JPS59148031A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS59148031A
JPS59148031A JP2365283A JP2365283A JPS59148031A JP S59148031 A JPS59148031 A JP S59148031A JP 2365283 A JP2365283 A JP 2365283A JP 2365283 A JP2365283 A JP 2365283A JP S59148031 A JPS59148031 A JP S59148031A
Authority
JP
Japan
Prior art keywords
voltage
switch
optical
optical waveguide
temperature gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2365283A
Other languages
Japanese (ja)
Inventor
Kazuo Mikami
和夫 三上
Maki Yamashita
山下 牧
Mitsutaka Kato
加藤 充孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP2365283A priority Critical patent/JPS59148031A/en
Publication of JPS59148031A publication Critical patent/JPS59148031A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions

Abstract

PURPOSE:To make the temperature variation characteristics of a light guide sharply during the application of a specific voltage and improve the responsibility, and to perform optical switching by applying the specific voltage to a temperature gradient generating means when a switch circuit turns on rising and off falling. CONSTITUTION:The optical switch is providing a main light guide 29, light guide 30 having branch light guides 33 and 34, and the temperature gradient generating means 10 provided near the guide 30 and the branch point of the guides 33 and 34 of the guide 29, and consists of a switch circuit 22 which turns on and off the means 10 and a voltage source 21 which supplies a voltage which is than and has the same polarity with a steady on voltage to said means 10 only during turning-on operation in response to the on-off operation of the circuit 22 and a specific voltage having the opposite polarity of the steady on voltage only during turning off operation. Then, the means 10 is turned on and off to change light propagation directions in the light guide.

Description

【発明の詳細な説明】 (イ)発明の分野 この発明は光スィッチ、特に温度光学効果金利用した光
スィッチに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of the Invention The present invention relates to an optical switch, and particularly to an optical switch using thermo-optical effect gold.

(ロ)従来技術とその問題点 光導波路上に温度勾配発生手段によシ温度分布を生じさ
せ、いわゆる温度光学効果によシ光ビームをオン/オフ
させる光スィッチがすでに提案されている。この種の光
スィッチは温度勾配発生手段として、たとえば冷却体を
r重用し、その構成は第1図に示すように、高分子フィ
ルム1に形成される主光導波路2と分岐光、導波路3を
持つ光導波路4と、との光導波路4の分岐点5近傍に設
けられる冷却体6と、直流電源7と、スイッチ8とから
なるものであシ、スイッチ8をオン/オフすることによ
り電源7より冷却体6への電源供給をオン/オフして、
冷却体6の冷却作用を動作/不動作とし、光導波路4の
光伝搬方向を切換えるようにしている。
(b) Prior art and its problems An optical switch has already been proposed in which a temperature distribution is generated on an optical waveguide by a temperature gradient generating means, and a light beam is turned on and off by the so-called thermo-optic effect. This type of optical switch uses a cooling body, for example, as a temperature gradient generating means, and its configuration is as shown in FIG. It consists of an optical waveguide 4 with 7 to turn on/off the power supply to the cooling body 6,
The cooling effect of the cooling body 6 is activated/deactivated, and the light propagation direction of the optical waveguide 4 is switched.

この従来の光スイッチは、温度勾配発生手段としての冷
却体に、一定の直流電圧を印加し、この印加電圧をオン
/オンすることにょシ、光云搬方向を切換えるものであ
るから、印加電圧のオン/Aフに対する光切換の応答性
が悪く、高速に光切換ができないという欠点があった。
In this conventional optical switch, a constant DC voltage is applied to a cooling body as a means for generating a temperature gradient, and the direction of light propagation is switched by turning this applied voltage on and off. The shortcoming is that the responsiveness of optical switching to ON/A-OFF is poor, and high-speed optical switching cannot be performed.

この欠点について、さらに説明すると、上記従来の光ス
ィッチの切換動作を示す波形は第6図の通りとなる。ス
イッチ8がオン/オフされると、第6図(a)に示すよ
うにスイッチ8がオンの間、一定の電圧Vが冷却体乙に
印加される。印加電圧の立」−9あるいは立下シに応じ
て先導波路4の温度は指数関数的に変化し〔第6図(b
))、この温度変化の度合に応じて分岐光導波路乙の光
パワーは第6図(c)のようになり、印加電圧に対し、
オン時、オフ時とも、かなり大なる遅れc’rai 、
 Td2 : 100m5eC程度)ヲもって立上り、
あるいは立下る。この遅れは光切換の応答性の悪さを意
味する。
To further explain this drawback, the waveform showing the switching operation of the conventional optical switch is as shown in FIG. When the switch 8 is turned on/off, a constant voltage V is applied to the cooling body B while the switch 8 is on, as shown in FIG. 6(a). The temperature of the leading waveguide 4 changes exponentially according to the rise or fall of the applied voltage [Fig.
)), depending on the degree of temperature change, the optical power of the branched optical waveguide A becomes as shown in Fig. 6(c), and with respect to the applied voltage,
There is a fairly large delay c'rai both when on and off.
Td2: about 100m5eC) rises,
Or fall. This delay means poor optical switching responsiveness.

(ハ)発明の目的 この発明の目的は、上記欠点全解消し、応答性が良く、
高速に光切換が可能な光スィッチを提供するにある。
(c) Purpose of the invention The purpose of the present invention is to eliminate all of the above-mentioned drawbacks, provide good responsiveness,
An object of the present invention is to provide an optical switch capable of high-speed optical switching.

に)発明の構成と効果 上記目的を達成するために、この発明の光スイッチは、
主光導波路と分岐光導波路とを持つ光導波路と、この光
導波路の前記主光導波路と前記分岐光導波路の分岐点近
傍に設けられる温度勾配発生手段と、この温度勾配発生
手段の動作をオン/オフするスイッチ回路と、このスイ
ッチ回路のオン/オフに応答し、オン立上り時にのみ定
常オン電圧よりも大なる同極性の電圧を、オフ立下り時
にのみ定常オン電圧とは逆極性の所定電圧全前記スイッ
チ回路を介して前記温度勾配発生手段に供給する電圧源
とからなり、前記温度勾配発生手段のオン/オフにより
光導波路内の光伝搬方向を切換えるようにしている。
) Structure and effect of the invention In order to achieve the above object, the optical switch of this invention has the following features:
An optical waveguide having a main optical waveguide and a branch optical waveguide, a temperature gradient generating means provided near a branch point between the main optical waveguide and the branch optical waveguide of the optical waveguide, and turning on/off the operation of the temperature gradient generating means. A switch circuit that turns off, and responds to the on/off of this switch circuit, applies a voltage of the same polarity that is greater than the steady on voltage only at the time of the on rise, and a predetermined voltage of the opposite polarity to the steady on voltage only at the time of the off fall. and a voltage source supplied to the temperature gradient generation means via the switch circuit, and the direction of light propagation within the optical waveguide is switched by turning on/off the temperature gradient generation means.

この発明の光スィッチによれば、スイッチ回路のオン立
上り時にのみ定常オン電圧よりも人なる同探姓の電圧を
、またオフ立上シ時にのみ定常オン電圧とは逆極性の所
定電圧を温度勾配発生手段に印加するものであるから、
オン立上り時及びオフ立下り時における光導波路の温度
変化特性が急峻となυ応答性に憂れた光切換を行なうこ
とができる。
According to the optical switch of the present invention, the voltage of the same probe is lower than the steady on voltage only when the switch circuit turns on, and the predetermined voltage with the opposite polarity to the steady on voltage is set only when the switch circuit turns off. Since it is applied to the generating means,
Optical switching can be performed in which the temperature change characteristics of the optical waveguide at the time of on-rise and off-fall are steep, and the υ response is poor.

なおこの発明の光スィッチを光ファイバループ伝送の光
バイパススイッチに適用すれば、光データハイウェイシ
ステムの異常時の光フアイバルーズのバイパス切換時間
が早くなり、システムダウン時間全短縮できシステムの
信頼性全向上できる。
Furthermore, if the optical switch of the present invention is applied to an optical bypass switch for optical fiber loop transmission, the bypass switching time for the optical fiber loose in the event of an abnormality in the optical data highway system will be shortened, the system down time can be completely reduced, and the reliability of the system can be improved. You can improve.

(ホ)実施例の説明 以下、実施例によりこの発明をさらに詳細に説明する。(e) Description of examples Hereinafter, the present invention will be explained in more detail with reference to Examples.

第2図ないし第4図は、この発明が実施される光スィッ
チに(費用される冷却体部10i示している。もつとも
、この冷却体部10の本体自体はすでに提案されン!冷
却体使用の光スイッチのものと変わるところはない。
2 to 4 show a cooling body part 10i which is included in an optical switch in which the present invention is implemented. However, the main body of this cooling body part 10 itself has not been proposed yet. There is no difference from the optical switch.

」1記各図において、たとえばビスフェノール系ポリカ
ーボネー)PCZ等の高分子フィルム11に、たんざく
形(長さ7M、幅21i& )の角穴12をギA1ヌテ
イング法により形成し、仁の角穴12に、たとえばN形
のテルル化ビスマス(N−Bi2Tea) 13および
P形のテルル化ビスマスCP −B i zTe3)1
4をコート膜にて界面を絶縁して埋込み。
1, in each figure, a rectangular hole 12 in the shape of a tanzak (length 7M, width 21m) is formed in a polymer film 11 such as bisphenol-based polycarbonate (PCZ) by the gear A1 nuting method. 12, for example N-type bismuth telluride (N-Bi2Tea) 13 and P-type bismuth telluride CP-B i zTe3)1
4 is buried with the interface insulated with a coating film.

さらに高分子フィルム11の表面及び裏面に膜厚が60
0071mのA U電11g 15 、16および17
を蒸着形成している。上記N形のテルル化ビスマス13
、P形のテルル化ビスマス14およ(f I[極15゜
16.1’7で冷却体18が構成されている。寸だ電極
15.16の」二面には電気的には絶縁体であり、熱的
には伝導体である雲母膜19を配する一方、さらにたと
えばアルミニューム合金を加工したヒートシンク20の
裏面に熱伝導を助けるためのグリーヌおよび接着剤を塗
布し、この裏面を上記雲母膜19に乗せ、ヒートシンク
2Dと高分子フィルム11f:密着形成している。まだ
電極15゜16には、電源21よりスイッチ22を介し
て′厩源電圧が印加されるようにリード線23.24が
接続されてい乙。
Furthermore, a film thickness of 60 mm is applied to the front and back surfaces of the polymer film 11.
0071m AU electric 11g 15, 16 and 17
is formed by vapor deposition. The above N-type bismuth telluride 13
, P-type bismuth telluride 14 and (f I[pole 15°16.1'7) constitute a cooling body 18.The two faces of the electrode 15.16 are electrically insulators. While a mica film 19, which is a thermal conductor, is disposed, green and adhesive are applied to the back side of the heat sink 20, which is made of processed aluminum alloy, for example, to aid heat conduction, and this back side is coated with the above-mentioned method. The heat sink 2D and the polymer film 11f are placed on the mica film 19 and are in close contact with each other.Lead wires 23. 24 is connected.

上記冷却体部10において、スイッチ12をオンし、電
極15に十電圧、電極16に一電圧全印加すると、N形
のテルル化ビスマス1ろの内部を子が電極15に吸引さ
れ、P形のテルル化ビスマス14の内部正孔が電極16
に吸引される。その結果、電源21→スイツチ22→リ
ード線23→IHi1i?15→N形テルル化ビヌマス
13→’fi17−P形テルル化ビスマヌ14→電極1
6→リード線24→電源21の順で電流が流れる。この
電流がN形テルル化ビヌマヌ13およびP形テルル化ビ
ヌマヌ14に流れると、ベルチェ効果により。
In the cooling body section 10, when the switch 12 is turned on and ten voltages are applied to the electrode 15 and one voltage is fully applied to the electrode 16, the inside of the N-type bismuth telluride is attracted to the electrode 15, and the P-type Internal holes of bismuth telluride 14 form electrode 16
is attracted to. As a result, power supply 21 → switch 22 → lead wire 23 → IHi1i? 15→N-type bismanuth telluride 13→'fi17-P-type bismanuth telluride 14→electrode 1
A current flows in the order of 6→lead wire 24→power supply 21. When this current flows through the N-type telluride binumanu 13 and the P-type telluride binumanu 14, it is caused by the Bertier effect.

電極17とN形テルル化ビスマヌ13とP形テルル化ビ
ヌマス14の接触面で熱量吸収が生じる。
Heat absorption occurs at the contact surface between the electrode 17, the N-type bismanuth telluride 13, and the p-type bismanuth telluride 14.

したがって上記電極17をたとえば高分子光導波路に接
触させるとその光導波路部の電子冷却により温度降下が
生じる。
Therefore, when the electrode 17 is brought into contact with, for example, a polymer optical waveguide, a temperature drop occurs due to electronic cooling of the optical waveguide portion.

第5図はこの発明の一実施例を示す光スィッチの構造図
及び回路図である。ここに示す光スィッチは、保護基板
としてのプラスチック板25.クラッド層26・27.
高分子フィルム28.冷却体部10.電源同格21及び
スイッチ回路22より構成されており、高分子フィルム
2Bには主光導波路29および非対称分岐光導波路30
を持つ非対称Y形の光導波路31が形成されている。主
光導波路29の入力側には入射光が入力されるように入
力用光ファイバ32が結合されており主光導波路29お
よび分岐光導波路30の出力側には。
FIG. 5 is a structural diagram and a circuit diagram of an optical switch showing an embodiment of the present invention. The optical switch shown here uses a plastic plate 25. as a protective substrate. Cladding layers 26 and 27.
Polymer film 28. Cooling body part 10. It is composed of a power source 21 and a switch circuit 22, and the polymer film 2B has a main optical waveguide 29 and an asymmetric branch optical waveguide 30.
An asymmetrical Y-shaped optical waveguide 31 is formed. An input optical fiber 32 is coupled to the input side of the main optical waveguide 29 so that incident light is input thereto, and to the output sides of the main optical waveguide 29 and the branch optical waveguide 30.

出射光が導出されるようにそれぞれ出力用光ファイバ3
3.34が結合されている。
Each output optical fiber 3 is connected so that the output light is guided out.
3.34 are combined.

冷却体部10は第2図ないし第4図で図説したものが1
吏月コされる。
The cooling body section 10 illustrated in FIGS. 2 to 4 is 1.
Rizuki is raped.

高分子フィルム2日は2母料にビスフェノール系ポリカ
ーボネ−1−P CZ ’i用い、モノマとしてアクリ
ル酸メチlI/M A f 、溶媒として塩化メチレン
CH2Cβ3を、光増感剤としてベンゾインエチレンエ
ーテ/l/BZEEを、禁止剤としてハイドロキノンH
Qをブレンドしたキャスト溶液をキャヌテイング法によ
シシート状に半固形状態にしたもので。
For the polymer film 2, bisphenol polycarbonate-1-P CZ'i was used as the base material, methyl acrylate lI/M A f was used as the monomer, methylene chloride CH2Cβ3 was used as the solvent, and benzoin ethylene ether/l was used as the photosensitizer. /BZEE with hydroquinone H as an inhibitor
A cast solution containing Q blended into a semi-solid state in the form of a sheet using the canuteing method.

その膜厚はたとえば50(71m)である。なお高分子
フィルム28内に配置される光導波路31は選択光重合
を用いて屈折率差を設けることにより形成される。
The film thickness is, for example, 50 (71 m). Note that the optical waveguide 31 disposed within the polymer film 28 is formed by providing a refractive index difference using selective photopolymerization.

クラッド層26・27は、高分子フィルム28の表面と
裏面に低屈折率のたとえば水性ニスをコーテングして形
成される。
The cladding layers 26 and 27 are formed by coating the front and back surfaces of the polymer film 28 with, for example, a water-based varnish having a low refractive index.

冷却体部10の冷却体18は、光導波路60の分岐点6
5において9分岐光導波路30に沿って配置され、高分
子フィルム28の表面に密着されている。この密着は接
着あるいはビス止め等によシ機械的圧着することによシ
行なわれる。
The cooling body 18 of the cooling body section 10 is connected to the branch point 6 of the optical waveguide 60.
5 is disposed along the nine-branch optical waveguide 30 and is closely attached to the surface of the polymer film 28. This close contact is achieved by mechanical pressure bonding using adhesives, screws, etc.

電源回路21は、第1の電池36に、抵抗R1と常開ス
イッチ38の直列回路及び抵抗R2とトランジスタTr
の直列回路が並列接続され、抵抗R1と常開スイッチ3
8の接続点がトランジスタTrのベースに接続すれ、ト
ランジスタTrのコレクタがコンデン)J−C,抵抗R
5を経て電池56の負極側に接続され、さらにコンデン
サCと抵抗R3の接続点が電池37の負版側に接続され
て構成されている。そして電池56の負極側がリード線
24を経て冷却体部10の電@16に接続されている。
The power supply circuit 21 includes a first battery 36, a series circuit of a resistor R1 and a normally open switch 38, a resistor R2, and a transistor Tr.
series circuits are connected in parallel, resistor R1 and normally open switch 3
The connection point of 8 is connected to the base of the transistor Tr, and the collector of the transistor Tr is a capacitor) JC, resistor R
5 to the negative side of the battery 56, and furthermore, the connection point between the capacitor C and the resistor R3 is connected to the negative side of the battery 37. The negative electrode side of the battery 56 is connected to the power source 16 of the cooling body section 10 via the lead wire 24.

スイッチ回路22は、常開スイッチろ9と常閉スイッチ
40からなり、常開2イツチ69の一端は電池57の正
極端に接続され、常閉スイッチ4゜の一端1ljt池3
7の負極端に接続され、さらに両スイッチ39.40の
他端は共通接続されリード線26を経て冷却体部10の
電極15に接続されている。なお常開スイッチ38.3
9は同時にオンされ、常閉スイッチ4Gは常開スイッチ
ろ8゜39のオンと同時にオフされるようになっている
The switch circuit 22 consists of a normally open switch 9 and a normally closed switch 40, one end of the normally open switch 69 is connected to the positive end of the battery 57, and one end of the normally closed switch 4° is connected to the battery 3.
Further, the other ends of both switches 39 and 40 are commonly connected and connected to the electrode 15 of the cooling body section 10 via a lead wire 26. In addition, the normally open switch 38.3
9 are turned on at the same time, and the normally closed switch 4G is turned off at the same time as the normally open switch 8.39 is turned on.

上記電源回路21とスイッチ回路22により第7図(a
)に示す波形の電圧が作成され、この電圧がリード線2
3.24を経て電極15.16に印加される。
The power supply circuit 21 and the switch circuit 22 shown in FIG. 7(a)
) is created, and this voltage is applied to lead wire 2.
3.24 to electrode 15.16.

ここで、電源回路21とスイッチ回路22による第7図
(a)の電圧発生動作を説明する。先ず印加電圧0の状
態でスイッチ3M9をオンすると(時点ti)トランジ
スタTrがオフしコンデンサCを通して電池36と67
の起″眠力が加算されて出力される。離油36.37の
起′祇力を■とするとこの時、出力される電圧は+2v
となる。その後、コンデンサCに充電がなされ、その両
端に−Vの電圧が生じることになるので、出力電圧は一
定時間後(時点t2)に+Vとなる。すなわち定常時の
印加電EVが出力される。その後、スイノチろ8.ろ9
をオフしスイッチ40をオンする(時点L6)と、  
l−ランジスタTrがオンし? トラン/スタTr、抵
抗R3を通してコンデンサCの充電電荷が放電し、電池
37の負極側と抵抗R3の接続点Aの′IL位は一■と
なり、この電圧−V(定常時の印加電圧Vと逆極性)が
スイッチ40を介して出力される。その後時間の経過で
コンデンサCの放電が終了し放電電流が抵抗R6に流れ
なくなると点Aの電位は0となる(時点t4)。
Here, the voltage generation operation shown in FIG. 7(a) by the power supply circuit 21 and the switch circuit 22 will be explained. First, when the switch 3M9 is turned on with the applied voltage being 0 (time ti), the transistor Tr is turned off and the batteries 36 and 67 are connected through the capacitor C.
The wake-up force of 36.37 is added and outputted.If the wake-up force of 36.
becomes. Thereafter, the capacitor C is charged and a voltage of -V is generated across it, so the output voltage becomes +V after a certain period of time (time t2). That is, the applied electric current EV during steady state is output. After that, Suinochiro 8. Ro9
When the switch 40 is turned off and the switch 40 is turned on (time L6),
Is the l-transistor Tr turned on? The charge in the capacitor C is discharged through the transformer/storer Tr and the resistor R3, and the voltage at the connection point A between the negative electrode side of the battery 37 and the resistor R3 becomes 1. (reverse polarity) is outputted via switch 40. Thereafter, as time passes, the discharge of the capacitor C ends and the discharge current no longer flows through the resistor R6, and the potential at point A becomes 0 (time t4).

以上のようにして第7図(a)の電圧が作成される。As described above, the voltage shown in FIG. 7(a) is created.

もつとも、実際にはコンデンサCの充放電により発生さ
れるパルス波形は指数関数重々変化となるが、これは必
要ならば波形整形回路等を用いることにより厳密な矩形
波にすればよい。
However, in reality, the pulse waveform generated by charging and discharging the capacitor C changes exponentially, but if necessary, this can be made into a strict rectangular wave by using a waveform shaping circuit or the like.

次に以」二のように構成され、第7図(a)に示す波形
の′電圧が印加される光スィッチの光囲向動作について
説明する。最初スイッチ38.39がオフの場合には、
電源回路21より電極15.16に電圧が印加されない
ので、冷却体18による冷却作用がなされず1分岐点3
5近傍の温度は周囲温度Tmと変らず、温間分布、屈折
率分布が生じない、したがって入力用光ファイバ62か
ら入射される光Cは偏向されずその寸ま主光導波路29
内を伝搬し、出力用光ファイバ33から導出される。
Next, a description will be given of the light surrounding operation of the optical switch configured as follows and to which a voltage having the waveform shown in FIG. 7(a) is applied. If switches 38 and 39 are initially off,
Since no voltage is applied to the electrodes 15 and 16 from the power supply circuit 21, the cooling effect by the cooling body 18 is not performed and the first branch point 3
The temperature in the vicinity of 5 is the same as the ambient temperature Tm, and no warm distribution or refractive index distribution occurs. Therefore, the light C incident from the input optical fiber 62 is not deflected and passes through the main optical waveguide 29 to that extent.
The light propagates through the optical fiber 33 and is led out from the output optical fiber 33.

この状態は光スィッチのオフ状態である。This state is the off state of the optical switch.

スイッチ38.39がオンされると電源回路21よりス
イッチ39.リード線25.24を介して電極15.1
6に電圧が印加されるので冷却体18はペルチェ効果に
より、電極17で吸熱作用を生じ、電+1i17と密着
状態にある分岐光導波路60の熱量を吸収し、温間降下
を生じさせる。この温度降下により、冷却体18の近傍
の温度分布は遠方部に比べてマイナスとなり、屈折率は
プラスの分布となる。そして冷却体18の幅方向の中心
7タシで温度が最低、屈折率が最大となり、冷却体18
の端部イー1近では最も温度勾配が急で、屈折率勾配も
最大となる。それゆえこのイτj近を光が通過すると、
屈折率勾配の存在により、屈折率の犬なる方。
When the switches 38 and 39 are turned on, the power supply circuit 21 turns on the switches 39 and 39. Electrode 15.1 via lead wire 25.24
6, the cooling body 18 produces heat absorption at the electrode 17 due to the Peltier effect, absorbs the amount of heat from the branched optical waveguide 60 in close contact with the electrode 17, and causes a warm drop. Due to this temperature drop, the temperature distribution near the cooling body 18 becomes negative compared to the far part, and the refractive index becomes positive distribution. The temperature is lowest and the refractive index is highest at the center 7 in the width direction of the cooling body 18.
Near the end E1, the temperature gradient is the steepest and the refractive index gradient is also the largest. Therefore, when light passes near this i τj,
A dog of refractive index due to the presence of a refractive index gradient.

すなわち冷却体18の中心部に向って波面が傾き偏向さ
れる。したがって入力用光ファイバ62より入射さね主
光導波路29内を伝搬して来た入力光Cは2分岐点65
で曲げられて分岐光導波路6゜全仏j般し、出力用光フ
ァイバ34よシ出力光dが導出される、この状態が光ス
ィッチのオン状態である。
That is, the wavefront is tilted and deflected toward the center of the cooling body 18. Therefore, the input light C propagating through the input tongue main optical waveguide 29 from the input optical fiber 62 reaches the two-branch point 65.
The branched optical waveguide 6° is bent at the angle 6°, and the output light d is guided out from the output optical fiber 34. This state is the ON state of the optical switch.

この場合においてスイッチ38.39のオン立上9時幻
−上記したように+2vの印加″電圧が印加されるので
、温度降下は第7図tblに示すようになシ、従来の温
度降下特性〔第6図(bl疹照〕に比して急峻となシ、
したがって分岐先導波路6oの光パワーも第7図(C)
に示すようにスイッチ38.39のオン立上シ時t1か
ら時間’、I’d3で立上り、この遅延時間Td3は従
来の分岐先導波路の光パワー立上シの遅延時1t4JT
 d 1 ニ対1.’i’c13−/2〜15Td1と
なシ、非常に短くなるので光スィッチの応答性が改善さ
れる。スイッチ38.39のオン後の時点t2以降は印
加電圧が+Vとなるので。
In this case, when the switches 38 and 39 turn on at 9 o'clock, a +2V voltage is applied as described above, so the temperature drop is as shown in FIG. The slope is steeper than that in Figure 6 (BL).
Therefore, the optical power of the branch leading waveguide 6o is also as shown in FIG. 7(C).
As shown in the figure, the switch 38.39 rises at time t1 from the time t1 when it turns on, I'd3, and this delay time Td3 is 1t4JT when the optical power rises in the conventional branching waveguide.
d 1 2 vs. 1. Since 'i'c13-/2 to 15Td1 is extremely short, the response of the optical switch is improved. Since the applied voltage becomes +V after time t2 after the switches 38 and 39 are turned on.

この電圧に応じた偏向角に光ビームの面内が落着き、上
記したように出方用光ファイバ54より出力光dが導出
される。
The in-plane of the light beam settles at a deflection angle corresponding to this voltage, and the output light d is led out from the output optical fiber 54 as described above.

また、スイッチ38.39rオフしスイッチ40をオン
すると、印加電圧は第7図(a)に示すようにスイッチ
38.39のオフ立下9時点で地1囲Y品度T mに復
帰し分岐点近傍の温度勾配が消滅するが。
Further, when the switch 38.39r is turned off and the switch 40 is turned on, the applied voltage returns to the ground 1 circle Y quality T m at the 9 time point when the switch 38.39 turns off and branches as shown in FIG. 7(a). Although the temperature gradient near the point disappears.

この復1m度合は印加電圧がスイッチろ8,39のオフ
、スイッチ40のオンで一■となるので、従来の温度復
帰特性に比べて第7図(blに示すようにより急緻とな
9.したがって分岐光導波路60の光パワーも第7図(
(3)に示すようにスイッチ68゜39のオフ立下り時
t6から時間Td4で立下り。
Since the applied voltage is 1 m when the switches 8 and 39 are off and the switch 40 is on, the temperature return characteristic is more rapid than the conventional temperature return characteristic as shown in Fig. 7 (bl). Therefore, the optical power of the branched optical waveguide 60 also increases as shown in FIG.
As shown in (3), it falls at time Td4 from the time t6 when the switch 68°39 turns off.

従来の躬6図(C)に示す遅延時間Td2に比し、や1 はりTd4= /2〜/3’rc12トfx F)、 
ヌ4ツfオフ時でも応答性がrk−1rされる。
Compared to the conventional delay time Td2 shown in Figure 6 (C), Td4 = /2~/3'rc12fxF),
Even when F4 is off, the response is rk-1r.

なお−に記失施例において温度勾配発生手13シ″とし
て冷却体を用いたが、これに代えそ発熱体音用い。
In addition, in the embodiment, a cooling body was used as the temperature gradient generating means 13'', but instead of this, a heating element was used.

印加軍;圧の立上υ時、立下シ時に定常印加電圧にそれ
ぞれ負および正パルスを重畳して上記発〃1体に印加し
てもよい。
Application: Negative and positive pulses may be superimposed on the steady applied voltage at the rise and fall of the pressure, respectively, and may be applied to the generator.

また上記実施例において高分子フィルムのyt早および
導波路幅はマルチモード光の切戻全想定して50μIn
としたが、これを5〜10μ用としてこの発明の光スィ
ッチをシングルモード光用にも〕日用できる。
In addition, in the above example, the yt speed of the polymer film and the waveguide width are 50 μIn assuming all the switching of multimode light.
However, the optical switch of the present invention can also be used for single mode light by using this for 5 to 10 microns.

芒らに捷だ上記実施例において、光イメ波路用材料とし
ては旨分子フィルムを用いたが、この発明の光スィッチ
はこれに代えて、ガラス等のアモルファス材料、PLZ
T等の多結晶材料、LiNbO3等の強誘電体利料全用
いてもよい。
In the above embodiments, a molecular film was used as the material for the optical image wave path, but the optical switch of the present invention uses an amorphous material such as glass, or PLZ instead.
Polycrystalline materials such as T and ferroelectric materials such as LiNbO3 may all be used.

41メ1面のIyii単なdシ3明 第1図は従来の光スィッチを示す図、第2図はこのヴむ
明が実施される光スィッチに(費用される冷却体部の側
断面図、第3図は同冷却体部の上面図。
Figure 1 is a diagram showing a conventional optical switch, and Figure 2 is a side sectional view of the cooling body part used in the optical switch in which this optical switch is implemented. , FIG. 3 is a top view of the cooling body section.

第4図は同冷却体部の下面図、第5図はこの発明の一実
施例金示す光スィッチの偵造図及び回路図。
FIG. 4 is a bottom view of the cooling body, and FIG. 5 is a reconnaissance diagram and a circuit diagram of an optical switch according to an embodiment of the present invention.

第6図は第1図に示す従来の光スィッチのスイッチング
動作を説明するための波形図、第7図は第5図に示1実
施例光スイッチのスイッチングml f’1′lc説明
するための波形図である。
6 is a waveform diagram for explaining the switching operation of the conventional optical switch shown in FIG. 1, and FIG. 7 is a waveform diagram for explaining the switching operation of the optical switch of the first embodiment shown in FIG. FIG.

18:冷却体、  21:’市、源回路、 22:スイ
ッチ回路、  29:主光導波路。
18: Cooling body, 21: Source circuit, 22: Switch circuit, 29: Main optical waveguide.

30二分岐光導波路、  3に光導波路。30 bifurcated optical waveguide, 3 optical waveguide.

55−分岐点。55- Branching point.

特許出願人     立石〒b゛、鋼株式会社代理人 
 弁理士  中 村 茂 信 第1図 第3図 第4図
Patent applicant: Tateishi 〒b゛, Koko Co., Ltd. agent
Patent Attorney Shigeru Nakamura Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)主光導波路と分岐先導波路とを持っ光導波路と、
この先導波路の前記主光導波路と前記分岐先導波路の分
岐点近傍に設けられる温度勾配発生手段と、この温度勾
配発生手段の動作をオン/オフするスイッチ回路と、こ
のスイッチ回路のオン/オフに応答しオン立上シ時にの
み定常オン電圧よシも大なる同極性の電圧を、オフ立下
9時にのみ定常オン電圧とは逆極性の所定電圧を前記ス
イッチ回路を介して前記温度勾配発生手段に供給する電
圧源とがらなす、前記温度勾配発生手段のオン/オフに
ょシ前記光導波路内の光伝搬方向を切換えるようにした
光スイッチ。
(1) An optical waveguide having a main optical waveguide and a branch leading waveguide,
A temperature gradient generating means provided in the vicinity of a branch point between the main optical waveguide and the branch leading waveguide of the leading waveguide, a switch circuit for turning on/off the operation of the temperature gradient generating means, and a switch circuit for turning on/off the operation of the temperature gradient generating means. In response, the temperature gradient generating means generates a voltage of the same polarity as the steady on voltage only at the time of turning on, and a predetermined voltage of the opposite polarity to the steady on voltage only at the time of turning off, through the switch circuit. An optical switch configured to turn on/off the temperature gradient generating means and a voltage source supplied to the optical waveguide to switch the direction of light propagation within the optical waveguide.
JP2365283A 1983-02-14 1983-02-14 Optical switch Pending JPS59148031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2365283A JPS59148031A (en) 1983-02-14 1983-02-14 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2365283A JPS59148031A (en) 1983-02-14 1983-02-14 Optical switch

Publications (1)

Publication Number Publication Date
JPS59148031A true JPS59148031A (en) 1984-08-24

Family

ID=12116460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2365283A Pending JPS59148031A (en) 1983-02-14 1983-02-14 Optical switch

Country Status (1)

Country Link
JP (1) JPS59148031A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211501A (en) * 1996-01-31 1997-08-15 Nippon Telegr & Teleph Corp <Ntt> Thermooptical optical switch
NL1004169C2 (en) * 1996-10-01 1998-04-02 Akzo Nobel Nv Switching method for switching optical signal from input port of digital thermo-optical switch to at least one output port
WO1998014826A1 (en) * 1996-10-01 1998-04-09 Akzo Nobel N.V. Method for switching optical signals and a thermo-optical switch
US6181456B1 (en) 1999-04-01 2001-01-30 Uniphase Telecommunications Products, Inc. Method and apparatus for stable control of electrooptic devices
US6351578B1 (en) 1999-08-06 2002-02-26 Gemfire Corporation Thermo-optic switch having fast rise-time
WO2004023196A1 (en) * 2002-09-04 2004-03-18 Valtion Teknillinen Tutkimuskeskus Method for controlling an optoelectronic component
JP2006349855A (en) * 2005-06-14 2006-12-28 Mitsubishi Electric Corp Variable dispersion compensator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211501A (en) * 1996-01-31 1997-08-15 Nippon Telegr & Teleph Corp <Ntt> Thermooptical optical switch
NL1004169C2 (en) * 1996-10-01 1998-04-02 Akzo Nobel Nv Switching method for switching optical signal from input port of digital thermo-optical switch to at least one output port
WO1998014826A1 (en) * 1996-10-01 1998-04-09 Akzo Nobel N.V. Method for switching optical signals and a thermo-optical switch
US6181456B1 (en) 1999-04-01 2001-01-30 Uniphase Telecommunications Products, Inc. Method and apparatus for stable control of electrooptic devices
US6351578B1 (en) 1999-08-06 2002-02-26 Gemfire Corporation Thermo-optic switch having fast rise-time
WO2001016648A3 (en) * 1999-08-06 2002-05-02 Gemfire Corp Thermo-optic switch having fast rise-time
WO2004023196A1 (en) * 2002-09-04 2004-03-18 Valtion Teknillinen Tutkimuskeskus Method for controlling an optoelectronic component
US7386196B2 (en) 2002-09-04 2008-06-10 Valtion Teknillinen Tutkimuskeskus Method for controlling an optoelectronic component
JP2006349855A (en) * 2005-06-14 2006-12-28 Mitsubishi Electric Corp Variable dispersion compensator

Similar Documents

Publication Publication Date Title
US6690036B2 (en) Method and apparatus for steering an optical beam in a semiconductor substrate
JPS58130320A (en) Optical controller for light carried through light waveguide path
US7171064B2 (en) Thermo-optic switch having fast rise-time
KR101647046B1 (en) Surface plasmon polariton modulator
US6600864B2 (en) Method and apparatus for switching an optical beam using an optical rib waveguide
US6603893B1 (en) Method and apparatus for switching an optical beam in a semiconductor substrate
JPS59148031A (en) Optical switch
US4738502A (en) Optical deflector
US6483954B2 (en) Method and apparatus for coupling to regions in an optical modulator
JPS56137533A (en) Optical information processor
US6470105B2 (en) Bistable light path device
US6470104B2 (en) Method and apparatus for switching an optical beam by modulating the phase of a portion of the optical beam in a semiconductor substrate
EP0431698B1 (en) Actively phase matched frequency doubling optical waveguide and frequency doubling system
KR19980703750A (en) High speed switchable asymmetric thermo-optic device
JPS57142622A (en) Photoswitch
JPH02121661A (en) Goggle
Yamanouchi et al. Optical switching device using leaky surface wave
JP2800297B2 (en) Light control device
JPS6463931A (en) Liquid crystal optical modulation device
JPS5971032A (en) Thin film optical deflection element
JPS59154427A (en) Light controlling device
JPS6374028A (en) Optical modulator
SE7609930L (en) LIGHT CONCENTRATING MIRROR DEVICE WITH DEFORMABLE REFLECTIVE SURFACE
JPS56138725A (en) Electro-optic effect optical switch
JPS56138724A (en) Electro-optic effect optical switch