JPS59147990A - Lamination type heat exchanger - Google Patents

Lamination type heat exchanger

Info

Publication number
JPS59147990A
JPS59147990A JP2064183A JP2064183A JPS59147990A JP S59147990 A JPS59147990 A JP S59147990A JP 2064183 A JP2064183 A JP 2064183A JP 2064183 A JP2064183 A JP 2064183A JP S59147990 A JPS59147990 A JP S59147990A
Authority
JP
Japan
Prior art keywords
plate
passages
fluid flow
flow path
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2064183A
Other languages
Japanese (ja)
Inventor
Isao Takeshita
功 竹下
Yoshiaki Yamamoto
義明 山本
Kiyomiki Ishitani
石谷 清幹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2064183A priority Critical patent/JPS59147990A/en
Priority to EP83110906A priority patent/EP0108377A1/en
Publication of JPS59147990A publication Critical patent/JPS59147990A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall

Abstract

PURPOSE:To produce the lamination type heat exchanger which is simple in structure and which has three-layer helical fluid flow passage by a method wherein fluid flow passages are formed within each of flat plates and the flat plates are laid one above another integrally so that two fluid flow passages which are in thermal contact with each other are formed. CONSTITUTION:The fluid flow passages B1 and B2 and the fluid flow passages C1 and C2 within the plate A communicate with each other, respectively, the fluid flow passages A'1 and A'2 and the fluid flow passages C'1 and C'2 within the plate B communicate with each other, respectively, and the fluid flow passages A''1 and A''2 and the fluid flow passages B''1 and B''2 within the plate C communicate with each other, respectively. However, the above pairs of passages are separated from one another. In case where the above-mentioned basic plates are laid one above another in a predetermined order, the passages within the plate A may communicate with those within another plate A through the passages within the plate B or C and may further communicate with those witin a still lower plate A in series in a helical fashion. The same thing can be said about the passages within the plates B and C. For instance, it is possible to form a three-layer heat exchanger having such structure that the passages within the plate B lie below the plate A and the passages within the plate C lie above the plate A.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空調、冷凍、太陽熱利用、食品加工、化学工業
など熱応用分野で、主として液−液域だは気液2相流間
の熱交換を扱う積層式熱交換器に関するものである。
[Detailed Description of the Invention] Industrial Fields of Application The present invention is applicable to heat exchange fields such as air conditioning, refrigeration, solar heat utilization, food processing, and chemical industries, and is mainly applicable to heat exchange between liquid-liquid regions or gas-liquid two-phase flows. This article relates to laminated heat exchangers.

従来例の構成とその問題点 第1図に示すごとき3層ら線状熱交換器は管断面が十分
偏平な長方形であると、流体流路断面積に対し、大きな
伝熱面積が確保できるから、理想的な熱交換器となるが
、偏平な長方形断面の管は製作しにくいばかりでなく、
偏平であると、ら線状に巻回することが困難であるため
、実現困難であった。
Conventional structure and its problems In a three-layer linear heat exchanger as shown in Figure 1, if the pipe cross section is sufficiently flat and rectangular, a large heat transfer area can be secured relative to the fluid flow path cross section. , is an ideal heat exchanger, but a tube with a flat rectangular cross section is not only difficult to manufacture;
If it is flat, it is difficult to wind it in a spiral shape, making it difficult to realize it.

前記難点に対し、平板内に流路を設け、これを積層して
一体化し、熱的に接触する2つの流体流路を構成する方
法が提案されている。
To solve the above-mentioned problems, a method has been proposed in which a flow path is provided in a flat plate, and the plates are laminated and integrated to form two fluid flow paths that are in thermal contact with each other.

発明の目的 本発明はこの構成における積層板間の流体連絡通路を形
成する方法に特徴を有するものであり、単純な構造で3
層ら線状熱交換器状の熱交換器を積層式に作成すること
を目的とする〇 発明の構成 3層ら線状熱交換器は少くとも3つの流体のだめの独立
した流路が互いに熱的に接触するごとく構成しなければ
ならないが、本発明は1つの流体の熱交換のための流路
を有する素板の流体の入口および出口位置は同一流体に
関しては同一とし、出口位置と入口位置を結ぶ通路を他
の流体の熱交換のための流路を有する素板内に設けるこ
とにより、積層一体化した時にら線状流路が形成される
ようにする。
OBJECTS OF THE INVENTION The present invention is characterized by a method of forming fluid communication passages between the laminated plates in this configuration, and has a simple structure.
The object of the present invention is to create a heat exchanger in the form of a layered wire heat exchanger in a layered manner.The three-layer wire heat exchanger has the structure of a three-layer wire heat exchanger in which independent flow paths of at least three fluid reservoirs share heat with each other. However, in the present invention, the inlet and outlet positions of the fluid of a blank plate having a flow path for heat exchange of one fluid are the same for the same fluid, and the outlet position and the inlet position are the same. By providing a passage connecting the fluids in a blank plate having a flow path for heat exchange with other fluids, a linear flow path is formed when the two fluids are laminated and integrated.

実施例の説明 第2図、第3図は本発明の一実施例を示す図である。す
なわち、第2図イは第1の流体の流路を構成する素板A
、第2図口は第2の流体の流路を構成する素板B、第2
図・・は第3の流体の流路を構成する素板Cを示し、第
3図は第2図ノ・に示す素板Cのx−x’線における断
面図である。第2図イにおいて、1は流路となる溝部、
2はこの溝部1をC字形流路にするための隔壁、U +
 A2 ’+ J +132、 c、 、 c、、は流
路の連絡通路構成部で、斜線をほどこしたAI + 8
2 + 02は素板Aを貫通した貫通穴である。第2図
口に示す素板Bにおいては、素板Aと隔壁2の位置が異
り、1だ、貫通穴の位置も一部異るが、A1+ A2 
+ Bl’ + B2 + C1+ C2とこれに対応
する”+ + A′2 + B’I + B’2 + 
C’l + C2の位置は同一である。ただ、素板Aと
素板Bでは貫通穴がおいている場所が異る点が重要であ
る。第2図・・に示す素板Cにおいては隔壁2の位置が
素板A、Bとも異り、まだ、貫通穴の位置も一部異るが
、なお、図面において、矢印は面内での流汎の方向を示
している。
DESCRIPTION OF EMBODIMENTS FIGS. 2 and 3 are diagrams showing an embodiment of the present invention. That is, FIG. 2A shows the blank plate A that constitutes the first fluid flow path.
, the opening in FIG.
Figures 1 and 2 show blank plates C constituting the third fluid flow path, and Fig. 3 is a sectional view taken along line xx' of the blank plate C shown in Figure 2. In Fig. 2A, 1 is a groove that serves as a flow path;
2 is a partition wall for making this groove part 1 into a C-shaped flow path, U +
A2 '+ J +132, c, , c,, are the connecting passage components of the flow path, and the diagonally shaded AI + 8
2 + 02 is a through hole that penetrates the blank plate A. In the blank plate B shown in the opening of Figure 2, the positions of the blank plate A and the partition wall 2 are different, and it is 1.The positions of the through holes are also partially different, but A1 + A2
+ Bl' + B2 + C1+ C2 and its corresponding "+ + A'2 + B'I + B'2 +
The positions of C'l + C2 are the same. However, it is important to note that the locations of the through holes in base plate A and base plate B are different. In the blank plate C shown in Fig. 2, the position of the partition wall 2 is different from that of the blank plates A and B, and the position of the through hole is also partially different, but in the drawing, the arrow indicates the in-plane position. It shows the direction of flow.

まだ、以下の説明では素板AをA板、素板BをB板、素
板CをC板と呼ぶことにする。
In the following explanation, the raw plate A will be referred to as the A plate, the raw plate B will be referred to as the B plate, and the raw plate C will be referred to as the C plate.

これらの各素板において、A板におけるJ+82問およ
びCI + 02、B板におけるAl r A2問およ
びCI + ”2間、C板におけるAltA2問および
Bl + B2間は連絡しておシ、各対間は分離されて
いることが重要である。また、内部で連絡している対の
貫通穴の位置は同一の対については各板を通じて同一で
あり、C字形流路に連がっている対、例えばA板のA、
、A2の貫通穴は他の板の対応する連絡通路、例えばA
I t A21 AT + A2の貫通穴とは異ること
が重要である。
For each of these blank boards, contact J + 82 questions and CI + 02 on A board, Al r A 2 questions and CI + "2 on B board, and Alt A 2 questions and Bl + B2 on C board. It is important that the through-holes of the pairs that communicate internally are the same throughout each plate for the same pair, and that the holes for the pairs that communicate internally are the same throughout each plate. , for example, A of board A,
, A2 through holes are connected to corresponding communication passages in other plates, such as A2.
It is important that it is different from the through hole of I t A21 AT + A2.

この素板をあらかじめ定めた順序にしたがって積層する
と、A板内の流路は間のBまたばC板の連絡流路部を通
って次のA板内の流路に連なり、さらにそれより下のA
板内の流路へと直列に連なりながら、ら線上の流路を形
成する。同様にB板内の流路は積層された順にしたがっ
て直列に連り、C板肉の流路も同一である。
When these blank plates are stacked in a predetermined order, the flow path in the A plate passes through the connecting flow path in the intervening B or C plate, and is connected to the flow path in the next A plate, and further below. A of
It forms a spiral flow path while continuing in series with the flow path in the plate. Similarly, the channels in the B plate are connected in series in the order in which they are stacked, and the channels in the C plate are also the same.

例えば第4図に概念的に示すごとく、素板をC1A、B
、C,A、B、C,A、Bと重ね、連絡流路構成部(A
I 、A2) + (AIIA2) + (”++人2
)に上から下へ温水を流し、連絡流路構成部(BI I
 B2 ) I (B′+ +”2 ) + (;+ 
l B2 )および(C5+C2) + (”j +”
2) + ((’++02)に下から上へ冷水を流すと
、A板からB板およびC板に熱を移す熱交換器となp、
常にA板の下にB板の流路、A板の上にC板の流路が存
在するような構成の3層熱交換器となる。これは第1図
に示した3本の方形管を重ねて巻回したのと類似である
Oまた、第5図に示すごとく、素板をB・”・0・A、
B、A、G、Aのごとく重ね、同様に連絡流路構成部(
A1+ A2 ) + (”I +心) l (AI 
+ A2)に上から温水を流し、(BT IB2 ) 
l (B1+ B2 )1(C’1102 )  に下
から冷水を流すと、やはりA板と、B板およびA板とC
板間の熱交換器となる力は、連絡流路構成部(B+ +
B2) + (B1.B2) +c”、 、 g′2)
は常に熱を与える流路(A、+ A2) +交換器とな
る0 このようにA板、B板、C板の重ね方によって3つの流
路の重ね合せは種々異るものを作ることができるが、準
備すべき素板はA、B、Cの3種類でよい。なお、第4
図、第5図において、3は第1の流体の流入点、4は第
2の流体の流入点、5は第3の流体の流入点である。ま
た、弧状の矢印6ばC字形流路を示し、直線の矢印7は
素板肉連絡流路を示すC 発明の効果 本発明によれば、ただ3種類の素板を多量に製作し、こ
れをあらかじめ定めた順序に1.たがって積層して拡散
溶接之どで一体化するという簡単な構成で小形高性能の
積層式熱交換器を容易に作成することができる。
For example, as conceptually shown in Figure 4, the blank plates are C1A and B.
, C, A, B, C, A, and B.
I, A2) + (AIIA2) + (”++ person 2
) from top to bottom, and connect the connecting flow path component (BI I
B2 ) I (B′+ +”2 ) + (;+
l B2 ) and (C5+C2) + ("j +"
2) + (When cold water flows from bottom to top on ('++02), it becomes a heat exchanger that transfers heat from plate A to plate B and plate C.
This is a three-layer heat exchanger configured such that the flow path of plate B always exists under plate A, and the flow path of plate C exists above plate A. This is similar to the winding of three rectangular tubes shown in Figure 1.Also, as shown in Figure 5, the blank plate is
Stack them like B, A, G, A, and connect the connecting flow path components (
A1+ A2) + ("I + heart) l (AI
+ A2) Pour hot water from above, (BT IB2)
l (B1+B2)1(C'1102) When cold water is poured from below, the A plate, B plate, A plate and C
The force that acts as a heat exchanger between the plates is generated by the connecting flow path component (B+ +
B2) + (B1.B2) +c", , g'2)
is a channel that always gives heat (A, + A2) + acts as an exchanger 0 In this way, depending on how the A, B, and C plates are stacked, the three channels can be stacked in various ways. However, only three types of blanks, A, B, and C, need to be prepared. In addition, the fourth
5, 3 is a first fluid inflow point, 4 is a second fluid inflow point, and 5 is a third fluid inflow point. Further, the arcuate arrow 6 indicates a C-shaped flow path, and the straight arrow 7 indicates a flow path connecting the raw material to the raw material. 1. in a predetermined order. Therefore, a compact, high-performance laminated heat exchanger can be easily produced with a simple structure of laminating the layers and integrating them by diffusion welding or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の3層ら線状熱交換器の概念図、第2図イ
7口、・・は本発明の一実施例である積層一体化によっ
てら線状熱交換器を作るだめの素板の上面図、第3図は
第2図のX−X線における断面図、第4図は積層順序の
一例についての各素板間の流路の連結関係を示す概念図
、第5図は他の積層順序の一例についての各素板間の流
路の連結関係を示す概念図である。 1・・・・流体流路溝、2・・・・隔壁。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 42図 第3図 54 第5図 C2Ct  B、B。   4 A−/47 A2<。
Fig. 1 is a conceptual diagram of a conventional three-layer linear heat exchanger, and Fig. 2 (A) 7 shows a schematic diagram of a conventional three-layer linear heat exchanger. A top view of the blank plate, Figure 3 is a sectional view taken along the line X-X in Figure 2, Figure 4 is a conceptual diagram showing the connection relationship of flow paths between each blank plate for an example of the stacking order, and Figure 5 FIG. 2 is a conceptual diagram showing the connection relationship of the flow paths between the blank plates in another example of the stacking order. 1... Fluid channel groove, 2... Partition wall. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 42 Figure 3 Figure 54 Figure 5 C2Ct B, B. 4 A-/47 A2<.

Claims (1)

【特許請求の範囲】 一つの平板に設けた環状流路溝を、ある線で遮断してC
字形流路を形成し、前記環状流路に隣接する前記平板上
に3対の互いに独立した連絡流路構成部(A、l A2
 ) +(B+ l B2 ) l (C+ + 02
 )を設けた前記C字形流路の始終端を前記連絡流路構
成部の対内のいずれかに連結し、かつ、連絡流路構成部
の各対のあらかじめ定められた一方に貫通穴を設けた素
板Aと、この素子人と同一形状で同−位fHニ連絡R路
構成部(A1+ A2 ) 、 (B+ 、 B2 )
。 (”+ + ”2 )  を有し、C字形流路の始終端
の位置および2対の連絡流路構成部における貫通穴の位
置を異ならせた素板Bと、前記素板Aと同一形状始終端
の位置および2対の連絡流路構成部における貫通穴の位
置を素板Aおよび素板Bと異ならせた素板Cとを備え、
この3種類の各素板をあらかじめ定められた順序にした
がって積層一体化し、3つの流体のだめの独立しだ流路
が互いに熱的に接触するよう構成した積層式熱交換器。
[Claims] An annular channel groove provided on one flat plate is cut off by a certain line to create a C
3 pairs of mutually independent communicating flow path forming parts (A, l A2
) + (B+ l B2 ) l (C+ + 02
), the starting and ending ends of the C-shaped channel are connected to one of the pairs of communicating channel components, and a through hole is provided in a predetermined one of each pair of communicating channel components. The base plate A and this element have the same shape and the same position fH two connecting R path constituent parts (A1+A2), (B+, B2)
. ("+ + "2), and the positions of the starting and ending ends of the C-shaped flow path and the positions of the through holes in the two pairs of communicating flow path components are different, and the base plate B has the same shape as the base plate A. A blank plate C having a starting and ending position and a position of a through hole in the two pairs of communicating flow path components different from those of the blank plate A and the blank plate B,
This laminated heat exchanger is constructed by laminating these three types of blank plates in a predetermined order so that the independent flow paths of the three fluid reservoirs are in thermal contact with each other.
JP2064183A 1982-11-04 1983-02-10 Lamination type heat exchanger Pending JPS59147990A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2064183A JPS59147990A (en) 1983-02-10 1983-02-10 Lamination type heat exchanger
EP83110906A EP0108377A1 (en) 1982-11-04 1983-11-02 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2064183A JPS59147990A (en) 1983-02-10 1983-02-10 Lamination type heat exchanger

Publications (1)

Publication Number Publication Date
JPS59147990A true JPS59147990A (en) 1984-08-24

Family

ID=12032848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2064183A Pending JPS59147990A (en) 1982-11-04 1983-02-10 Lamination type heat exchanger

Country Status (1)

Country Link
JP (1) JPS59147990A (en)

Similar Documents

Publication Publication Date Title
GB2303911A (en) Heat exchanger having a sandwiched plate structure
JPS61259086A (en) Heat exchanger core structure using plate member capable of creating even both of single flow path or double flow path arrangement
JPS62202997A (en) Heat exchanger of compound type
JPS5933014B2 (en) Conversion element of fluid part
JPH0241504Y2 (en)
JP2000337784A (en) Plate type heat exchanger for three liquids
JP2000356483A (en) Heat exchanger
JPS59147990A (en) Lamination type heat exchanger
JPS62213688A (en) Plate fin heat exchanger
JPS6155584A (en) Laminated heat exchanger
JPS6080083A (en) Heat exchanger
JPS5974496A (en) Plate-type heat exchanger
JPH03177791A (en) Lamination type heat exchanger
JP2741950B2 (en) Stacked heat exchanger
JP2547600Y2 (en) Stacked heat exchanger
JPS59104087A (en) Heat exchanger of laminated type
JPS6314093A (en) Laminated type heat exchanger
JPH0523981Y2 (en)
JPH0729411Y2 (en) Heat exchanger
JPS60256799A (en) Lamination type heat exchanger
JPS6149995A (en) Lamination type heat exchanger
JPS60228895A (en) Laminated spiral heat exchanger
JP2511956Y2 (en) Stacked heat exchanger
JP2004125324A (en) Laminated type heat exchanger
JPS629182A (en) Heat exchanger