JPS59148363A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS59148363A
JPS59148363A JP58023216A JP2321683A JPS59148363A JP S59148363 A JPS59148363 A JP S59148363A JP 58023216 A JP58023216 A JP 58023216A JP 2321683 A JP2321683 A JP 2321683A JP S59148363 A JPS59148363 A JP S59148363A
Authority
JP
Japan
Prior art keywords
photoconductive film
electrode
film
solid
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58023216A
Other languages
Japanese (ja)
Inventor
Etsuya Takeda
悦矢 武田
Shinji Fujiwara
慎司 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58023216A priority Critical patent/JPS59148363A/en
Publication of JPS59148363A publication Critical patent/JPS59148363A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To decrease the operating voltage and thus prevent the deterioration of the resolution by doping an amorphous hydrogenated Si photoconductive film with a chalcogen element. CONSTITUTION:An n<+> type region 11 is formed in a p type Si substrate 10 and decided as a diode region, and a gate electrode 15 is formed via an insulation layer 14 and then decided as a charge transfer stage which reads out signal charges in a vertical direction. A low melting point glass 16 is provided thereon, and the first electrode 17 made of Mo is formed. Then, the arrangement of Si single crystal with Se ion-implanted on Si polycrystal is decided as a target, the first layer amorphous hydrogenated Si 18 is formed at the discharge power of approx. 100W and the second layer one 19 at the discharge power of approx. 200W, further a clear electrode In2O3 20 is formed. Thereby, the operating voltage of the photoconductive film of amorphous hydrogenated Si can be decreased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体撮像装置に関し、特に光導電膜を積層した
型の固体撮像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid-state imaging device, and more particularly to a solid-state imaging device in which photoconductive films are laminated.

慰 従来の構成と問題点 家庭用ビデオチーブレコーダの普及に伴ない、ビデオカ
メラの需要も急激に増加しているが、固体撮像装置は、
小型、軽量、低消費電力等の多くの%徴を有するため、
家庭用ビデオチープレコータのカメラとして本命視さノ
tている。
Conventional configuration and problems With the spread of home video recorders, the demand for video cameras is rapidly increasing, but solid-state imaging devices are
Because it has many characteristics such as small size, light weight, and low power consumption,
It is considered to be a favorite camera for home video recorders.

信号走査機能を有する半導体基板上に光導電膜を端層し
た構成の固体撮像装置、(以下積層型固体撮像装置と呼
ぶ)は、通常の81  半導体のみよりなる固体撮像装
置に比べて、光利用率が大であることから高感度でろり
、また入射光は、はとんど光導電膜で吸収きnることが
ら、画像劣化の原因となるスメアリング現象が生じVこ
ぐいという特徴を有する。し力・しながら、通常の撮像
管ターゲット用の光導電膜が平担なフェースプレート上
に形成さ扛るのに対し、積層型固体撮像装置の場合には
、段差金有する半導体回路基板上に形成する必要がβす
、光導電膜には、多くの制約が生ずる。
A solid-state imaging device (hereinafter referred to as a stacked solid-state imaging device), which has a structure in which a photoconductive film is layered on a semiconductor substrate with a signal scanning function, is more efficient in utilizing light than a solid-state imaging device made only of ordinary 81 semiconductors. Since the ratio is large, the sensitivity is high, and since the incident light is mostly absorbed by the photoconductive film, a smearing phenomenon that causes image deterioration occurs, which is characterized by a V-shape. . However, while the photoconductive film for a normal image pickup tube target is formed on a flat face plate, in the case of a stacked solid-state imaging device, it is formed on a semiconductor circuit board with a step metal. Many restrictions arise in the photoconductive film that needs to be formed.

以下図面を用いて、積層型固体撮像装置の基本構成につ
いて説明し、従来の欠点について述べる。
The basic configuration of the stacked solid-state imaging device will be described below with reference to the drawings, and the drawbacks of the conventional technology will be described.

第1図は、信号走査回路にcan(電荷結合素子)を用
いた場合の積層型固体撮像装置の一絵素の断面図であシ
、第2図は第1図に示した固体撮像装置の一絵素を複数
個配列した場合の平面図である。また、第3図は第1図
に示す構成の固体撮像装置の一絵素の等価回路図である
Figure 1 is a cross-sectional view of one pixel of a stacked solid-state imaging device when a CAN (charge-coupled device) is used in the signal scanning circuit, and Figure 2 is a cross-sectional view of one pixel of the solid-state imaging device shown in Figure 1. FIG. 7 is a plan view of a case where a plurality of one picture element are arranged. Further, FIG. 3 is an equivalent circuit diagram of one pixel of the solid-state imaging device having the configuration shown in FIG. 1.

これらの図において、p型S1基板10にy1+型領域
11を形成しダイオード領域とする012は、ダイオー
ド領域11より移された信号電荷を垂直方向に読み出す
ため2の電荷転送段であり、絶縁層14を介したゲート
電極15により駆動される。このゲート電極15は膜厚
約6000人の多結晶Si で構成されている。ゲート
電極15は、信号電荷を垂直方向に転送する転送電極と
して働くとともに、ダイオード領域11に蓄積された信
号電荷を電荷転送段12に読み込むだめのゲート電極の
役割も兼ねている。17は、入射光21により光導電膜
19で発生した信号電荷を集めるだめの第一電極であり
、ダイオード領域11と電気的に接続されている。第一
電極17とゲート電極15とは、PS(、等の低融点ガ
ラス層16によシ絶縁されている。20瞑、光導電体1
9の表面に形成された透明電極であり、入射光21は透
明電極20側より入射する。
In these figures, 012, in which a y1+ type region 11 is formed on a p-type S1 substrate 10 to serve as a diode region, is a charge transfer stage 2 for vertically reading out signal charges transferred from the diode region 11, and an insulating layer It is driven by a gate electrode 15 via a gate electrode 14. This gate electrode 15 is made of polycrystalline Si with a thickness of about 6,000 yen. The gate electrode 15 functions as a transfer electrode for vertically transferring signal charges, and also serves as a gate electrode for reading signal charges accumulated in the diode region 11 into the charge transfer stage 12. Reference numeral 17 denotes a first electrode for collecting signal charges generated in the photoconductive film 19 by the incident light 21, and is electrically connected to the diode region 11. The first electrode 17 and the gate electrode 15 are insulated by a low melting point glass layer 16 such as PS (20 mm), photoconductor 1
The transparent electrode is formed on the surface of the transparent electrode 9, and the incident light 21 enters from the transparent electrode 20 side.

上記構成の固体撮像装置において、CCDI′i二相駆
動により駆動される。この場合、光導電膜19にとって
の最大の段差は、第2図のA−B線に沿った断面図であ
り、1.0〜1.2μmの段差が存在する。また、第一
電極17の材料としては、Mo。
In the solid-state imaging device having the above configuration, it is driven by CCDI'i two-phase drive. In this case, the maximum level difference for the photoconductive film 19 is a cross-sectional view taken along the line AB in FIG. 2, and there is a level difference of 1.0 to 1.2 μm. Further, the material of the first electrode 17 is Mo.

Ta、W%の金属を用いるが、入射光がSi 基板に達
し、スメアリング現象を生じさせないためには、十分な
遮光性を持たせる必要があり、少なくとも1000Å以
上の厚みで形成する。絵素を各々独立なものとするため
には、第一電極17を、モザイク状に分離する必要があ
り、第1図の分離部22においても段差が生ずる。これ
らの二種類の段差は、通常の蒸着による光導電膜19の
暗電流を増加させ、耐圧を著るしく低下させる。
A metal containing Ta and W% is used, but in order to prevent incident light from reaching the Si substrate and causing a smearing phenomenon, it is necessary to have sufficient light-shielding properties, and the thickness is at least 1000 Å. In order to make each picture element independent, it is necessary to separate the first electrode 17 into a mosaic pattern, and a step also occurs in the separation section 22 of FIG. 1. These two types of steps increase the dark current of the photoconductive film 19 due to normal vapor deposition, and significantly lower the withstand voltage.

このような段差のある基板上でも暗電流が小さく、光感
度の高い光導電膜として非晶質水素化シリコンを用いる
ことが提案されている。非晶質水系化シリコンは、プラ
ズマCvD法、反応性スパッタ法、イオンブレーティン
グ法等を用いて形成するため、段差のある基板上でも等
方向に膜が形成され、段差カバレージが優れている。こ
れは、プラズマ中で膜形成が行われ、構成分子が様々な
方向から飛来するためではないかと推測される。
It has been proposed to use amorphous hydrogenated silicon as a photoconductive film that has low dark current and high photosensitivity even on a substrate with such steps. Since amorphous aqueous silicon is formed using a plasma CVD method, a reactive sputtering method, an ion blating method, etc., a film is formed in the same direction even on a substrate with steps, and has excellent step coverage. It is speculated that this is because the film is formed in the plasma and the constituent molecules fly in from various directions.

非晶質水素化シリコンを用いた場合の欠点として、光導
電膜19で生成する最大信号電荷量と電荷転送段12の
最大取扱い電荷量のバランスの問題がある。
A disadvantage of using amorphous silicon hydride is the problem of balance between the maximum amount of signal charge generated in the photoconductive film 19 and the maximum amount of charge handled by the charge transfer stage 12.

第3図の一絵素の等価回路図を用いてこの問題を説明す
る。第3図において、31は、第一電極17と透明電極
20(第3図中に20&で示す。
This problem will be explained using the equivalent circuit diagram of one picture element in FIG. In FIG. 3, 31 denotes the first electrode 17 and the transparent electrode 20 (indicated by 20 & in FIG. 3).

またゲート電極を16&で示す)ではさまれた光導電膜
19と緩衝層18の容量であり、その大きさをONで表
わす。32は、p型S1基板1oとn+型領領域11形
成されたダイオードの容量であり、その大きさをCsで
表わす。33は第一電極17とゲート電極16との間で
寄生的に発生する容量であり、その大きさをOpで表わ
す。また34をノードと称し、その電位をノード電位と
以下称する。ここでノード電位は、第一電極17の  
□電位に等しい。この時、−絵素あたり蓄積可能な電荷
Qmax は、信号読み込み後のノード電位と透明電極
20aの電位差をΔVとすると、Qmax  :=(C
N+CP+O3) 、Δv=CT ΔVで表わすことが
できる。ここで07 =: CM−1−CP−1−C8
であり、これは全容量を表わす。これに対し、電荷転送
段12の1バケ7)あたりの最大取扱い電荷量をQma
xとすると、Qmax l Qmaxである限り問題は
ないが、Qmax ) Qmaxとなる場合には、残像
現象や転送段でのオーバーフロー現象を引き起こす。後
者のオーバーフロー現象はいわゆるブルーミング現象と
なる。
Further, it is the capacitance of the photoconductive film 19 and the buffer layer 18 which are sandwiched between the gate electrode (indicated by 16&), and its size is expressed as ON. 32 is the capacitance of a diode formed between the p-type S1 substrate 1o and the n+ type region 11, and its size is expressed as Cs. 33 is a capacitance that is parasitically generated between the first electrode 17 and the gate electrode 16, and its size is expressed as Op. Further, 34 is referred to as a node, and its potential is hereinafter referred to as a node potential. Here, the node potential is the first electrode 17
□Equal to electric potential. At this time, the charge Qmax that can be accumulated per -picture element is Qmax:=(C
N+CP+O3), Δv=CT ΔV. where 07 =: CM-1-CP-1-C8
, which represents the total capacity. On the other hand, the maximum amount of charge handled per bucket 7) of the charge transfer stage 12 is Qma
Assuming x, there is no problem as long as Qmax l Qmax, but if Qmax ) Qmax, an afterimage phenomenon or an overflow phenomenon at the transfer stage will occur. The latter overflow phenomenon is a so-called blooming phenomenon.

この現象を防止するためには、全容量0丁(=ON十〇
s −1−Op )の減少、あるいは、光導電膜19の
動作電圧の低下をはかる必要かある。特に後者の動作電
圧の低下をはかることは、走査回路側の負担を軽減する
ために重要である。
In order to prevent this phenomenon, it is necessary to reduce the total capacity (=ON 10s -1-Op) or to lower the operating voltage of the photoconductive film 19. In particular, reducing the latter operating voltage is important in order to reduce the burden on the scanning circuit.

この低電圧動作の非晶質水素化シリコン光導電膜は、プ
ラズマCVD法によるnip構造で容易に実現できるが
、解像度の点で問題がある。反応性スパッタ法によると
解像度では問題ないが、低電圧動作の非晶質水素化シリ
コンの実現は困難であった。
This low-voltage-operated amorphous hydrogenated silicon photoconductive film can be easily realized with a nip structure by plasma CVD, but there is a problem in terms of resolution. Although the reactive sputtering method has no problem with resolution, it has been difficult to realize amorphous hydrogenated silicon that can operate at low voltages.

発明の目的 本発明の目的は上述のすぐれた特長のある非晶質水素化
シリコンを反応性スパッタ法により形成し、高電圧動作
の欠点を解消した光導電膜を用いて優れた特性をもつ積
層形振像装置を提供することにある。
Purpose of the Invention The purpose of the present invention is to fabricate a multilayer film with excellent characteristics by forming amorphous hydrogenated silicon having the above-mentioned excellent characteristics by a reactive sputtering method and using a photoconductive film that eliminates the drawbacks of high voltage operation. An object of the present invention is to provide a shape oscillating device.

この光導電膜を積層すると上述したような、積層型固体
撮像装置の実用化をはばんでいた、光導電膜の耐圧不良
や、残像およびブルーミング現象を大巾に改善し、さら
に焼きっけや解像度劣化の非常に少ない固体撮像装置が
実現できる。
When this photoconductive film is laminated, it can greatly improve the voltage resistance defects, afterimages, and blooming phenomena of the photoconductive film, which have hindered the practical use of laminated solid-state imaging devices, as described above, and also prevent burn-out. A solid-state imaging device with very little resolution degradation can be realized.

本発明の構成 本発明者は反応性スパッタ法による。解像度のすぐれた
非晶質水素化シリコンの動作電圧低下のためのドーピン
グ元素として、S 、 Ss 、 Teのカルコゲン元
素が有効であることを見いだした。この光導電膜は解像
度も低下せず、動作電圧の低下することができ、しかも
段差カバレージの優れた光導電膜を提供でき、積層型固
体撮像装置用として適している。
Structure of the present invention The present inventor uses a reactive sputtering method. It has been found that chalcogen elements such as S, Ss, and Te are effective as doping elements for lowering the operating voltage of amorphous hydrogenated silicon with excellent resolution. This photoconductive film can provide a photoconductive film with no reduction in resolution, a reduction in operating voltage, and excellent step coverage, and is suitable for use in stacked solid-state imaging devices.

本発明では、きらに暗電流の低下、動作電圧の低下のた
め、カルコゲン元素ドープの非晶質シリコンヲプロノキ
ング構成にするとさらに効果が太きい。このブロッキン
グ層が、水素量大とすることによシ実現でき、反応性ス
パッタ法によって他の元素を導入することなしに作製で
きる利点がある。
In the present invention, in order to reduce dark current and operating voltage, the effect is even greater when amorphous silicon doped with a chalcogen element is used. This blocking layer can be realized by using a large amount of hydrogen, and has the advantage that it can be produced by reactive sputtering without introducing other elements.

S1結晶とSeターゲットをAr、H2雰囲気中で反応
性スパッタ法によ膜形成した実験例を示す。
An experimental example is shown in which a film was formed using a reactive sputtering method using an S1 crystal and a Se target in an Ar and H2 atmosphere.

S1単結晶上のMO基板上に全圧力6 X 10 ’T
orr。
Total pressure 6 x 10'T on MO substrate on S1 single crystal
orr.

水素分圧0.2で10oW、60分、および200W、
90分で膜形成を行ない、111M平方の透明電極を形
成した。
10oW, 60 minutes, and 200W at hydrogen partial pressure 0.2,
Film formation was carried out in 90 minutes, and a transparent electrode of 111M square was formed.

第4図に透明電極に一10V印加したときの暗電流値4
1及び436nmの波長で0.5μW/c4の光を照射
したときの光電流飽和電圧42の81とSe ターゲッ
トの面積比依存性を示す。光電流飽和電圧は、動作電圧
と対応するので低電圧の方が望ましい。
Figure 4 shows the dark current value 4 when -10V is applied to the transparent electrode.
The dependence of the photocurrent saturation voltage 42 on the area ratio of 81 and Se 2 target when irradiated with light of 0.5 μW/c4 at wavelengths of 1 and 436 nm is shown. Since the photocurrent saturation voltage corresponds to the operating voltage, a low voltage is preferable.

実施例の説明 以下、本発明の実施例について具体的に説明する。Description of examples Examples of the present invention will be specifically described below.

実施例1 CCDの上に、n+層11を開口部として、低融点ガラ
ス16を1.0μm以上の厚さで形成する。
Example 1 A low melting point glass 16 with a thickness of 1.0 μm or more is formed on a CCD using the n+ layer 11 as an opening.

第1電極はMOを厚さ200OA 形成して構成する。The first electrode is made of MO with a thickness of 200 OA.

この上に、S1多結晶上にSeをイオン注入したS1単
結晶を配置し、ターゲットとし、Ar、=4.6 X 
10 ’Torr  H2=5X10  ’Torr導
入して、反応性スパッタ法により、非晶質水素化シリコ
ンを形成する。基板瀝度260℃、放電パワー300W
で70分間形成すると、2μmの厚さの非晶質水素化シ
リコンとなる。この上に又応性スパッタ法により透明電
極工n2o3を100OA形成すると、第1図に示す断
面構造の本発明の固体撮像装置となる。
On top of this, an S1 single crystal in which Se was ion-implanted onto the S1 polycrystal was placed and used as a target, Ar, = 4.6
10'Torr H2=5X10'Torr is introduced, and amorphous hydrogenated silicon is formed by reactive sputtering. Substrate temperature 260℃, discharge power 300W
When formed for 70 minutes, the result is amorphous hydrogenated silicon with a thickness of 2 μm. A 100 OA transparent electrode layer N2O3 is formed on this by reactive sputtering to obtain the solid-state imaging device of the present invention having the cross-sectional structure shown in FIG.

従来のようにSi多結晶のみをターゲットとし、Seを
ドープしていない例も同時に示す。信号電流が飽和する
電圧以上に印加電圧を設定しないと焼付けが発生する。
An example in which only Si polycrystal is used as a target and is not doped with Se is also shown. If the applied voltage is not set above the voltage at which the signal current is saturated, burn-in will occur.

したがって、10W以上の電圧が必要であったのに対し
、本実施例では3vで十分である。ただ、光が当らない
とき発生する暗電流が若干増加する。
Therefore, whereas a voltage of 10 W or more was required, in this embodiment, 3 V is sufficient. However, the dark current that occurs when there is no light increases slightly.

以下の実姉例は上記実施例1のCCD上の第1電極17
までの形成方法及び透明電極20の形成方法は同一であ
り、それについての具体的な説明は省略する。
The following example is the first electrode 17 on the CCD of Example 1.
The forming methods up to this point and the forming method of the transparent electrode 20 are the same, and a detailed explanation thereof will be omitted.

実姉例2 第6図に示すように非晶質水素化シリコンを2層にし、
第1層18は放電バ’7−100Wで0.2μm、第2
層目19は、放電パフ−200Wで1.6μmの厚さ形
成する。ターゲットは、実姉例1と同じく多結晶S1と
、SsをドープしたS1単結晶を配置したものを用いた
。第6図にこのときの435 nm、 0.5 、cz
Wの光照射時の光電流61と暗電流52の印加電圧依存
性を示す。比較のため、初めから200Wで1.5μm
非晶質水素化シリコンを形成した場合の光電流63と暗
電流64も示す。100Wで形成した層があると耐圧(
白傷発生電圧)が良くなっているのがわかる。同一条件
下で放電パワーだけを変化させた場合、低いパワーの方
が水素の結合状態が変化し、バンドギャップの増加がみ
られる。したかつて1oOWで形成した非晶質水素化シ
リコンは、正孔注入阻止の働きもしているものと推測さ
れる。
Actual example 2 As shown in Figure 6, two layers of amorphous hydrogenated silicon are used.
The first layer 18 is 0.2 μm with a discharge bar '7-100W, and the second layer 18 is
Layer 19 is formed with a thickness of 1.6 μm using a discharge puff of 200 W. The target used was one in which a polycrystalline S1 and an S1 single crystal doped with Ss were arranged as in Example 1. Figure 6 shows 435 nm, 0.5, cz at this time.
The dependence of photocurrent 61 and dark current 52 on applied voltage when W is irradiated with light is shown. For comparison, 1.5μm at 200W from the beginning
Photocurrent 63 and dark current 64 when amorphous hydrogenated silicon is formed are also shown. If there is a layer formed at 100W, the withstand voltage (
It can be seen that the white spot generation voltage) has improved. When only the discharge power is changed under the same conditions, lower power changes the hydrogen bonding state and increases the band gap. It is presumed that the amorphous hydrogenated silicon that was previously formed at 1oOW also functions to block hole injection.

この100Wで形成する非晶質水素化シリコンa−8i
:Hの代りに、a  S 1xC1x : H。
Amorphous hydrogenated silicon a-8i formed with this 100W
:H instead of a S 1xC1x :H.

a−Si :H: O、a−3i :H:Nでも有効で
アラた。
It was also effective for a-Si:H:O and a-3i:H:N.

まだ、ZnS、Zn5eでも有効であった。It was still effective for ZnS and Zn5e.

実施例3 第7図に示すように実施例2の2層の光導電膜の上[S
i多結晶のみをターゲットとしArとN2の混合ガス圧
力6 x’ 1O−3Torr、 N2分圧0.2 K
し、放電電力3KVV基板温度200 ’Cで3層目の
Si Hz 23を30OA形成し、後に透明電極20
を形成する。第6図にこのときの光電流55.暗電流5
6を示す。これから低暗電流化が実現でき、しかも、動
作電圧の低い光導電膜となっているの′がわかる。この
ような光導電膜をCCD上に形成した固体撮像装置は、
解像度が十分で、ブル−ミング特性も良く、高−感度で
ある。
Example 3 As shown in FIG. 7, [S
Targeting only polycrystals, Ar and N2 mixed gas pressure 6 x' 1O-3 Torr, N2 partial pressure 0.2 K
Then, the third layer of Si Hz 23 was formed at 30OA with a discharge power of 3KVV and a substrate temperature of 200'C, and later a transparent electrode 20
form. Figure 6 shows the photocurrent 55. Dark current 5
6 is shown. It can be seen from this that a low dark current can be achieved and the photoconductive film has a low operating voltage. A solid-state imaging device in which such a photoconductive film is formed on a CCD is
It has sufficient resolution, good blooming characteristics, and high sensitivity.

実施例2.3の正孔注入阻止層として放電電力の小さい
、したがって水素量の多いしかもドナー性のドーピング
としてSsが導入きれている例を示しだが、注入阻止層
としてはP等の他の元素でも可能である。
The hole injection blocking layer of Example 2.3 shows an example in which the discharge power is small, therefore the amount of hydrogen is large, and Ss is fully introduced as donor doping. However, other elements such as P may be used as the injection blocking layer. But it is possible.

また、光導電層としてSeをドープしているが、S 、
Teでも量の違いはめるものの同様の効果があった。
In addition, the photoconductive layer is doped with Se, but S,
A similar effect was obtained with Te, although the amount was different.

発明の効果 本発明の光導電膜積層型固体撮像装置は、低電圧動作で
高解像度の非晶質水素化シリコンを光導電膜を反応性ヌ
バッタ法により、カルコゲン元素をドープして形成して
いる。また、ブロッキング層を設けることによシ、さ−
らに低暗電流化がはかられている。このような非晶質水
素化シリコンを固体撮像装置に適用するにあたっての問
題点を解決し、高耐圧、高感度の特長を残した光導電膜
が得られ、ブルーミング特性のすぐれた固体撮像装置が
実現できる。
Effects of the Invention The photoconductive film stacked solid-state imaging device of the present invention is formed by doping a photoconductive film with a chalcogen element using a reactive Nubatta method using amorphous hydrogenated silicon that operates at low voltage and has high resolution. . In addition, by providing a blocking layer,
Furthermore, efforts are being made to reduce dark current. By solving the problems in applying such amorphous hydrogenated silicon to solid-state imaging devices, we have obtained a photoconductive film that retains the features of high breakdown voltage and high sensitivity, and we hope to develop solid-state imaging devices with excellent blooming characteristics. realizable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、それぞれ積層型固体撮像板の断
面図″、平面図、第3図は1絵素の等価回路図、第4図
は暗電流、充電流飽和電圧のSs  ドーグ量依存性を
示T図、第5図および第7図はそれぞれの本発明実施例
の断面図、第6図は第6図および第7図にそれぞれ示し
た実施例に用いた光導電膜の光電流、暗電流特性   
″−−蜘舛み断褥図である。 18・・・・・・CC:D、19・・・・・・光導電膜
、28・・・・・水素量の多い非晶質水素化シリコン、
23・・・・・・5iNz。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第4図 se/si (補対面積比) 第5図 第6図 印加電圧LVノ 第7図
Figures 1 and 2 are a cross-sectional view and a plan view of a stacked solid-state imaging plate, respectively. Figure 3 is an equivalent circuit diagram of one pixel, and Figure 4 is dark current and charging current saturation voltage Ss. Figures 5 and 7 are cross-sectional views of the respective embodiments of the present invention, and Figure 6 shows the light intensity of the photoconductive film used in the embodiments shown in Figures 6 and 7, respectively. Current, dark current characteristics
″--A cross-section diagram. 18...CC:D, 19...Photoconductive film, 28...Amorphous hydrogenated silicon with a large amount of hydrogen ,
23...5iNz. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Fig. 4 se/si (complementary to area ratio) Fig. 5 Fig. 6 Applied voltage LV Fig. 7

Claims (2)

【特許請求の範囲】[Claims] (1)ダイオード領域と、上記ダイオード領域に蓄積σ
nた信号電荷を走査する回路素子全面する、″1′導体
基板と、上記ダイオード領域の一部で開孔するように上
記半導体基板上に形成された絶縁膜と、−■二記開化部
を介して一部が上記ダイオード領域に接するように単位
絵素ごとに上記絶縁膜上に形成された第1電極と、上記
第1重()賃および一ヒ記絶縁膜上に形成さ几たカルコ
ゲン元素を含む非晶質水素化シリコンを主成分とする光
導電膜と、光導電膜上に形成てれた透明電極とを有する
ことを特徴とする固体撮像装置。
(1) Diode region and accumulation σ in the above diode region
a conductive substrate ``1'' covering the entire surface of a circuit element for scanning signal charges; an insulating film formed on the semiconductor substrate so as to have an opening in a part of the diode region; a first electrode formed on the insulating film for each unit pixel so that a part thereof is in contact with the diode region through the insulating film; and a chalcogen formed on the first layer and the insulating film. A solid-state imaging device characterized by having a photoconductive film whose main component is amorphous hydrogenated silicon containing elements, and a transparent electrode formed on the photoconductive film.
(2)光導電膜と、第1電極及び絶縁層の中間にドジー
ー性の不純物を含む水素化シリコンを主成分(3)光導
電膜と透明電極の中間にアクセプター性の不純物を含む
水素化シリコンを主成分とする(4)光導電膜よりバン
ドギャップの大の半導体音、光導電膜と第1電極及び絶
縁層の中間、または、光導電膜と透明電極の中間の少な
くとも一方に(6)光導電膜がシリコンを主成分とする
ターゲットとした、反応性スパッタ法による非晶質水素
化シリコンであることを特徴とする特許請求の範囲第1
項に記載の固体撮像装置。
(2) Mainly composed of hydrogenated silicon containing dozy impurities between the photoconductive film, the first electrode and the insulating layer (3) Hydrogenated silicon containing acceptor impurities between the photoconductive film and the transparent electrode (4) Semiconductor sound whose bandgap is larger than that of the photoconductive film, at least one between the photoconductive film and the first electrode and the insulating layer, or between the photoconductive film and the transparent electrode (6) Claim 1, characterized in that the photoconductive film is amorphous hydrogenated silicon formed by reactive sputtering using a target containing silicon as a main component.
The solid-state imaging device described in .
JP58023216A 1983-02-14 1983-02-14 Solid-state image pickup device Pending JPS59148363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58023216A JPS59148363A (en) 1983-02-14 1983-02-14 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58023216A JPS59148363A (en) 1983-02-14 1983-02-14 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS59148363A true JPS59148363A (en) 1984-08-25

Family

ID=12104459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58023216A Pending JPS59148363A (en) 1983-02-14 1983-02-14 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS59148363A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739588A (en) * 1980-08-22 1982-03-04 Fuji Photo Film Co Ltd Solid state image pickup device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739588A (en) * 1980-08-22 1982-03-04 Fuji Photo Film Co Ltd Solid state image pickup device

Similar Documents

Publication Publication Date Title
US4862237A (en) Solid state image sensor
JPS6218755A (en) Solid-state image pickup device
JPH0982932A (en) Solid state image sensing element
JPS636729A (en) Target of image pick-up tube
CN101207141A (en) Image sensor and manufacturing method thereof
Seo et al. A 128 x 96 Pixel Stack-Type Color Image Sensor with B-, G-, R-sensitive organic photoconductive films
JPH04261071A (en) Photoelectric converter
JPH07192663A (en) Image pickup device
JPS59148363A (en) Solid-state image pickup device
JP2509592B2 (en) Stacked solid-state imaging device
JPH08204165A (en) Multilayered solid-state image sensing device
JPS5954146A (en) Image pickup device
JPH07115183A (en) Layer-built solid-state image pickup device
JP2856774B2 (en) Solid-state imaging device
JP2831752B2 (en) Solid-state imaging device
JPS59143379A (en) Photoconductor and manufacture thereof
JPS5918685A (en) Manufacture of photoelectric converter element
JPH0669483A (en) Picture element of solid-state image pickup and its operation and production
JPH038115B2 (en)
JPH07335936A (en) Optoelectric transducer
JP3020563B2 (en) Solid-state imaging device
JP3302204B2 (en) Solid-state imaging device
JP2645052B2 (en) Solid-state imaging device
JPH0424966A (en) Solid-state image sensing device
JPS6243163A (en) Solid-state image pickup device