JPS59147084A - Production of gaseous olefins and monocyclic aromatic hydrocarbons - Google Patents

Production of gaseous olefins and monocyclic aromatic hydrocarbons

Info

Publication number
JPS59147084A
JPS59147084A JP2235983A JP2235983A JPS59147084A JP S59147084 A JPS59147084 A JP S59147084A JP 2235983 A JP2235983 A JP 2235983A JP 2235983 A JP2235983 A JP 2235983A JP S59147084 A JPS59147084 A JP S59147084A
Authority
JP
Japan
Prior art keywords
hydrogen
oil
product
steam
heavy hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2235983A
Other languages
Japanese (ja)
Inventor
Koji Kuri
久利 浩司
Nobumitsu Otake
大竹 伸光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2235983A priority Critical patent/JPS59147084A/en
Publication of JPS59147084A publication Critical patent/JPS59147084A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:After the pyrolysis of heavy hydrocarbons combined with a coking inhibitor in the presencke of hydrogen, the high-boiling fraction is removed, hydrogenation is effected in the presence of a hydrogenation catalyst, the gaseous products are removed, then the remaining fraction is subjected to steam cracking to obtain the titled compounds economically in high yield. CONSTITUTION:Heavy hydrocarbon 1 combined with a coking inhibitor is pyrolyzed in the pyrolyzer 3 in the presence of hydrogen 2 under conditions of 380- 550 deg.C temperature, 30-300kg/cm<2> pressure and 1-210 minute residential time and the formed gas 6 is separated from the pyrolysate 4 by means of high- pressure gas separator 5. Then, the residue is subjected to distillation using distillators 7 and 12 to separate the high-boiling fractions 11. The treated mixture is hydrogenated in the hydrogenator 15 in the presence of a catalyst and hydrogen 14 at 250-500 deg.C and 30-300kg/cm<2> and 0.05-5.0hr<-1> 1sv at a hydrogen/ pyrolysate ratio of 100-2,000Nl/l. The liquid product is steam-cracked under conditions of 700-900 deg.C, 0.05-2.0 second residential time, and 0.2-2.0 steam/ liquid product weight ratio in the cracker 18 and the objective compounds are obtained from the product 21.

Description

【発明の詳細な説明】 本発明は重質炭化水素油を原料としてガス状オレフィン
及び単環芳香族炭化水素を製造する製造方法に関(7、
さらに詳しくは、重質炭化水素油を水素共σ下に熱分解
し、得られた分解生成物から高沸点物を分離除去したの
ち、水素と触媒の存在下に水素化処理し、次いで水蒸気
熱分解してガス状オレフィン及び単環芳香族炭化水素を
高収率で取得する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a production method for producing gaseous olefins and monocyclic aromatic hydrocarbons using heavy hydrocarbon oil as a raw material (7,
More specifically, heavy hydrocarbon oil is thermally cracked under hydrogen co-σ, high-boiling substances are separated and removed from the resulting decomposition products, and then hydrotreated in the presence of hydrogen and a catalyst, followed by steam heat treatment. The present invention relates to a method for obtaining gaseous olefins and monocyclic aromatic hydrocarbons in high yield by decomposition.

従来、石油化学工業における基礎原料であるエチレン、
プロピレン、ブタジェンなどのカス状オレフィン及ヒベ
ンゼン、トルエン、キソレンなどの単環芳香族炭化水素
の製造においては、油田ガスや石油精製副生品であるす
7ザのような軽質炭化水素が主に用いられてきだ。これ
らのうちナフサは、前記のガス状オレフイ/及び単環芳
香族炭化水素の収率が高く、その上低価値の重質燃料油
の副生量が少ないことから、特に優れたものとして取り
扱われてきた。
Traditionally, ethylene, which is a basic raw material in the petrochemical industry,
In the production of casseous olefins such as propylene and butadiene, and monocyclic aromatic hydrocarbons such as hibenzene, toluene, and xolene, light hydrocarbons such as oilfield gas and oil refining byproducts such as soot are mainly used. It's coming. Among these, naphtha is treated as particularly superior because it has a high yield of the above-mentioned gaseous olefins/monocyclic aromatic hydrocarbons and also produces a small amount of low-value heavy fuel oil as a by-product. It's here.

しかしながら、近年石油化学工業の急激な発展やモータ
リゼーションの進行などによるナフサのような軽質炭化
水素の供給不足、原油の重質化にともなう軽質炭化水素
得率の低下、さらには原油価格の高騰などの諸要因によ
って、好゛ましい熱分解原料として石油精製より供給さ
れる軽質炭化水素の量が不足するようになり、まだその
価格が高騰してきたため、それを原料としてガス状オレ
フィンや単環芳香族炭化水素を得ることの経済性は著し
く低下してきている。
However, in recent years, there has been a shortage of light hydrocarbons such as naphtha due to the rapid development of the petrochemical industry and the progress of motorization, a decline in the yield of light hydrocarbons due to heavier crude oil, and a sharp rise in crude oil prices. Due to various factors, the amount of light hydrocarbons supplied by petroleum refining as the preferred raw material for pyrolysis has become insufficient, and its price has continued to rise. The economics of obtaining hydrocarbons have declined significantly.

したがって、このような産業構造的問題を解決するため
に、近年、より重質な炭化水素油である灯油、軽油、減
圧蒸圧軽油などを用いて水素化処理を行ったのち、水蒸
気熱分解することによって石油化学原料を製造する試み
が種/2なされている。
Therefore, in order to solve these industrial structural problems, in recent years, heavier hydrocarbon oils such as kerosene, light oil, vacuum vaporized light oil, etc. are used for hydrotreating, followed by steam pyrolysis. Two attempts have been made to produce petrochemical raw materials by this method.

しかしながら、これらの方法においては、原料として用
いる各種の油が石油製品として入手されるものであって
、原料供給の事情は前記のナフサのよう表軽質炭化水素
の場合と同様である。
However, in these methods, the various oils used as raw materials are obtained as petroleum products, and the circumstances of supplying raw materials are the same as in the case of light hydrocarbons such as naphtha.

他方、重質炭化水素油である減圧蒸留残油を溶剤脱歴(
7、その脱歴油に減圧蒸留軽油を混合して水素化処理す
る方法が知られており、この水素化処理油を水蒸気熱分
解して石油化学原料を製造することが考えられる。しか
しながら、この溶剤脱歴方法は、アスファルテンを含む
脱歴残油が多量に副生し、この残油の有効利用の問題が
残るとともに、石油化学原料の取得率を大幅に向上させ
ることができない。
On the other hand, vacuum distillation residual oil, which is a heavy hydrocarbon oil, is subjected to solvent deasphalting (
7. A method of hydrotreating the deasphalted oil by mixing it with vacuum distilled gas oil is known, and it is possible to produce petrochemical raw materials by subjecting this hydrotreated oil to steam pyrolysis. However, with this solvent deasphalting method, a large amount of deasphalted residual oil containing asphaltenes is produced as a by-product, and the problem of effective utilization of this residual oil remains, and the yield of petrochemical raw materials cannot be significantly improved.

さらに、常圧蒸留残油のような重質炭化水素油を少しで
も有利に石油化学原料に導く方法として、粒状の触媒を
反応器内に充てんして行う固定末文(ri流動床方式の
水素化分解方法により積極的に減圧蒸留残油外を減少さ
せる方法を利用することも種々提案されている。しかし
ながら現在のところ、残留分中に含まれるアスファルテ
ンや重金属などのために、触媒寿命の短縮が免れず、し
かも水素消費量が増大するなどの理由で、経済性の高い
技術は−まだ実現していない。
Furthermore, as a method for guiding heavy hydrocarbon oils such as atmospheric distillation residues to petrochemical raw materials in a slightly more advantageous manner, we have developed a fixed-end reaction system (RI fluidized bed method) in which a granular catalyst is filled in a reactor. Various methods have been proposed to actively reduce the residue from vacuum distillation using chemical decomposition methods.However, at present, the catalyst life may be shortened due to asphaltenes and heavy metals contained in the residue. However, because hydrogen consumption is unavoidable and hydrogen consumption increases, highly economical technology has not yet been realized.

寸だ、重質炭化水素油を積極的に軽質化する方法としで
、熱分解法を適用し、石油化学原料となる処理油を得る
方法も考えられる。しかしながら、従来知られている熱
分解方法によって高度の軽質化を達成しようとすると、
いわゆる著しいコーキング現象が生じて操業を停止せざ
るをえなくなるため、この方法は通常コーキングがあま
り問題とならない程度の軽質化に適用されるにすぎない
As a way to proactively lighten heavy hydrocarbon oil, it is also possible to apply pyrolysis to obtain processed oil that can be used as a petrochemical raw material. However, when attempting to achieve a high degree of weight reduction using conventionally known thermal decomposition methods,
Since the so-called severe coking phenomenon occurs and the operation has to be stopped, this method is usually only applied to lightening where coking is not a big problem.

しだがって、この点を改良するために、水素を用いて行
う、いわゆるハイドロビスブレーキング法が提案されて
いるが、水素圧を300 Kg/ cri、という高圧
にした場合でも十分なコーキング抑制効果、は得られな
い。丑だ、積極的にコークスを生成させながら軽質化を
行う、いわゆるコーカー法も提案されているが、多量に
副生ずるコークスの処置の問題に加えて、過分解による
ガス量の増加のため、軽質油の収率低下がまぬがれない
。その上、得られる熱分解軽質油は芳香族分、オレフィ
ン成分が多く、品質の悪いものとなるという欠点があっ
て、このものを水蒸気熱分解用の処理油(C供するには
、苛酷な水素化処理を行う必要がある。
Therefore, in order to improve this point, a so-called hydrovisbreaking method using hydrogen has been proposed, but even when the hydrogen pressure is as high as 300 kg/cri, sufficient coking suppression cannot be achieved. No effect can be obtained. Unfortunately, a so-called coker method has been proposed in which coke is actively produced and lightened, but in addition to the problem of disposing of the large amount of coke that is produced as a by-product, there is an increase in the amount of gas due to excessive decomposition. A decrease in oil yield cannot be avoided. In addition, the resulting pyrolyzed light oil has a large amount of aromatic and olefin components and is of poor quality. It is necessary to perform conversion processing.

一般に、重質炭化水素油からオレフィン及び単環−y″
、香族類を最ノ(に取得するためには、(1)高沸点物
(例えば沸点550℃以上の残渣)を選択的に軽質化し
7、水素化処理へ供給する原料油(例えば沸点550℃
以下の留分)の得率を高めること、(2)水素化処理d
、単なる脱硫反応で(はなく、多環芳香族類の環の水添
を積極的に行うことの2つの要件を満足させることが必
要である。
Generally, from heavy hydrocarbon oils to olefins and monocyclic -y''
In order to obtain the most aromatics, (1) selectively lighten high boilers (e.g., residues with a boiling point of 550°C or higher); ℃
(2) Hydrotreating d
It is necessary to satisfy the two requirements of actively carrying out hydrogenation of the rings of polycyclic aromatics (rather than a mere desulfurization reaction).

しかしながら、従来技術では、重質油の接触的処理によ
り高沸点物を軽質化しようとしても、油中に含捷れる硫
黄や重金属などの不純物はもちろんのこと、特に塩基性
高分子化合物の存在により触媒の酸性能が著しく低下す
る結果、触媒の酸性に起因する分解活性が持続しないと
いう問題があり、捷だ炭化水素を無触媒下で熱分解する
方法では、反応速度はその分子量が大きいにど犬である
ことが知ら)1.ているが、分解時に副次的に生ずるコ
ークス生成や重縮合反応速度も大きいため、分解率を高
めることは反応操作上極めて困難である。
However, in the conventional technology, even if it is attempted to lighten high boiling point substances by catalytic treatment of heavy oil, not only impurities such as sulfur and heavy metals contained in the oil but also the presence of basic polymer compounds, etc. As a result of the marked decrease in the acid performance of the catalyst, there is a problem that the decomposition activity caused by the acidity of the catalyst does not last.In the method of thermally decomposing fresh hydrocarbons without a catalyst, the reaction rate is lower than that due to their large molecular weight. Known to be a dog) 1. However, it is extremely difficult to increase the decomposition rate due to the high coke formation and polycondensation reaction rate that occur as a secondary product during decomposition.

このように、重質炭化水素油からガス状オレフィン及び
単環芳香族炭化水素を製造する種々の方法のうち、常圧
蒸留残油や減圧蒸留残油などの重質炭化水素油を供給原
料とする場合は、いずれも技術的問題や経済的問題は未
解決の状態である。
As described above, among the various methods for producing gaseous olefins and monocyclic aromatic hydrocarbons from heavy hydrocarbon oils, there are methods in which heavy hydrocarbon oils such as atmospheric distillation residues and vacuum distillation residues are used as feedstocks. In all cases, technical and economic issues remain unresolved.

本発明者らは、このような従来法のもつ欠点を克服[7
、重質炭化水素油を原料として用い、経済的かつ高収率
でガス状オレフィン及び単環芳香族炭化水素を製造する
方法について鋭意研究を重ねた結果、水素の共存下にコ
ーキング抑制剤を加えた重質炭化水素油を熱分解し、次
いでその熱分解生成物から高沸点物を分離除去して得ら
れる熱分解処理物を水素と水添触媒の共存Fに水素化処
理したのち、水蒸気熱分解することによって、初めて重
質炭化水素油から経済的かつ高収率で有用な石油化学原
料を取得することができると同時に、価値の低い残渣油
である副生燃料油の劣質化を起すことなく、その生成量
を著しく低減しうることを見出し、この知見に基づいて
本発明を完成するに至った。
The present inventors have overcome the drawbacks of such conventional methods [7
As a result of intensive research into a method for producing gaseous olefins and monocyclic aromatic hydrocarbons economically and in high yields using heavy hydrocarbon oil as a raw material, we have developed a method for producing gaseous olefins and monocyclic aromatic hydrocarbons in the presence of hydrogen. After thermally decomposing heavy hydrocarbon oil and then separating and removing high boiling point substances from the thermally decomposed product, the resulting thermally decomposed product is hydrogenated to F in which hydrogen and hydrogenation catalyst coexist. By cracking, for the first time, useful petrochemical raw materials can be obtained economically and in high yield from heavy hydrocarbon oil, while at the same time causing the deterioration of by-product fuel oil, which is a residual oil with low value. The inventors have discovered that the production amount can be significantly reduced, and the present invention has been completed based on this knowledge.

すなわち、本発明は、(A)水素の共存下、コーキング
抑制剤を加えた重質炭化水素油を温度380・〜550
’C1圧力30〜300 K9 / cn!、滞留時間
1〜120分の条f−+下で熱分解する工程、(Bl前
記工程で?4)られだ熱分解生成物から高沸点物を分離
除去する工程、(C)高沸点物を分離除去し7だ熱分解
処理物を水添触媒の存在下、温度250〜500℃、圧
力30〜300 K9 、/ crl、液空間速度0.
05〜5.Ohr−’、水素/熱分解処理物比100〜
2000 Nt7t  の条件下で水素化処理する工程
及び0))(C)工程で得られた水素化処理生成物から
水素を含むガス状生成物を分離除去し、次いで液状生成
物を温度700〜900℃、滞留時間0.05〜2.0
秒、水蒸気/液状生成物重量比0.2〜2.0の条件下
で水蒸気熱分解したのち、得られた生成物からガス状オ
レフィン及び単環芳香族炭化水素を回収する工程、から
成ることを特徴とする重質炭化水素の製造方法を提供す
るものである。
That is, in the present invention, (A) heavy hydrocarbon oil to which a coking inhibitor has been added is heated to a temperature of 380 to 550 in the presence of hydrogen.
'C1 pressure 30~300 K9/cn! , a step of thermally decomposing under condition f-+ for a residence time of 1 to 120 minutes, (in the above step Bl?4) a step of separating and removing high boiling point substances from the thermal decomposition products; (C) a step of separating and removing high boiling point substances from the thermal decomposition products; The separated and removed thermally decomposed product was heated in the presence of a hydrogenation catalyst at a temperature of 250 to 500°C, a pressure of 30 to 300 K9/crl, and a liquid hourly space velocity of 0.
05-5. Ohr-', hydrogen/thermal decomposition product ratio 100~
Hydrotreating under the conditions of 2000 Nt7t and separating and removing hydrogen-containing gaseous products from the hydrogenated product obtained in step 0))(C), and then subjecting the liquid product to a temperature of 700 to 900 °C, residence time 0.05-2.0
a step of recovering gaseous olefins and monocyclic aromatic hydrocarbons from the resulting product after steam pyrolysis under conditions of a steam/liquid product weight ratio of 0.2 to 2.0. The present invention provides a method for producing heavy hydrocarbons characterized by the following.

本発明方法は、重質炭化水素油を添加物と水素の共存下
熱分解する工程、高沸点物を分離除去する工程、水素化
処理工程及び水蒸気熱分解工程の4]二程から構成され
ていて、従来技術に比べて次のような優れた特長を有し
ている。
The method of the present invention consists of two steps: a step of thermally decomposing heavy hydrocarbon oil in the coexistence of additives and hydrogen, a step of separating and removing high boiling point substances, a hydrotreating step, and a steam pyrolysis step. It has the following superior features compared to conventional technology.

ヂなわち、本発明方法においては、コーキング抑制剤を
加えた重質炭化水素油を高圧の水素と共存させて熱分解
することにより、副反応が著しく抑制されて高沸点物の
選択的高分解率が用油であり、その−L高沸点残留物は
改質効果を受は比較的粘度の低い液体として操作する°
ことができ、かつボイラー燃料油として使用しつるとい
う大きなメリットがある。
That is, in the method of the present invention, by thermally decomposing heavy hydrocarbon oil to which a coking inhibitor has been added in the coexistence of high-pressure hydrogen, side reactions are significantly suppressed and high-boiling substances can be selectively decomposed. The high boiling point residues undergo a reforming effect and are operated as relatively low viscosity liquids.
It has the great advantage of being able to be used as boiler fuel oil.

さらに、本発明方法においては、水素化処理工程へ供給
する原料は分離工程で予め高沸点物が分離除去されるた
め、重質炭化水素油に含捷れている水素化用触媒にとっ
て被毒となる物質が除去されることになり、水素化処理
工程における多環芳香族類の環の水添処理を、触媒の活
性と寿命を高いレベルに維持して行うことができる。こ
のことにより、水蒸気熱分解工程における石油化学原料
の高収率が保証されることはもちろんのこと、水蒸気熱
分解反応器への炭素の析出も著しく減少して反応器の両
生間隔が長くなるなど大きな経済的効果が牛すれる。そ
の士、水素化処理された熱分解処理油は、分留すること
なく水蒸気熱分解するので、不1油[ヒ学原4:・1が
高収率で得られ、かつ副生’)?!’、 ’R/lll
も・トないという4寺徴もある。
Furthermore, in the method of the present invention, high-boiling substances are preliminarily separated and removed from the raw material to be supplied to the hydrotreating process in the separation process, so that the hydrogenation catalyst contained in the heavy hydrocarbon oil may be poisoned. As a result, the hydrogenation of polycyclic aromatic rings in the hydrogenation process can be carried out while maintaining the activity and life of the catalyst at a high level. This not only guarantees a high yield of petrochemical raw materials in the steam pyrolysis process, but also significantly reduces carbon precipitation in the steam pyrolysis reactor and increases the reactor amputation interval. There will be a huge economic impact. On the other hand, since the hydrotreated pyrolyzed oil undergoes steam pyrolysis without fractional distillation, it is possible to obtain a high yield of 100% oil [Higakugen 4:1] and as a by-product. ! ', 'R/llll
There are also four temple signs: mo and tonai.

本発明方法において用いる重質炭化水素油とは、原油又
に1、原油の常圧蒸留残油花(7くは減圧蒸留残油であ
り、タールサンド原油や石炭液化油なども抱含する。こ
のような重質炭化水素油には、通常硫黄化合物、窒素化
合物、アスファルテン、重金属などの不純物やその11
では石油化学原料への転換が不「+]能な沸点の高い重
質留分が多量に含液れている。これらの量及び質は原油
の生産油J」に1って大きく異なる。
The heavy hydrocarbon oil used in the method of the present invention refers to crude oil or residual oil from atmospheric distillation of crude oil (or residual oil from vacuum distillation), and also includes tar sand crude oil, coal liquefied oil, and the like. Such heavy hydrocarbon oil usually contains impurities such as sulfur compounds, nitrogen compounds, asphaltenes, heavy metals, etc.
It contains a large amount of heavy fractions with high boiling points that cannot be converted into petrochemical raw materials.The quantity and quality of these differ greatly depending on the crude oil produced.

本発明方法の目的であるガス状オレフィン及び−栄環芳
香族炭化水素を経済的に最大限に取得I2ようとする場
合、重質炭化水素油としては、水素含2角量が比1咬的
多いバラフイニック原油、例えばミナス原油や大慶原油
、あるいはこれらの常圧蒸留残油!減圧蒸留残油などが
水素消費量が少なくてすむため好ましい。これらのバラ
フィニック原油は、従来の分解法では分解が比較的困難
であることが知られているものである。
When attempting to economically obtain gaseous olefins and aromatic hydrocarbons as much as possible, which is the objective of the method of the present invention, the hydrogen content of heavy hydrocarbon oil is relatively high. There are a lot of Barrafinic crude oils, such as Minas crude oil and Daqing crude oil, or their atmospheric distillation residues! Vacuum distillation residual oil and the like are preferred because they consume less hydrogen. These varaffinic crude oils are known to be relatively difficult to crack using conventional cracking methods.

本発明方法の熱分解工程において重質炭化水素油に加え
るコーキング抑制剤としては、遷移金属化合物が好寸し
く、特に鉄、コバルト、ニソケノペクロム、モリブテン
、タングステン、バ丈ジウム及び銅の中から選ばれる金
属の化合物が好寸しい。
As coking inhibitors added to the heavy hydrocarbon oil in the pyrolysis step of the process of the invention, transition metal compounds are preferred, especially those selected from iron, cobalt, nisochenopechrome, molybdenum, tungsten, barium and copper. Metal compounds are suitable.

これらの化合物は単独で用いてもよいし、2鍾以−I−
混合し7て用いてもよく、まだ油溶性若しくは水溶性化
合物が有利である。
These compounds may be used alone or in combination with
Mixtures may also be used; oil- or water-soluble compounds are still preferred.

油溶性化合物としては、ンクロペンタジエニル基、アリ
ル基などを配位子として含むいわゆるπ−錯体、有機カ
ルボン酸化合物、有機アルコキン化合物、アセチルアセ
トネート錯体などのジケトン化合物、カルボニル化合物
、有機スルホン酸又は有機スルフィン酸化合物、ジチオ
カーバメート錯体などのギザンチン酸化合物、有機ジア
ミノ錯体などのアミン化合物、ニトリル又はインニトリ
ル化合物、ホスフィン化合物などがある。水溶性化合物
としては、炭酸塩、カルボン酸塩、硫酸塩、硝酸塩、水
酸化物、ハロゲン化物、アンモニウム七リブデー1・の
ような錯塩などがある。特に好寸1、い油溶1作化合物
としては、ステアリン酸、オクチル酸などの有機カルボ
ン酸の化合物が挙げられ、/y−r−iしい水溶性化合
物としては、硫酸塩が挙げられる。
Examples of oil-soluble compounds include so-called π-complexes containing ncropentadienyl groups, allyl groups, etc. as ligands, organic carboxylic acid compounds, organic alkokene compounds, diketone compounds such as acetylacetonate complexes, carbonyl compounds, and organic sulfonic acids. Alternatively, examples thereof include organic sulfinic acid compounds, gyzanthic acid compounds such as dithiocarbamate complexes, amine compounds such as organic diamino complexes, nitrile or innitrile compounds, and phosphine compounds. Examples of water-soluble compounds include carbonates, carboxylates, sulfates, nitrates, hydroxides, halides, and complex salts such as ammonium heptalybde 1. Particularly suitable oil-soluble compounds include organic carboxylic acid compounds such as stearic acid and octylic acid, and particularly suitable water-soluble compounds include sulfates.

これらの金属化合物を原料油に添加する場合、油溶性の
ものはそのま寸加えてもよいが、水溶性のものは水に溶
解[〜て水溶液として加えるのが好−ましい。この場合
、水溶液に界面活性剤のような分散剤を加えると重質炭
化水素油と水溶液′との分散性が向上するので有利であ
る。この金属化合物は、金属に換a1〜原料油の重量に
基づき50〜8000 ppmの範囲の量で添加するこ
とが望ま1〜い。
When these metal compounds are added to raw material oil, oil-soluble ones may be added as they are, but water-soluble ones are preferably dissolved in water and added as an aqueous solution. In this case, it is advantageous to add a dispersant such as a surfactant to the aqueous solution since this improves the dispersibility of the heavy hydrocarbon oil and the aqueous solution. This metal compound is desirably added in an amount ranging from 50 to 8000 ppm based on the weight of the raw material oil in terms of metal.

この量が50 ppm未満では、十分なコーキング抑制
効果が得られないし、捷た8000’ppmを超えても
効果の向−ヒが認められない上に、むしろ好捷しくない
副反応を起すおそれがある。
If this amount is less than 50 ppm, a sufficient coking suppressing effect cannot be obtained, and even if it exceeds 8000 ppm, no improvement in the effect is observed, and there is a risk that undesirable side reactions may occur. be.

本発明を実施するに際し、(A)工程における熱分解条
件は、原料として用いる重質炭化水素油及び金属化合物
の性状によって左右されるが、反応温度としては、38
0〜550℃の範囲、好ましくは400〜520℃の範
囲が用いられる。この温度範囲を越える高温度領域では
、熱分解が進みすきコークの生成及びガスの発生が著し
くなるし、また、この温度範囲を下回る低温度領域では
、熱分解速度が著しく遅くなる傾向がある。
When carrying out the present invention, the thermal decomposition conditions in step (A) depend on the properties of the heavy hydrocarbon oil and metal compound used as raw materials, but the reaction temperature is 38
A range of 0 to 550°C is used, preferably a range of 400 to 520°C. In a high temperature range exceeding this temperature range, thermal decomposition progresses and the formation of plow coke and gas becomes significant, while in a low temperature range below this temperature range, the rate of thermal decomposition tends to slow down significantly.

反応圧力としては、30 K2 / crA〜300 
K9 / cni、好ましくは50 Kt / cnl
 〜250 KfJ / cntの範囲が用いられる。
The reaction pressure is 30 K2/crA ~ 300
K9/cni, preferably 50 Kt/cnl
A range of ~250 KfJ/cnt is used.

この熱分解は回分式、連続式のいずれでも操作しうるが
、反応時間又は反応器内の重質炭化水素油の滞留時間と
しては、1分〜2時間の範囲、望ましくは、3分〜1時
間の範囲がよい。これらの処理条件は、それぞれが単独
に適正値をとるのではなく、相互に関連するので、場合
により好適範囲が変わることがある。さらに、熱分解を
実施する上で好ましい水素の量は、原料重質炭化水素油
に対する容積比が100〜5,0OONffl”/A/
!であり、さらに好ましくは、200〜2,000 N
tが/ weの範囲になるように供給し、一般には、消
費した水素量に見合う分たけ補給し7て運転することが
望−ましい。
This thermal decomposition can be carried out either batchwise or continuously, but the reaction time or residence time of the heavy hydrocarbon oil in the reactor is in the range of 1 minute to 2 hours, preferably 3 minutes to 1 hour. Good time range. These processing conditions do not each take an appropriate value independently, but are related to each other, so the preferable range may change depending on the case. Furthermore, the preferable amount of hydrogen for carrying out thermal decomposition is such that the volume ratio to the raw material heavy hydrocarbon oil is 100 to 5,0 OONffl"/A/
! and more preferably 200 to 2,000 N
It is generally desirable to supply the hydrogen so that t is in the range of /we, and to replenish the hydrogen in an amount commensurate with the amount of hydrogen consumed.

この熱分解工程に供給される水素は、純度の高い水素で
も、あるいはいくつかの工程より発生ずるりザイクル水
素でもよく、一般には水素を多く含有する混合ガスも使
用できる。
The hydrogen supplied to this thermal decomposition step may be highly pure hydrogen or cycle hydrogen generated from several steps, and generally a mixed gas containing a large amount of hydrogen may also be used.

本発明方法における(B)工程の分離工8は、前記の(
A1工程で得られた熱分解生成物の中から、高沸点物を
分離除去(7て次の(C)工程の水素化処理工程に供給
するために必要である。この工程で分離除去された高沸
点物は、液体燃料油として取扱うことができ、本製造工
程において使用することもできるし、別途−酸ボイラー
用としても使用することもできる。
Separation process 8 of step (B) in the method of the present invention is carried out in the above-mentioned (
From the thermal decomposition products obtained in step A1, high boiling point substances are separated and removed (necessary for supplying them to the next step (C), the hydrogenation process. The high boiling point substance can be handled as liquid fuel oil and can be used in the main manufacturing process, or can be used separately for acid boilers.

この工程における分離方法として、通常用いられる高圧
ガス分離、常圧蒸留、減圧蒸留などを採用することがで
きる。
As a separation method in this step, commonly used high pressure gas separation, normal pressure distillation, vacuum distillation, etc. can be employed.

寸だ、本工程においては必要に応じ、高沸点物以外にナ
フサ留分=章怠(沸点200 h )や灯軽油留分(沸
点200〜343℃留分)を、さらには軽質重質留分(
沸点343〜450℃留分)を除き、得られた熱分解処
理油を次の水素化処理工程へ供給することもできる。分
離されたこれらの軽質留分は直接又は別途水素化処理し
たのち、水蒸気熱分解することもできる。
In this process, as necessary, in addition to high-boiling substances, naphtha fraction (boiling point 200 h), kerosene fraction (boiling point 200-343℃ fraction), and light and heavy fractions are added. (
It is also possible to remove the pyrolyzed oil (boiling point 343-450° C. fraction) and feed the resulting thermally cracked oil to the next hydrotreating step. These separated light fractions can be directly or separately hydrotreated and then subjected to steam pyrolysis.

捷だ、熱分解生成物をフラップユ蒸留分離する場合は、
予熱された水素ガスをフラッシュ蒸留装置の下部に加え
、高温、高圧下に蒸気流とフラッ/ユ蒸留残油とに分離
し、さらにとの残油を減圧蒸留によって高沸点物を除い
たのち、得られた減圧留分を先の蒸気流に加えて水素化
処理工程へ供給する方法も採用j一つる。このフラソ/
ユ蒸留分離法の動機は、圧力損失が極めて少ないだめ、
熱分解工程、分離工程及び水素化処理工程の3つの工程
を実質的に同一圧力で操作しうることにおって、水素の
分離リサイクルに必要な中間コンプレツサーの必要性が
なく、また熱分解生成物の保有ノーる熱量をそのまま利
用′できるため、反応系全体の反応操作の簡略化とエネ
ルギー消費量の節減がみられ、経済的観点からその効果
は大きい。この場合、添加さ7′する水素の用はフラッ
シュ蒸留装置の操作条ビ1によって決定されるが、次の
水素化処理工程に1.′−ける水素と油の混合割合を超
えない範囲の旬を加えることが好捷しい。
When separating thermal decomposition products by flap distillation,
Preheated hydrogen gas is added to the lower part of the flash distillation apparatus, and is separated into a vapor stream and a flash distillation residual oil under high temperature and pressure, and after removing high boiling point substances from the residual oil by vacuum distillation, There is also a method of adding the obtained reduced pressure fraction to the previous vapor stream and supplying it to the hydrotreating step. This frasso/
The motive behind the distillation separation method is that the pressure loss is extremely low.
By being able to operate the three steps of pyrolysis, separation, and hydrotreating at substantially the same pressure, there is no need for an intermediate compressor required for hydrogen separation and recycling, and the pyrolysis products are Since the amount of heat retained in the reaction system can be used as is, the reaction operation of the entire reaction system can be simplified and energy consumption can be reduced, which is highly effective from an economic standpoint. In this case, the use of the hydrogen added 7' is determined by the operating conditions of the flash distillation apparatus, and is used in the next hydrotreating step. It is preferable to add hydrogen within a range that does not exceed the mixing ratio of hydrogen and oil.

本発明方法における(C)工程の水素化処理」二程で月
1いる触媒としては、石油留分及び重油の水素化処理用
触媒として公知のものを用いることができ、好ましくは
周期表第Vl +)族金属及び第■族金属の中から選ば
れたそれぞれ一種以上の金属を含む触媒、伝えばニッケ
ルーモリブデン、コバルト−モリブデン、ニッケルータ
ングステンなどの金属種を無機質担体に担持させたもの
を用いることが望ましい。これらの金属種は通常硫化物
として用いられ、寸だ無機質担体としては、例えばアル
ミナ、/リカ、シリカ−アルミナ、ゼオライト、アルミ
ナ−ボリアなどが挙げられる。
As the catalyst used in step (C) of step (hydrogenation treatment) in the method of the present invention, which is used once a month in two steps, any known catalyst for the hydrotreatment of petroleum fractions and heavy oils can be used, preferably from Vl of the periodic table. Catalysts containing one or more metals selected from Group +) metals and Group II metals, such as nickel-molybdenum, cobalt-molybdenum, nickel-tungsten, etc., supported on an inorganic carrier. It is desirable to use it. These metal species are usually used as sulfides, and examples of inorganic carriers include alumina, silica, silica-alumina, zeolite, and alumina-boria.

これらの触媒は、アルファルチンや金属などの触媒の被
町物質を除去した熱分解処理油の水素化処理に用いらJ
]るため、担体の物理的性状として表面積が大きいほど
活性は良いが、高金属含有油処理触媒のように、大細孔
径の細孔容積を特に大きくする必要はない。
These catalysts are used in the hydrogenation process of thermally cracked oil from which substances such as alfalutin and metals have been removed.
] Therefore, as a physical property of the carrier, the larger the surface area, the better the activity, but unlike the high metal-containing oil treatment catalyst, it is not necessary to particularly increase the pore volume of large pore diameters.

この工程における水素化処理条件は、原料の重質炭化水
素油及び触媒の性状によって任意に選択されうるが、反
応温度は250〜500℃、好寸しくは300〜450
℃の範囲である。反応温度が500 ℃を超えると副反
応の熱分解が進みすぎて、触媒上への炭素の沈着の増大
、ガス発生の増加にともなう水素消費量の増加や液収率
の減少が認められ、一方250℃未満では反応速度が著
しく小さくなる。
The hydrotreating conditions in this step can be arbitrarily selected depending on the properties of the raw material heavy hydrocarbon oil and the catalyst, but the reaction temperature is 250 to 500°C, preferably 300 to 450°C.
℃ range. When the reaction temperature exceeds 500 °C, the thermal decomposition of side reactions progresses too much, leading to increased carbon deposition on the catalyst, increased hydrogen consumption due to increased gas generation, and decreased liquid yield. If the temperature is lower than 250°C, the reaction rate will be significantly reduced.

また反応圧力は:30〜300 K47cni、好まし
くは50〜250 K7 / cnIの範囲であって、
触媒の水素化能と大きく関係する。さらに液空間速度(
LHsv)は帆05〜5.Ohr ’ 、好ましくはO
−1〜3.0hr−’の範囲であり、まだ水素の供給量
は、水素化処理原料油に対する容積比が100〜2oo
ONt/lの範囲である。これらの条件は、それぞれが
単独で適性値をとるのではなく、相互に関連しあうもの
であって、原料油の性状や触媒活性はもちろんのこと、
次の工程の水蒸気熱分解工程からの要請に応しンC好適
範囲が選択される。
The reaction pressure is in the range of 30 to 300 K47cni, preferably 50 to 250 K7/cnI,
It is closely related to the hydrogenation ability of the catalyst. In addition, liquid hourly space velocity (
LHsv) is sail 05-5. Ohr', preferably O
-1 to 3.0 hr-', and the hydrogen supply amount is still in the range of 100 to 2 oo
It is in the range of ONt/l. These conditions do not each take an appropriate value independently, but are interrelated, and include not only the properties of the raw oil and the catalytic activity,
The preferred range for C is selected in response to the requirements of the next step, the steam pyrolysis step.

このようにし2てイ↓)られた水素化処理油は、次のI
−程における水蒸気熱分解の原料油として使用され、[
−1的に応じて分留し、各留分をそ71それ水蒸気熱分
角イすることも可能であるが、通常は分留することなく
そのま井水蒸気熱分解することが好ましい。
The hydrotreated oil thus obtained is processed into the following I
- It is used as a feedstock oil for steam pyrolysis in the [
Although it is possible to perform fractional distillation according to the requirements and subject each fraction to steam thermal decomposition, it is usually preferable to directly perform steam thermal decomposition without fractional distillation.

本発明方法における(1))工程に用いられる水蒸気熱
分)yrの様式としては特に制限がなく、種々の熱分角
?(の様式を採用することができ、既存のナフサ分解炉
である外熱管式熱分#炉なその1捷か又は若干の改造を
加えて用いることもできる。
There is no particular restriction on the format of the steam heat component (yr) used in step (1)) in the method of the present invention, and various heat angles can be used. (The above method can be adopted, and it is also possible to use one of the existing naphtha cracking furnaces, such as an external heating tube type thermal fractionating furnace, or with some modifications.

この水蒸気熱分解工程における反応条件は、水蒸気/水
素化処理油重量比が0.2〜2.0、好寸しくr↓0.
/1〜1.5の範囲、熱分解温度が700−900℃、
好′ましくは750〜QOO℃の範囲、滞留時間が[)
、05〜2.0秒、好ましくは0.1〜0.6秒の範囲
である。
The reaction conditions in this steam pyrolysis step are such that the steam/hydrotreated oil weight ratio is 0.2 to 2.0, and r↓0.
/1-1.5 range, thermal decomposition temperature 700-900℃,
Preferably in the range of 750~QOO℃, residence time [)
, 05 to 2.0 seconds, preferably 0.1 to 0.6 seconds.

この水蒸気熱分解反応によって得られた生成物は、分留
管から急冷熱交換器へ導いて熱回収したのち、生成物を
分離、精製し7てガス状オレフィン及び単環芳香族炭化
水素、副生燃料油及び他の副生水素及び炭化水素を得る
The products obtained by this steam pyrolysis reaction are guided from the fractionating tube to a quenching heat exchanger for heat recovery, and then separated and purified to produce gaseous olefins, monocyclic aromatic hydrocarbons, and by-products. Raw fuel oil and other by-product hydrogen and hydrocarbons are obtained.

本発明方法を実施するに当り、熱分解工程、高沸点物の
分離除去工程、水素化処理工程などに用いる水素につい
ては、それぞれの工程力・ら分離される水素ガスを、場
合によっては含有する硫化水素やアンモニアを除去した
のち、リサイクルして各工程に供給し、通常は消費した
水素の分だけ補給することが望せしい。この場合、水素
源として、水蒸気熱分解で副生ずる水素、又は副生炭化
水素ガスや副生燃料油などの水蒸気改質などで得られる
水素を充当させることができる。
When carrying out the method of the present invention, the hydrogen used in the thermal decomposition process, the separation and removal process of high-boiling substances, the hydrogenation process, etc. may contain hydrogen gas separated from each process, as the case may be. After removing hydrogen sulfide and ammonia, it is desirable to recycle it and supply it to each process, and usually to replenish the amount of hydrogen consumed. In this case, the hydrogen source may be hydrogen produced by steam pyrolysis, or hydrogen obtained by steam reforming of by-product hydrocarbon gas or by-product fuel oil.

次に本発明の実施態様を添(−1図面に従って具体的に
説明するが、本発明はこれらによって限定されるもので
tよない。
Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited thereto.

第1図及び第2図は、本発明方法を実施するだめの工程
図のそれぞれ異なった例でるって、まず第1図の工程に
従って本発明方法を説明すると、添加物を加えられた原
料の重質炭化水素油1(は水素2とともに熱分解装置3
で熱分解され、得られた熱分角1r生成物4id高圧ガ
ス分PiII器5で水素6が除かJlだのち、常圧蒸留
装置7に供給される。この常圧蒸留装置から出てくる常
圧蒸留残留油8ば、さらに減圧蒸留装置■2で減圧蒸留
残留物11が分離除去される。常圧留出油9と減圧留出
油1.0との混合物13は、水素14とともに水素化処
理装置15に供給されて水素化処理される。水素化処理
油[6は高圧ガス分離器17で水素を訝むガス生成物1
9が除かれたのち、液状生成物20は水蒸気とともに水
蒸気熱分解装置18で分解される。次いで水蒸気熱分解
生成物21は分前、精製されてガス状オレフィン、単環
芳香族炭化水素、副生水素、副生燃料油などが分離回収
される。
Figures 1 and 2 are different examples of process diagrams for carrying out the method of the present invention. First, the method of the present invention will be explained according to the process shown in Figure 1. Heavy hydrocarbon oil 1 (is in pyrolysis unit 3 along with hydrogen 2)
After the hydrogen 6 is removed from the resulting thermal angle 1r product 4id in a high-pressure gas fraction PiII reactor 5, it is supplied to an atmospheric distillation device 7. The atmospheric distillation residual oil 8 which comes out of this atmospheric distillation apparatus is further separated and removed by the vacuum distillation apparatus (2) to remove the vacuum distillation residue 11. A mixture 13 of atmospheric distillate oil 9 and vacuum distillate oil 1.0 is supplied together with hydrogen 14 to a hydrotreating apparatus 15 to be hydrotreated. Hydrotreated oil [6 is the gas product 1 containing hydrogen in the high pressure gas separator 17
After removing 9, the liquid product 20 is decomposed together with water vapor in a steam pyrolysis device 18. Next, the steam pyrolysis product 21 is partially purified to separate and recover gaseous olefins, monocyclic aromatic hydrocarbons, by-product hydrogen, by-product fuel oil, and the like.

次に第2図の工程に従って本発明方法を説明すると、添
加物を加えられた原料の重質炭化水素油1 (ri、、
  IJザイクル水素と補充水素20から成る水素2と
ともに熱分解装置3で分解され、得られた熱分W(生成
物4はそのま−まフラッシュ蒸留装置6に導入され、こ
の装置の下部より供給される水素5とともにフラツ/ユ
蒸留されて蒸気流8とフラッシュ残油7に分離さ租る。
Next, the method of the present invention will be explained according to the steps shown in FIG. 2. The raw material heavy hydrocarbon oil 1 (ri,
Hydrogen 2 consisting of IJ cycle hydrogen and supplementary hydrogen 20 is decomposed in a thermal decomposition device 3, and the obtained thermal component W (product 4 is directly introduced into a flash distillation device 6 and supplied from the lower part of this device. It is flat distilled together with hydrogen 5 and separated into a vapor stream 8 and a flash residue 7.

この残油はさらに減圧蒸留装置12により減圧蒸留残油
9が分離除去される。減圧留出油10と蒸気流8との混
合物[1は、必要に応じて冷却用又は水素量調節用水素
がライ/21より加えられて水素化処理装置15に供給
される。水素化処理生成物13は高圧ガス分離器14で
水素ガス17が分離リサイクルされ、得られだ液状水素
化処理油20は水蒸気とともに水蒸気熱分解装置18に
供給される。水蒸気熱分解生成物19は分離、精製を経
て、ガス状オレフィン、単環芳香族炭化水素、副生水素
、副生燃t1油などが分離回収される。
From this residual oil, the vacuum distillation residual oil 9 is further separated and removed by a vacuum distillation device 12. The mixture [1] of the vacuum distillate 10 and the vapor stream 8 is supplied to the hydrotreater 15 with hydrogen for cooling or hydrogen amount adjustment added from the lie/21 as required. Hydrogen gas 17 is separated and recycled from the hydrotreated product 13 in a high-pressure gas separator 14, and the obtained liquid hydrotreated oil 20 is supplied to a steam pyrolysis device 18 together with steam. The steam pyrolysis product 19 is separated and purified to separate and recover gaseous olefins, monocyclic aromatic hydrocarbons, by-product hydrogen, by-product fuel t1 oil, and the like.

本発明方法は、重質炭化水素油を添加物と水素の共存下
熱分解する工程、高沸点物を分離除去する工程、水素化
処理油[稈及び水蒸気熱分解工程の4工程から構成され
ており、これによって初めて重質炭化水素油から価値の
高いガス状オレフィン及び単環芳香族炭化水素などの石
油化学厚相が高収率で得られるようにな9、その技術的
、経済的や゛内果(#:1、(ケめで太きい。
The method of the present invention consists of four steps: a step of pyrolyzing heavy hydrocarbon oil in the coexistence of additives and hydrogen, a step of separating and removing high boiling point substances, and a step of pyrolyzing the hydrotreated oil [culm and steam]. For the first time, this has made it possible to obtain high-yield petrochemical thick phases such as high-value gaseous olefins and monocyclic aromatic hydrocarbons from heavy hydrocarbon oils9, and its technical and economical aspects are Fruit (#: 1, (keme and thick.

次に実施例によって本発明をさらに詳細に説明−J−る
が、本発明ケ↓こハらの1+11により一限定さハるも
のてに、上ない。
Next, the present invention will be described in more detail with reference to Examples, but it is to be understood that the present invention is limited by the following.

\ / 7・′ / 実施例1 ミナス原油の減圧蒸留残油(沸点550℃以上の留分9
1%)を、内径40咽、高さ500間の種型高圧容器に
かきまぜ機を取り付けた反応器を有する流通式加圧装置
を用いて熱分解した。このようにして得た原料油にオク
チル酸ニッケルを、ニッケルとして原料油に対し500
ppmになるように加えた。反応条件として、温度49
5℃、圧力150に9/cJ G 、  滞留時間2分
、水素/原料油比500 N/−/lを採用し、かきま
ぜ機の回転数は:300Orpmで熱分解を行った。
\ / 7・' / Example 1 Vacuum distillation residual oil of Minas crude oil (fraction 9 with a boiling point of 550°C or higher)
1%) was thermally decomposed using a flow-type pressurization device having a reactor equipped with a stirrer in a seed-shaped high-pressure container with an inner diameter of 40 mm and a height of 500 mm. Nickel octylate was added to the raw oil obtained in this way at a concentration of 500% as nickel to the raw oil.
It was added so that it became ppm. As reaction conditions, temperature 49
The thermal decomposition was carried out at 5° C., a pressure of 150 9/cJ G, a residence time of 2 minutes, a hydrogen/raw oil ratio of 500 N/-/l, and a stirrer rotation speed of: 300 rpm.

得られた熱分解生成物は、常圧及び減圧蒸留によM弗点
550℃以上の高沸点物を分離除去した。
The obtained thermal decomposition product was subjected to distillation under normal pressure and reduced pressure to separate and remove high-boiling substances with an M fluorination point of 550° C. or higher.

沸点550℃以下の留出物は、ニッケル酸化物として5
重量%、モリブデン酸化物として20重量%を含む表面
積270 n?/ ?、細孔容積0.75m1/f/の
アルミナ担持ニッケルモリブデン触媒を固定床反応器に
充てんした内径18mmφの流通式水素化反応装置を用
いて、水素/原料油化100ONt/11温度400℃
、圧力200に7/cJG、  LH8VO,,8hr
 ’の茶汁「で水素化処理した。
Distillate with a boiling point of 550°C or less is 550°C as nickel oxide.
% by weight, surface area containing 20% by weight as molybdenum oxide 270 n? / ? Using a flow type hydrogenation reactor with an inner diameter of 18 mm in which a fixed bed reactor was filled with an alumina-supported nickel molybdenum catalyst with a pore volume of 0.75 m1/f/, hydrogen/raw material oil conversion 100 ONt/11 temperature 400°C
, pressure 200 to 7/cJG, LH8VO,,8hr
Hydrogenated with 'Tea Juice'.

得られた水素化処理油を外熱管式分解装置を用いて、人
口温度550℃、出口温度830℃、出口圧力0.8に
7/c7IテG、水蒸気/水素化処理油重量比1.0、
滞留時間0.2  秒の条件で水蒸気熱分解し、オレフ
ィン及び単環芳香族炭化水素を得た。
The obtained hydrotreated oil was heated to 7/c7IteG using an external heating tube cracker at a population temperature of 550°C, an outlet temperature of 830°C, an outlet pressure of 0.8, and a steam/hydrogenated oil weight ratio of 1.0. ,
Steam pyrolysis was performed under conditions of a residence time of 0.2 seconds to obtain olefins and monocyclic aromatic hydrocarbons.

熱分解工程における辞意550℃以下の留分の得率は7
2N量%であった。
The yield rate of the fraction below 550℃ in the thermal decomposition process is 7
The amount of 2N was %.

なお、水蒸気熱分解結果を第1表に示す。The steam pyrolysis results are shown in Table 1.

比較例1 オクチル酸ニッケルを加えないこと以外は、実施例1と
同様に実施した。結果は、反応器のコーキングトラブル
により閉塞現象が生じ、安定な運転を実施できなかった
。添加物を加えないで安定な運転を行える条件下での沸
点550℃以下の留分の得率は、44重量%であった。
Comparative Example 1 The same procedure as Example 1 was carried out except that nickel octylate was not added. As a result, a clogging phenomenon occurred due to coking trouble in the reactor, and stable operation could not be carried out. The yield of the fraction with a boiling point of 550° C. or lower under conditions that allowed stable operation without adding additives was 44% by weight.

比較例2 オクチル酸ニッケルを加えないで、水素の代わりに窒素
を用いて実施例1と同様に実施した。結果は、反応器の
コーキングトラブルにより閉塞現象が生じ、安定な運転
を実施できなかった。この系での安定運転が・できる条
件下での沸点550℃以下の留分の得率は34重量%で
あった。
Comparative Example 2 The same procedure as in Example 1 was carried out except that nickel octylate was not added and nitrogen was used instead of hydrogen. As a result, a clogging phenomenon occurred due to coking trouble in the reactor, and stable operation could not be carried out. Under conditions that allowed stable operation of this system, the yield of the fraction with a boiling point of 550° C. or lower was 34% by weight.

比較例3 実施例1と同一の水素化処理装置を用い、コバルト酸化
物として4重量%、タングステン酸化物として15重量
%を含む表面積220 m2/ fのアルミナ相持コバ
ルト−タングステン触媒を使用し、運転初期に触媒活性
劣化が著しくない条件として、温度380℃、反応圧力
200Kg/cJGXLH8V0.5hr=’、水素/
原料油比200ONt/lの条件で水素化処理を行った
Comparative Example 3 The same hydrotreating equipment as in Example 1 was used, and an alumina-supported cobalt-tungsten catalyst with a surface area of 220 m2/f containing 4% by weight of cobalt oxide and 15% by weight of tungsten oxide was used. Conditions where catalyst activity does not deteriorate significantly at the initial stage are temperature 380°C, reaction pressure 200Kg/cJGXLH8V0.5hr=', hydrogen/
Hydrogenation treatment was carried out under conditions of a feedstock oil ratio of 200 ONt/l.

この場合の沸点550℃以下の留分の得率は17取量%
にすぎなかった。
In this case, the yield of the fraction with a boiling point of 550°C or less is 17% by weight.
It was nothing more than

これらの結果から明らかなように、重質炭化水素油を分
解して、水蒸気熱分解へ供給する原料得率を高率で得る
方法として、本発明が優れていることが判る。しかも、
本発明で得られた沸点55C)℃以上の残渣油の動粘度
は150℃で2Q cstと低く、また熱天秤によるそ
の燃焼性は、原料油のミナス減圧蒸留残渣油と変ること
がなく、燃料油として十分使用可能である。
As is clear from these results, it can be seen that the present invention is excellent as a method for decomposing heavy hydrocarbon oil and obtaining a high yield of raw material to be supplied to steam pyrolysis. Moreover,
The kinematic viscosity of the residual oil with a boiling point of 55C)°C or higher obtained in the present invention is as low as 2Q cst at 150°C, and its flammability on a thermobalance is the same as that of Minas vacuum distillation residue oil, which is the feedstock oil, and is a fuel oil. It can be fully used as an oil.

比較例4 比較例1において安定運転できた熱分解生成物を常圧及
び減圧蒸留したのち、沸点550 ℃以下の留分を実施
例1と同様な水素化処理工程及び水蒸気熱分解工程の操
作を行った。水蒸気熱分解の結果を第1表に示す。
Comparative Example 4 After distilling the thermal decomposition product that could be operated stably in Comparative Example 1 at normal pressure and reduced pressure, the fraction with a boiling point of 550°C or lower was subjected to the same hydrotreating process and steam pyrolysis process as in Example 1. went. The results of steam pyrolysis are shown in Table 1.

比較例5 比較例3で得られた水素化処理油を常圧及び減圧蒸留し
たのち、沸点550 ℃以下の留分を実施例1と同様に
して水蒸気熱分解した。その結果を第1表に示す。
Comparative Example 5 The hydrotreated oil obtained in Comparative Example 3 was distilled at normal pressure and under reduced pressure, and then the fraction with a boiling point of 550° C. or lower was subjected to steam pyrolysis in the same manner as in Example 1. The results are shown in Table 1.

200℃以上の留分収率 第1表から明らかな」:うに、本発明方法は石油1ヒ学
原f1収率が格段に高くて副生じてくる燃料油が極めて
少なく、効果のほどは明白である。
It is clear from Table 1 that the yield of distillates above 200°C is clear: The method of the present invention has a much higher yield of petroleum 1 and 1 oil, and an extremely small amount of by-product fuel oil, so its effectiveness is obvious. It is.

実施例2 アラビアンライト原油の常圧蒸留残油に、ステアリン酸
モリブデンをモリブデンとして500 ppmになるよ
うに加えたものを、°実施例1と同一の反応装置に、水
素/原料油比5ooNt//!、分解温度460℃、分
解圧力200Kg/cntG 、滞留時間20分の条件
で供給して熱分解した。この際、反応管の出口に設置さ
れた気液分離槽に、460℃に予熱した水素をさらに加
え、水素/原料油比で合計1300ub/bになるよう
に供給し、熱分解時に生成した軽質炭化水素油を水素ガ
スで同伴分離した。次いで軽質炭化水素油を分離した熱
分解生成油を減圧蒸留し、沸点550℃以上の減圧蒸留
残油を分離した。
Example 2 Molybdenum stearate was added to the atmospheric distillation residual oil of Arabian Light crude oil at a concentration of 500 ppm as molybdenum, and the mixture was placed in the same reactor as in Example 1 at a hydrogen/feedstock oil ratio of 5ooNt//. ! , a decomposition temperature of 460° C., a decomposition pressure of 200 Kg/cntG, and a residence time of 20 minutes for thermal decomposition. At this time, hydrogen preheated to 460°C was further added to the gas-liquid separation tank installed at the outlet of the reaction tube, and the hydrogen was supplied so that the hydrogen/feedstock oil ratio was 1300 ub/b in total. Hydrocarbon oil was entrained and separated with hydrogen gas. Next, the pyrolysis product oil from which the light hydrocarbon oil was separated was subjected to vacuum distillation, and the vacuum distillation residual oil having a boiling point of 550° C. or higher was separated.

減圧蒸留で得られた沸点550℃以下の留分と水素ガス
で同伴分離された軽質炭化水素油を混合し、ニッケル酸
化物として6重量%、タングステン酸化物として19重
量%を含む表面積2L8tt?/9、細孔容積0.55
m1/fのアルミナ担持ニッケル〜タングステン触媒を
使用し、実施例1と同一の流通式水素化反応装置を用い
て水素/原料油比130ON t/l 、温度390℃
、圧力150Kg/c++fG、  LH8VO,8h
r−1の条件下で水素化処理した。
A fraction with a boiling point of 550°C or less obtained by vacuum distillation and a light hydrocarbon oil entrained and separated with hydrogen gas are mixed to form a surface area of 2L8tt containing 6% by weight of nickel oxide and 19% by weight of tungsten oxide. /9, pore volume 0.55
Using an alumina-supported nickel to tungsten catalyst of m1/f and using the same flow-through hydrogenation reactor as in Example 1, the hydrogen/feedstock oil ratio was 130 ON t/l and the temperature was 390°C.
, pressure 150Kg/c++fG, LH8VO, 8h
Hydrogenation was carried out under r-1 conditions.

得られた水素住処理由を実施例1と同一条件で水蒸気熱
分解して、オレフィン及び単環芳香族類を得た。
The obtained hydrogen atom was subjected to steam pyrolysis under the same conditions as in Example 1 to obtain olefins and monocyclic aromatics.

出発原料であるアラビアンライト常圧蒸留残油は、沸点
550℃以下の留分が55重量%であるのに対し、熱分
解後には85重量%であった。
The starting material, Arabian Light atmospheric distillation residual oil, contained 55% by weight of the fraction with a boiling point of 550° C. or lower, whereas the fraction after thermal decomposition was 85% by weight.

なお、水蒸気熱分解結果を第2表に示す1、第2表 実施例;う〜8 ミナス原油の常圧蒸留残油(沸点550℃以上の留分3
4 wt%)を出発原料として、実施例3の場合は、フ
ェロセンを鉄として2000ppmになるように加えた
ものを、 実施例4の場合は、ナフテン酸コバルトをコバルトどし
てloooppmになるように加えたものを、実施例5
の場合は、レジン酸クロムをクロムとして11000p
pになるように加えたものを、実施例6の場合は、タン
グステン酸アンモニウム水和物をタングステンとして2
500 I)pmになるように加えたものを、 実施例7の場合は、バナジウムアセチルアセトネートを
バナジウムとして700ppmになるように加えたもの
を、 実施例8の場合は、ステアリン酸銅を銅として1100
0ppになるように加えたものを、それぞれ用いて、実
施例1と同一の反応装置を使って実施した。熱分解反応
条件は、すべて、温度485℃、圧力2ooKq/ct
!a、滞留時間2Qmin、水素/原料油比70ONt
/lを採用し、かきまぜ機の回転数は3000 rpm
で熱分解反応を行った。
The results of steam pyrolysis are shown in Table 2. 1, Table 2 Example;
In the case of Example 3, ferrocene was added to make it 2000 ppm as iron, and in the case of Example 4, cobalt naphthenate was replaced with cobalt to give loooppm. Example 5
In the case of 11000p chromium resinate as chromium
In the case of Example 6, ammonium tungstate hydrate was added as tungsten and 2
In the case of Example 7, vanadium acetylacetonate was added to give a concentration of 700 ppm as vanadium, and in the case of Example 8, copper stearate was added as copper to give a concentration of 500 I) pm. 1100
The reaction was carried out using the same reaction apparatus as in Example 1, using the same amount as in Example 1. All thermal decomposition reaction conditions were a temperature of 485°C and a pressure of 2ooKq/ct.
! a, residence time 2Qmin, hydrogen/raw oil ratio 70ONt
/l, and the rotation speed of the stirrer is 3000 rpm.
A thermal decomposition reaction was carried out.

熱分解生成物はそれぞれ常圧及び減圧蒸留により、沸点
550℃以上の高沸点物を分離除去した。
The thermal decomposition products were distilled at normal pressure and under reduced pressure to separate and remove high-boiling substances with a boiling point of 550° C. or higher.

それぞれの沸点550℃以下の留分の得率を第3表に示
す。
Table 3 shows the yield of each fraction with a boiling point of 550°C or less.

第  3  表 沸点550℃以下の留出物は、それぞれ実施例1と同一
の反応装置、固定床触媒を用い、反応条件として水素/
原料油比xoooNt/z、温度395℃、圧力150
Kg/crlG、  LH3V O,8hr−’を採用
して水素化処理した。得られたそえぞれの水素化処理油
は、実施例1と同一の反応装置、反応条件により水蒸気
熱分解を実施した。この結果を第4表に示す。
Table 3 Distillates with a boiling point of 550°C or less were treated using the same reactor and fixed bed catalyst as in Example 1, and the reaction conditions were hydrogen/hydrogen/
Raw material oil ratio xooooNt/z, temperature 395°C, pressure 150
Kg/crlG, LH3VO, 8hr-' was employed for hydrogenation treatment. Each of the obtained hydrotreated oils was subjected to steam pyrolysis using the same reaction apparatus and reaction conditions as in Example 1. The results are shown in Table 4.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ本発明を実施するだめの
工程図の異なった例であって、図中符号3は熱分解装置
、12は減圧蒸留装置、15は水素化処理装置、18は
水蒸気熱分解装置であり、まだ第1図において7は常圧
蒸留装置、第2図において6はフラッシュ蒸留装置であ
る。 特許出願人 旭化成工業株式会社 代理人 阿 形  明
1 and 2 are different examples of process diagrams for carrying out the present invention, in which reference numeral 3 denotes a thermal decomposition apparatus, 12 a vacuum distillation apparatus, 15 a hydrotreating apparatus, and 18. 1 is a steam pyrolysis device, 7 in FIG. 1 is an atmospheric distillation device, and 6 in FIG. 2 is a flash distillation device. Patent applicant: Asahi Kasei Industries Co., Ltd. Agent: Akira Agata

Claims (1)

【特許請求の範囲】 1(A)水素の共存下、コーキング抑制剤を加えた重質
炭化水素油を温度380〜550 ℃、圧力30〜30
0 K9 / ctl、滞留時間1〜120分の条件下
で熱分解する工程、(B>前記工程で得られた熱分解生
成物から高沸点物を分離除去する工程、(C)高沸点物
を分離除去した熱分解処理物を水添触媒の存在下、温度
250〜500 ℃、圧力3o〜300 K9 / c
tl、液空間速度0.05〜5. Ohr−’、水素/
熱分解処理物比100〜20(10Nt/lの条件下で
水素化処理する工程及び(D)(0)工程で得られた水
素化処理生成物から水素を含むガス状生成物を分離除去
し、次いで液状生成物を温度700〜900 ℃、滞留
時間0.05〜2.0秒、水蒸気、/液状生成物重耽比
0.2〜2.0の条件下で水蒸気熱分解したのち、得ら
れた生成物からガス状オレフィン及び単環芳香族炭化水
素を回収する工程から成ることを特徴とする重質炭化水
素油からのガス状オレフイ/及び単環芳香族炭化水素の
製造方法。 2(A)工程において、重質炭化水素油に加えるコーキ
ング抑制剤が遷移金属化合物である特許請求の範囲第1
項記載の方法。 3 遷移金属化合物が鉄、コバルト、ニッケル、クロム
、モリブデン、タングステン、バナジウム及び銅の中か
ら選ばれる金属の化合物の少なくとも1種である特許請
求の範囲第2項記載の方法。 4(A)工程における添加物の量が、金属に換算して原
料油の重量に基づき50〜8000’ 、ppmの範囲
である特許請求の範囲第1項記載の方法。 5(B)工程において、分離除去する高沸点物が沸点5
50℃以上のもの′である特許請求の範囲第1項記載の
方法。
[Claims] 1(A) In the presence of hydrogen, heavy hydrocarbon oil to which a coking inhibitor has been added is heated at a temperature of 380 to 550°C and a pressure of 30 to 30°C.
0 K9 / ctl, a step of thermally decomposing under conditions of residence time 1 to 120 minutes, (B> step of separating and removing high boiling points from the thermal decomposition product obtained in the above step, (C) removing high boiling points The separated and removed thermally decomposed product is heated at a temperature of 250 to 500 °C and a pressure of 3 to 300 K9/c in the presence of a hydrogenation catalyst.
tl, liquid space velocity 0.05-5. Ohr-', hydrogen/
Hydrotreating under conditions of a thermally decomposed product ratio of 100 to 20 (10 Nt/l) and separating and removing hydrogen-containing gaseous products from the hydrogenated product obtained in step (D)(0). Then, the liquid product was subjected to steam pyrolysis under the conditions of a temperature of 700 to 900 °C, a residence time of 0.05 to 2.0 seconds, and a steam/liquid product concentration ratio of 0.2 to 2.0. A method for producing gaseous olefins/and monocyclic aromatic hydrocarbons from heavy hydrocarbon oil, characterized by comprising a step of recovering gaseous olefins and monocyclic aromatic hydrocarbons from the produced product. 2 ( A) In the process, the coking inhibitor added to the heavy hydrocarbon oil is a transition metal compound.
The method described in section. 3. The method according to claim 2, wherein the transition metal compound is at least one metal compound selected from iron, cobalt, nickel, chromium, molybdenum, tungsten, vanadium, and copper. 4. The method according to claim 1, wherein the amount of the additive in step 4(A) is in the range of 50 to 8000 ppm based on the weight of the raw material oil in terms of metal. In step 5(B), the high boiling point substances to be separated and removed have a boiling point of 5
The method according to claim 1, wherein the temperature is 50°C or higher.
JP2235983A 1983-02-14 1983-02-14 Production of gaseous olefins and monocyclic aromatic hydrocarbons Pending JPS59147084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2235983A JPS59147084A (en) 1983-02-14 1983-02-14 Production of gaseous olefins and monocyclic aromatic hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2235983A JPS59147084A (en) 1983-02-14 1983-02-14 Production of gaseous olefins and monocyclic aromatic hydrocarbons

Publications (1)

Publication Number Publication Date
JPS59147084A true JPS59147084A (en) 1984-08-23

Family

ID=12080435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2235983A Pending JPS59147084A (en) 1983-02-14 1983-02-14 Production of gaseous olefins and monocyclic aromatic hydrocarbons

Country Status (1)

Country Link
JP (1) JPS59147084A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109988055A (en) * 2017-12-29 2019-07-09 抚顺齐隆化工有限公司 A kind of preparation method of high-purity cyclopentadiene and methyl cyclopentadiene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109988055A (en) * 2017-12-29 2019-07-09 抚顺齐隆化工有限公司 A kind of preparation method of high-purity cyclopentadiene and methyl cyclopentadiene

Similar Documents

Publication Publication Date Title
JP6904964B2 (en) Processes and equipment with improved product yields for converting crude oil to petrochemicals
CN107889498B (en) Improved process for converting heavy hydrocarbon feedstocks
KR102308554B1 (en) Process and installation for the conversion of crude oil to petrochemicals having an improved btx yield
US4192735A (en) Hydrocracking of hydrocarbons
CN109593552B (en) Process for upgrading refinery heavy residues to petrochemicals
RU2525470C2 (en) Catalyst system and method for hydrotreatment heavy oils
US9243194B2 (en) Process for hydroconversion of heavy carbon-containing feedstocks that integrate a boiling-bed technology and a slurry technology
RU2592688C2 (en) Method of converting hydrocarbon material containing shale oil by hydroconversion in fluidised bed, fractionation using atmospheric distillation and hydrocracking
EP3017028B1 (en) Process for the production of light olefins and aromatics from a hydrocarbon feedstock.
US20090127161A1 (en) Process and Apparatus for Integrated Heavy Oil Upgrading
US9687804B2 (en) Conversion of asphaltenic pitch within an ebullated bed residuum hydrocracking process
US20090129998A1 (en) Apparatus for Integrated Heavy Oil Upgrading
US10201810B2 (en) Vacuum resid upgradation and graphite production
RU2673803C1 (en) Method for upgrading partially converted vacuum residue
EA034700B1 (en) Process and installation for the conversion of crude oil to petrochemicals having an improved ethylene yield
JPS5898387A (en) Preparation of gaseous olefin and monocyclic aromatic hydrocarbon
KR20210007893A (en) Process for converting a feedstock containing pyrolysis oil
US11485916B2 (en) Method for converting residues incorporating deep hydroconversion steps and a deasphalting step
US11680028B2 (en) Methods and systems for upgrading crude oils, heavy oils, and residues
US10760014B2 (en) Catalyst and process for conversion of vacuum resid to middle distillates
JP2018526492A (en) Integrated ebullated bed hydroprocessing, fixed bed hydroprocessing and coking processes for whole crude oil conversion to hydrotreated distillates and petroleum coke
US4391700A (en) Process for converting heavy hydrocarbon oils, containing asphaltenes, to lighter fractions
RU2592690C2 (en) Method of converting hydrocarbon material containing shale oil by hydroconversion in fluidised bed, fractionation using atmospheric distillation and extraction liquid/liquid in heavy fraction
JP4564176B2 (en) Crude oil processing method
CN110776953B (en) Process for treating heavy hydrocarbon feedstock comprising fixed bed hydroprocessing, two deasphalting operations and hydrocracking of bitumen