by coating with Cr2O3 as shown in Figure 2.
The secondary electron emission efficiency δ(E) is always 1 or less, suppressing the secondary electron avalanche and improving the breakdown voltage. However, such a device has the following drawbacks.

一般にアルミナ等の絶縁容器の表面は、数十へ程度の吸
着ガス層でおおわれている。このため真空パルプは、組
立を行った後で真空排気しながら加熱処理を行い、固体
表面の吸着ガス層や固体内部の吸蔵ガスを除去している
。これらの処理によシ、真空パルプは高真空Vこ保たれ
、真空寿命を良好にしている。Cr2O3のコーティン
グ法は、真空蒸着法が知られている。真空パルプの組立
を行う前に絶縁容器の内面に真空蒸着による0r20s
コーテイングを行うと、吸着ガス層の上fcOr203
層がコーティングされる事になる。このような絶縁容器
を用いると、加熱処理を行っても吸着ガス層は除去され
ない。このため真空パルプの真空度が次第に低下し、真
空寿命が著しく悪くなる。また、不安定な状態で0r2
03層がコーティングされているため、0r203層の
ピンホール及びクラックが発生しやすい。
Generally, the surface of an insulating container made of alumina or the like is covered with a layer of adsorbed gas of several tens of layers. For this reason, vacuum pulp is heat-treated while being evacuated after assembly to remove the adsorbed gas layer on the surface of the solid and the occluded gas inside the solid. Through these treatments, the vacuum pulp is maintained at a high vacuum level and has a good vacuum life. A vacuum evaporation method is known as a Cr2O3 coating method. Before assembling the vacuum pulp, the inner surface of the insulating container is vacuum-deposited for 0r20s.
When coating is performed, fcOr203 on the adsorbed gas layer
The layer will be coated. If such an insulating container is used, the adsorbed gas layer will not be removed even if heat treatment is performed. For this reason, the degree of vacuum of the vacuum pulp gradually decreases, and the vacuum life becomes significantly worse. Also, in an unstable state, 0r2
Since the 03 layer is coated, pinholes and cracks are likely to occur in the 0r203 layer.

このような理由からOr20gをコーティングした絶縁
容器を真空バルブに使用できず、高電圧化r(適した真
空バルブを提供できないのが現状である。
For these reasons, an insulating container coated with Or20g cannot be used for a vacuum valve, and at present it is not possible to provide a vacuum valve suitable for high voltage r.

〔発明の目的〕[Purpose of the invention]

本発明は、絶縁容器への効果的な0r203のコーティ
ングを行うことにょ)耐′諷圧性能の優れた真空パルプ
絶縁容器の処理方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for treating a vacuum pulp insulating container with excellent over-the-air pressure resistance by effectively coating the insulating container with 0r203.

〔発明の概要〕[Summary of the invention]

本発明は、絶縁容器の拐料がアルミナの場合は450°
C〜1000°Cの温度で絶縁容器の内面を真空蒸着法
で0r208でコーティングを行い、絶R答器の材料が
ホウケイ酸ガラスの場合は2000C〜35000の温
度で絶縁容器の内面を真空蒸着法で(、:3r203で
コーティングを行うことを特徴とする真空バルブ絶縁容
器の処理方法にある。
In the present invention, when the coating material of the insulating container is alumina,
Coat the inner surface of the insulating container with 0r208 at a temperature of 2000 C to 35000 C using vacuum evaporation at a temperature of 2000 C to 35000 C. A method for treating a vacuum valve insulating container is characterized in that it is coated with (,:3r203).

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例になるCr2O,のコーティング方法を
説明する。本発明は第1図に示す絶縁6にに1の内面に
Or20.をコーティングする方法でh’)、真空パル
プを組立てる前に絶縁容器1ヘコーテイングする際、絶
縁容器1を加熱させながら真空蒸着させる事[xl)絶
縁容器1の内面に0r20.層を形成させる。
A method of coating Cr2O, which is an embodiment of the present invention, will be explained. The present invention provides Or20. h') When coating the insulating container 1 before assembling the vacuum pulp, vacuum evaporation is performed while heating the insulating container 1 [xl) 0r20. Form a layer.

この絶縁容器1の加熱過程において、第3図に示すよう
にガスが放出され、このガス放出量Qは絶縁容器1表面
から吸着ガスと内部の吸蔵ガスである。絶縁容器を加熱
することによって放出ガス量は大幅に増加する。Qlは
真空パルプの所定の真空寿命を得ることができるガス放
出量である。Q+の以上の量を得られる絶縁容器の温度
は、材質によって異なQ1ホウケイ酸ガラスの場合に2
50°C以上、セラミックの場合450°C以上である
。このような温度であれば絶縁容器の表面の吸着ガス層
も大幅に除去され、(3r203層が安定な状態でコー
ティングされるため、Cr2O3層のピンホール及びク
ラックが発生しない。しかしながら、絶縁容器の温度が
融点付近になると0r203層は、ピンホール及びり2
ツクを発生する。このため絶縁容器を加熱する温贋け、
ホウケイ酸ガラスの場合に200〜350°0、セラミ
ックの場合K 450〜1000°0でなければならな
い。これによシ、絶縁容器表面の0r203層は、ピン
ホール及びクランクを発生せず、密着強屁も高くなシ、
真空バルブとしての真空寿命も得られる。
During the heating process of the insulating container 1, gas is released as shown in FIG. 3, and the amount Q of gas released is the adsorbed gas from the surface of the insulating container 1 and the occluded gas inside. Heating the insulating container significantly increases the amount of gas released. Ql is the amount of gas released at which a predetermined vacuum life of the vacuum pulp can be obtained. The temperature of the insulating container that can obtain more than Q+ is 2 for Q1 borosilicate glass, which varies depending on the material.
50°C or higher, and in the case of ceramics, 450°C or higher. At such a temperature, the adsorbed gas layer on the surface of the insulating container is largely removed, and the 3r203 layer is coated in a stable state, so pinholes and cracks in the Cr2O3 layer do not occur. When the temperature is near the melting point, the 0r203 layer forms pinholes and holes.
Generates a tsuk. For this reason, heating the insulated container may cause
For borosilicate glass it should be 200-350°0, for ceramics K 450-1000°0. As a result, the 0r203 layer on the surface of the insulating container does not generate pinholes or cranks, and has high adhesion strength.
It also provides a long vacuum life as a vacuum valve.

したがって、真空バルブの耐電圧性能はCr2O,。Therefore, the withstand voltage performance of the vacuum valve is Cr2O.

のコーティングが可能になるだめ向上する。coating becomes possible.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、所定の温度範囲で加熱した絶縁容
器の内面に真空蒸着法で0r20.、コーティングした
絶縁容器を用いると表により、真壁バルブの所定の真空
寿命を得ることができ、絶縁性能が向上するため、高電
圧化に適した真空バルブ絶縁容器の処理方法を提供する
ことができる。
As detailed above, 0r20. According to the table, by using a coated insulating container, the specified vacuum life of the Makabe valve can be obtained and the insulation performance is improved, so it is possible to provide a method for processing the vacuum valve insulating container suitable for high voltage. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の真空バルブを示す縦断面図、第 2図は
従来の真空バルブにおける2次電子放出特性を示す特性
曲線図、第3図は本発明の一実施例に関連するガス放出
特イ生を示す特性曲線図である。 1a  ・・絶縁筒、1b・・Cr2O3のコーテイン
グ面、■・絶縁容器、  2,3・・・端板、4・・・
固定電極、   5・・・可動電極、6・・ベローズ、
   7・・・固定ンールド、8・・中間/−ルド。 第  1 図 第  2 図 電子衡突・丁冬ルN−E
FIG. 1 is a longitudinal sectional view showing a conventional vacuum valve, FIG. 2 is a characteristic curve diagram showing secondary electron emission characteristics in a conventional vacuum valve, and FIG. 3 is a gas emission characteristic related to an embodiment of the present invention. FIG. 1a...Insulating cylinder, 1b...Cr2O3 coating surface, ■-Insulating container, 2, 3... End plate, 4...
Fixed electrode, 5... Movable electrode, 6... Bellows,
7... Fixed nold, 8... Intermediate/-ld. Fig. 1 Fig. 2 Electronic balance/Dingwinter N-E

Claims (1)

【特許請求の範囲】[Claims] 絶縁容器と、この絶縁容器を閉塞する端板とからなる真
空容器内に接離可能な一対の電極を配置し、この一対の
電極の少なくとも一方がベローズを介して前記端板に可
動に封着されるとともに上記電極を包囲する中間シール
ドを備えた真空バルブに於いて、前記絶縁容器はアルミ
ナからなシ、450°C〜1000°Cの温度で前記絶
縁容器の内面を真空蒸着法で酸化クロム(Cr20s)
をコーテングし、又は、前記絶縁容器はホウケイ酸ガラ
スからなシ200°C〜350°Cの温度で前記絶縁容
器の内面に真空蒸着法で酸化クロム(CrtOs )を
コーチングしたことを特徴とする真空バルブ絶縁容器の
処理方法。
A pair of electrodes that can be brought into and out of contact with each other is arranged in a vacuum container consisting of an insulating container and an end plate that closes the insulating container, and at least one of the pair of electrodes is movably sealed to the end plate via a bellows. In the vacuum valve, the insulating container is made of alumina, and the inner surface of the insulating container is coated with chromium oxide by vacuum evaporation at a temperature of 450°C to 1000°C. (Cr20s)
or the insulating container is made of borosilicate glass, and the inner surface of the insulating container is coated with chromium oxide (CrtOs) by vacuum evaporation at a temperature of 200°C to 350°C. How to treat valve insulation containers.
JP1142083A 1983-01-28 1983-01-28 Method of treating vacuum valve insulating container Granted JPS59149616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1142083A JPS59149616A (en) 1983-01-28 1983-01-28 Method of treating vacuum valve insulating container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1142083A JPS59149616A (en) 1983-01-28 1983-01-28 Method of treating vacuum valve insulating container

Publications (2)

Publication Number Publication Date
JPS59149616A true JPS59149616A (en) 1984-08-27
JPH0531244B2 JPH0531244B2 (en) 1993-05-12

Family

ID=11777560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1142083A Granted JPS59149616A (en) 1983-01-28 1983-01-28 Method of treating vacuum valve insulating container

Country Status (1)

Country Link
JP (1) JPS59149616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512437B2 (en) 1997-07-03 2003-01-28 The Furukawa Electric Co., Ltd. Isolation transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512437B2 (en) 1997-07-03 2003-01-28 The Furukawa Electric Co., Ltd. Isolation transformer

Also Published As

Publication number Publication date
JPH0531244B2 (en) 1993-05-12

Similar Documents

Publication Publication Date Title
US2233917A (en) Black coating for electron discharge devices
JPS59149616A (en) Method of treating vacuum valve insulating container
US1926846A (en) Electrode for electron discharge devices
US3846006A (en) Method of manufacturing of x-ray tube having thoriated tungsten filament
US4541811A (en) Method of manufacturing a low-pressure mercury vapor discharge lamp and low-pressure mercury vapor discharge lamp manufactured by this method
US1921066A (en) Cathode for electron discharge devices and method of making the same
US2538053A (en) Tantalum anode for gas filled tubes
JPS6327810B2 (en)
JP3130722B2 (en) Vacuum valve
US1041076A (en) Vapor-rectifier and method of manufacture.
RU2069915C1 (en) Process of manufacture of secondary emission cathode
JPS60100324A (en) Vacuum bulb
KR100235995B1 (en) Impregnation treatment type cathode
JP2000054114A (en) Film structure excellent in heat and wear resistance
JPS61121233A (en) Manufacture of impregnated cathode
JPS60200421A (en) Vacuum bulb
JPS60100323A (en) Vacuum bulb
JPH0660797A (en) Cold electron emitting electrode and its manufacture
JPH11213859A (en) Negative electrode structure, electron gun structure and electron tube
JPS63205020A (en) Manufacture of vacuum switch tube insulating container
JPH03184240A (en) Electron tube
JPH0668782A (en) Impregnation type cathode
JPS6298539A (en) Electron gun structure
JPS6132944A (en) Cathode-ray tube
JPS6177234A (en) Manufacture of cathode-ray tube