JPS5914634B2 - Force storage device using variable inertia body - Google Patents
Force storage device using variable inertia bodyInfo
- Publication number
- JPS5914634B2 JPS5914634B2 JP6786781A JP6786781A JPS5914634B2 JP S5914634 B2 JPS5914634 B2 JP S5914634B2 JP 6786781 A JP6786781 A JP 6786781A JP 6786781 A JP6786781 A JP 6786781A JP S5914634 B2 JPS5914634 B2 JP S5914634B2
- Authority
- JP
- Japan
- Prior art keywords
- storage device
- liquid
- variable inertia
- force
- rotating body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/30—Flywheels
- F16F15/31—Flywheels characterised by means for varying the moment of inertia
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Description
【発明の詳細な説明】
本発明は回転慣性体に対する慣性力の入出力時に回転速
度を効率良く制御することの出来る可変慣性体による蓄
力装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a force storage device using a variable inertial body that can efficiently control rotational speed when inputting and outputting inertial force to a rotating inertial body.
従来、成る時間内に不規則に発生する余剰電力などを、
その時々に応じて蓄積して置き、この蓄積された動力を
必要に応じ、或は一括して動力として使用する装置の1
つとして慣性体による蓄力装置がある。Traditionally, surplus electricity that occurs irregularly within a certain period of time is
A device that stores power depending on the situation and uses this stored power as power as needed or all at once.
One example is a force storage device using an inertial body.
周知のように、回転中の慣性体に蓄力された慣性力(運
動エネルギー)をE、回転速度をω、慣性モーメントを
1とすれば、E=」■ω2となる。As is well known, if the inertial force (kinetic energy) stored in a rotating inertial body is E, the rotational speed is ω, and the moment of inertia is 1, E=”ω2.
そしてこのような慣性力を電気力の授受に利用する場合
には、電気力と機械力との相互の変換装置を必要とし、
回転慣性体への機械的入力を行わせるときは電動機を、
またその蓄力を出力させるには発電機を結合させること
になるが、その運転中には回転速度が成る範囲内で一定
であることが望ましい。When such inertial force is used to transfer and receive electric force, a mutual conversion device between electric force and mechanical force is required.
When applying mechanical input to a rotating inertial body, use an electric motor,
In order to output the stored power, a generator is connected, and it is desirable that the rotational speed be constant within a range during operation.
ところが従来の蓄力装置を考えると、Iは一定で、Eの
増減はωの増減となり、回転慣性体から慣性力が放出さ
れるにしたがい慣性体のモーメントIが不変のために回
転速度は次第に下降する。However, when considering a conventional force storage device, I is constant, and an increase or decrease in E results in an increase or decrease in ω, and as the inertial force is released from the rotating inertial body, the rotational speed gradually increases because the moment I of the inertial body remains unchanged. descend.
また従来のものは慣性体に蓄力させることは回転速度の
上昇を意味することになる。Furthermore, in the conventional type, storing force in the inertial body means increasing the rotational speed.
したがって従来のものは回転慣性体に対する蓄力の授受
によって回転速度が変化し不便であるため変速機を介し
て回転慣性体の回転軸を間接的に電動機、発電機に結合
しているが、これでは、せっかく蓄積された慣性力が複
雑な変速機構の摩擦力でその一部が消費されることにな
り、効率の低下をもたらしてしまう結果となるものであ
る。Therefore, in the conventional system, the rotating speed of the rotating inertial body changes due to the transfer of stored force to and from the rotating inertial body, which is inconvenient, so the rotating shaft of the rotating inertial body is indirectly connected to the electric motor or generator via a transmission. In this case, a portion of the accumulated inertia force is consumed by the frictional force of the complicated transmission mechanism, resulting in a decrease in efficiency.
本発明はこのような点に鑑み行われたもので、慣性モー
メンHを変化させ、慣性体の定速度運転を可能とし、効
率の高い慣性力の授受を容易に行わせるようにしようと
するものである。The present invention was made in view of these points, and aims to change the moment of inertia H, enable constant speed operation of the inertial body, and easily transfer and receive highly efficient inertial force. It is.
次に本発明の一実施例を図面に基づいて説明する。Next, one embodiment of the present invention will be described based on the drawings.
1は空洞状円盤型の回転体で、その回転軸2は軸受3で
軸支される。Reference numeral 1 denotes a hollow disc-shaped rotating body, and its rotating shaft 2 is supported by a bearing 3.
この軸受3は、長時間に亘る蓄力の運転中に損失が極め
て少ないように球軸受などが用いられる。As this bearing 3, a ball bearing or the like is used so that there is extremely little loss during long-term power storage operation.
また回転体1が外気中で運転される場合には回転体1の
風損が無視出来なくなるので、この回転体1は減圧、或
は真空中や水素ガスの雰囲気中で運転されるようにする
とよい。Furthermore, when the rotating body 1 is operated in the outside air, the windage loss of the rotating body 1 cannot be ignored, so if the rotating body 1 is operated under reduced pressure, in a vacuum, or in a hydrogen gas atmosphere, good.
その場合、第1図のものは更に密閉容器によって蔽われ
ることになるが、これは図に於て省略する。In that case, the one in FIG. 1 would be further covered by a closed container, but this is omitted in the figure.
4は回転体1の慣性モーメントIを変更させるための液
体で1回転軸2の頂部の注入口5より回転体1の内部に
注入される。Reference numeral 4 denotes a liquid for changing the moment of inertia I of the rotating body 1 and is injected into the interior of the rotating body 1 from an injection port 5 at the top of the rotating shaft 2 .
この液体4は回転軸2の中心の穿孔部 5aを通して回
転体1の内部に注入され、この回転体1に伴って回転す
る。The liquid 4 is injected into the rotating body 1 through the perforated portion 5a at the center of the rotating shaft 2, and rotates with the rotating body 1.
図に於ては注入口5が軸中心で軸対称となっており、注
液時の回転体1の釣合に不平衡を及ぼすようなこともな
い。In the figure, the injection port 5 is axially symmetrical with respect to the axis, so that there is no imbalance in the balance of the rotating body 1 during liquid injection.
6は回転体1内の液体の排出口で、前記回転体1の外周
部に軸対称に設けられ、その吐出方向は回転体1の回転
方向囚に対して逆方向に開口される。Reference numeral 6 denotes a discharge port for the liquid inside the rotary body 1, which is provided axially symmetrically on the outer circumferential portion of the rotary body 1, and its discharge direction is opened in a direction opposite to the direction of rotation of the rotary body 1.
これは、回転体1と共に回転している液体4が保有して
いる慣性力を放出時に回転体1に残留させ、蓄力の損失
の防止に役立つものである。This allows the inertial force held by the liquid 4 rotating together with the rotating body 1 to remain in the rotating body 1 when released, and is useful for preventing loss of stored force.
また、7は液体4の排出量を制御する排出弁で、この排
出弁7は、鋼索7aを経て電磁石8の可動鉄心8aに結
合され、電磁石8の励磁及び解磁によって排出弁7の開
閉を行わせる。Further, 7 is a discharge valve for controlling the discharge amount of the liquid 4. This discharge valve 7 is connected to a movable core 8a of an electromagnet 8 through a steel cable 7a, and the discharge valve 7 is opened and closed by excitation and demagnetization of the electromagnet 8. Let it happen.
なお前記電磁石8或は回転変圧器等を使用することによ
り回転軸2と非接触の間接的の作動力で排出弁7を作動
させることができるが、電気刷子、滑動環等によるもの
は機械的摩擦損失が生ずるために好ましくない。Note that by using the electromagnet 8 or a rotary transformer, etc., the discharge valve 7 can be operated by an indirect operating force without contact with the rotating shaft 2, but an electric brush, a sliding ring, etc. can be used to operate the discharge valve 7 mechanically. This is undesirable because friction loss occurs.
9は回転体1の内部に軸対称に配列し半径方向に設けら
れ外周側に切欠き部10が穿孔された仕切り板で、その
枚数は回転体1の大きさ、速度、加速度で決定し、回転
体1の骨格ともなり強度上より設計される。Reference numeral 9 denotes partition plates arranged axially symmetrically inside the rotating body 1, provided in the radial direction, and having notches 10 perforated on the outer circumferential side, the number of which is determined by the size, speed, and acceleration of the rotating body 1; It also serves as the skeleton of the rotating body 1 and is designed for strength.
この仕切り板9は回転体1の内部に注入された液体4を
回転体1と共に回転させるために必要であり、また、こ
れらの仕切り板9と回転体1とで囲まれた複数区画の部
分にある液体量の不平均が回転体1に及ぼす不平衡は、
切欠き部10の連通作用によって各区画の液体量を均一
化させることによって修正する。This partition plate 9 is necessary to rotate the liquid 4 injected into the rotating body 1 together with the rotating body 1, and the partition plate 9 is necessary for rotating the liquid 4 injected into the rotating body 1. The imbalance that a certain amount of liquid causes on the rotating body 1 is:
This is corrected by equalizing the amount of liquid in each compartment through the communication action of the notch 10.
回転体1に注入される液体4は慣性体による蓄力を大な
らしめるもので比重の犬なる液体を選定することはいう
までもないが、前述のように減圧または真空中の雰囲気
での運転には蒸発性の少ない油のような液体が適し、機
能上よりは水銀が最も望ましい。It goes without saying that the liquid 4 injected into the rotating body 1 is one that increases the storage force of the inertial body, so a liquid with a high specific gravity is selected, but as mentioned above, operation in a reduced pressure or vacuum atmosphere is recommended. A liquid such as oil with low evaporability is suitable, and mercury is most desirable from a functional standpoint.
11は回転子12a及び固定子12bよりなる非同期誘
導機であり、回転体1に直結される。11 is an asynchronous induction machine consisting of a rotor 12a and a stator 12b, and is directly connected to the rotating body 1.
これは2次側抵抗値の大きな龍型回転子が滑りの大きな
回転数の運転に適するので、このようなものが望ましく
、また広範囲に亘る経済運転には更に極数変換の可能な
誘導機の使用が適する。This is because a dragon-shaped rotor with a large secondary side resistance value is suitable for operation at rotational speeds with large slippage, so such a rotor is preferable, and for economical operation over a wide range, an induction motor that can change the number of poles is also recommended. suitable for use.
13は排出液体の受皿であり、回転体1の排出口6より
の放出液体を収容し、且つ液体循環ポンプ14によって
注入口5に供給される液体4の量が制御される。Reference numeral 13 denotes a discharged liquid receiving tray, which accommodates the discharged liquid from the discharge port 6 of the rotating body 1, and controls the amount of the liquid 4 supplied to the injection port 5 by the liquid circulation pump 14.
次に運転について説明する。Next, driving will be explained.
先ず回転体1は静止状態にあるので非同期誘導機11を
電源に接続すれば、これは薄型誘導電動機となり、回転
体1は回転し始める。First, since the rotating body 1 is in a stationary state, when the asynchronous induction machine 11 is connected to a power source, it becomes a thin induction motor and the rotating body 1 starts rotating.
この場合に予め回転体1の内部の液体をすべて排除して
おき、慣性モーメントIを最小にしてお匂なお回転体1
そのものでも極めて大きな慣性モーメントがあるために
全速度に達するには電動機の容量に対しては大きな動力
を必要とし、長時間を要するものである。In this case, remove all the liquid inside the rotating body 1 in advance, minimize the moment of inertia I, and keep the rotating body 1 clean.
Since the motor itself has an extremely large moment of inertia, reaching full speed requires a large amount of power relative to the capacity of the electric motor, and takes a long time.
したがって滑りの大きな速度でもトルクの減少の少ない
2次側高抵抗型回転子が望ましい。Therefore, a high-resistance rotor on the secondary side is desirable, in which the torque decreases little even at high slip speeds.
次に電動機の定格速度、即ち同期速度の数多の滑り速度
に達したならば、回転体1の慣性による蓄力を増加させ
るために注入口5への注液を始める。Next, when the rated speed of the electric motor, that is, the sliding speed of many of the synchronous speeds is reached, injection into the injection port 5 is started in order to increase the stored force due to the inertia of the rotating body 1.
注入された液体4は遠心力で回転体1の外周部分で環状
となり、仕切り板9の作用で回転体1と共に回転する。The injected liquid 4 forms an annular shape around the outer periphery of the rotating body 1 due to centrifugal force, and rotates together with the rotating body 1 due to the action of the partition plate 9.
仕切り板9による液体量の不平均はその切欠き部10の
連通作用により平均化され、回転体1の回転は静粛に行
われることになる。The uneven amount of liquid due to the partition plate 9 is averaged out by the communication effect of the notch 10, and the rotation of the rotating body 1 is performed quietly.
なお液体4の注入は回転体1の回転速度を低下させるよ
うに作用するが、電動機側の回転出力と鈎合いながらほ
ぼ一定の速度で回転する。Although the injection of the liquid 4 acts to reduce the rotational speed of the rotating body 1, it rotates at a substantially constant speed in conjunction with the rotational output of the electric motor.
このようにして液体4の注入量の増加で回転体1の慣性
モーメンl−1が増加し、回転体1の蓄力が増加し、満
液状態が慣性蓄力の最大値を示す。In this way, the moment of inertia l-1 of the rotating body 1 increases with an increase in the amount of liquid 4 injected, and the stored force of the rotating body 1 increases, and the full liquid state indicates the maximum value of the stored inertial force.
次にこのような状態で排出口6の排出弁7の開放により
液体4は排出口6より回転体1外に排出されるが、排出
液そのものが慣性エネルギーを保有しているために、回
転方向囚と逆方向に開口して放出させることによりその
保有エネルギーを回転体1に返還させることが出来る。Next, in this state, when the discharge valve 7 of the discharge port 6 is opened, the liquid 4 is discharged from the discharge port 6 to the outside of the rotating body 1, but since the discharged liquid itself has inertial energy, the rotation direction The retained energy can be returned to the rotating body 1 by opening in the opposite direction to the prisoner and releasing it.
同時に回転体1の回転速度は慣性モーメントの減少で液
の排出量だけ上昇し、前記誘導電動機は誘導発電機とな
り、その発生電力は電源側に帰還されることになる。At the same time, the rotational speed of the rotating body 1 increases by the amount of liquid discharged due to a decrease in the moment of inertia, the induction motor becomes an induction generator, and the generated power is fed back to the power source.
このように液の排出制御を円滑に行わせることにより定
速度の発電機運転が可能となるものである。By smoothly controlling the liquid discharge in this way, constant speed generator operation is possible.
即ちE二±ω2に於て、Eが減少する分だけ■を減少さ
せることによりωを一定に保つようにする。That is, in E2±ω2, ω is kept constant by decreasing ① by the amount that E decreases.
また、前記非同期誘導機11を極数変換可能の結線とす
ることで更に広範囲に亘る動力の授受が円滑に行われ効
果的である。Further, by connecting the asynchronous induction machine 11 so that the number of poles can be changed, power can be transferred smoothly over a wider range, which is more effective.
本発明は、以上のように回転体の慣性モーメントをこの
回転体に注入される液体の量によって制御することによ
り、変速機の必要性をなくして高効率の回転運転を容易
にでき、回転エネルギーの授受に極めて効果的な蓄力装
置とすることが出来るものである。As described above, the present invention eliminates the need for a transmission and facilitates highly efficient rotational operation by controlling the moment of inertia of the rotating body by the amount of liquid injected into the rotating body, thereby reducing rotational energy. This device can be used as an extremely effective energy storage device for transferring and receiving energy.
第1図は本発明の可変慣性体による蓄力装置の一実施例
を示す垂直断面図、第2図は第1図の■−■線断面図、
第3図は第2図の■−■線断面図である。
1・・・・・・回転体、2・・・・・・回転軸、4・・
・・・・液体、5・・・・・・注入口、6・・・・・・
排出口、7・・・・・・排出弁、11・・・・・・非同
期誘導機。FIG. 1 is a vertical sectional view showing an embodiment of a force storage device using a variable inertia body of the present invention, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1,
FIG. 3 is a sectional view taken along the line ■--■ in FIG. 2. 1... Rotating body, 2... Rotating shaft, 4...
...Liquid, 5...Inlet, 6...
Discharge port, 7...Discharge valve, 11...Asynchronous induction machine.
Claims (1)
回転体と、この回転体の内部に注入される液体と、この
回転体内の液体の量を回転運転中に増減して慣性モーメ
ントを変化させる液体注入手段及び液体排出手段と、前
記回転体の回転軸に設けられ回転体に対して慣性力の入
出力の授受を行う入出力手段とを具備したことを特徴と
する可変慣性体による蓄力装置。 2 液体注入手段に於ける回転体への注入口は、回転軸
に設けたことを特徴とする特許請求の範囲第1項記載の
可変慣性体による蓄力装置。 3 液体排出手段は、回転体の外周に配設された排出口
と、この排出口を開閉する弁と、この弁を回転軸に対し
非接触の間接的の作動力で作動させる機構とによって形
成したことを特徴とする特許請求の範囲第1項または第
2項記載の可変慣性体による蓄力装置。 4 液体排出手段に於ける排出口は、空洞状円盤型の回
転体の外周に軸対称に配設し、且つ液体排出口方向を回
転方向に対し逆方向に設けたことを特徴とする特許請求
の範囲第1項ないし第3項のいずれかに記載の可変慣性
体による蓄力装置。 5 回転体の外周部内側を部分的に連通可能の複数の区
画に仕切ったことを特徴とする特許請求の範囲第1項な
いし第4項のいずれかに記載の可変慣性体による蓄力装
置。 6 回転体は、減圧または真空状態で回転することを特
徴とする特許請求の範囲第1項ないし第5項のいずれか
に記載の可変慣性体による蓄力装置。 7 液体は、蒸発の少なく止置の犬なるものであるごと
を特徴とする特許請求の範囲第1項ないし第6項のいず
れかに記載の可変慣性体による蓄力装置。 8 入出力手段は非同期誘導機であることを特徴とする
特許請求の範囲第1項ないし第7項のいずれかに記載の
可変慣性体による蓄力装置。 9 非同期誘導機は、極数変換をなし得ることを特徴と
する特許請求の範囲第8項記載の可変慣性体による蓄力
装置。[Claims] 1. A rotary shaft, a hollow disc-shaped rotary body supported by the rotary shaft, a liquid injected into the rotary body, and the amount of liquid in the rotary body controlled by rotational operation. A liquid injection means and a liquid discharge means for changing the moment of inertia by increasing or decreasing the inside of the rotary body, and an input/output means provided on the rotation shaft of the rotary body and for inputting and outputting inertia force to and from the rotary body. A power storage device using a variable inertia body characterized by: 2. A force storage device using a variable inertia body according to claim 1, wherein the injection port for the rotating body in the liquid injection means is provided on the rotating shaft. 3. The liquid discharge means is formed by a discharge port disposed on the outer periphery of the rotating body, a valve that opens and closes this discharge port, and a mechanism that operates this valve by indirect operating force without contacting the rotating shaft. A force storage device using a variable inertia body according to claim 1 or 2, characterized in that: 4. A patent claim characterized in that the discharge ports in the liquid discharge means are arranged axially symmetrically around the outer circumference of a hollow disc-shaped rotating body, and the direction of the liquid discharge ports is opposite to the direction of rotation. A force storage device using a variable inertia body according to any one of items 1 to 3. 5. A force storage device using a variable inertia body according to any one of claims 1 to 4, characterized in that the inside of the outer circumference of the rotating body is partitioned into a plurality of sections that can be partially communicated with each other. 6. A force storage device using a variable inertia body according to any one of claims 1 to 5, wherein the rotating body rotates under reduced pressure or a vacuum state. 7. A force storage device using a variable inertia body according to any one of claims 1 to 6, characterized in that the liquid is a static liquid with little evaporation. 8. A power storage device using a variable inertia body according to any one of claims 1 to 7, wherein the input/output means is an asynchronous induction machine. 9. A power storage device using a variable inertia body according to claim 8, wherein the asynchronous induction machine is capable of changing the number of poles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6786781A JPS5914634B2 (en) | 1981-05-06 | 1981-05-06 | Force storage device using variable inertia body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6786781A JPS5914634B2 (en) | 1981-05-06 | 1981-05-06 | Force storage device using variable inertia body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57183578A JPS57183578A (en) | 1982-11-11 |
JPS5914634B2 true JPS5914634B2 (en) | 1984-04-05 |
Family
ID=13357298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6786781A Expired JPS5914634B2 (en) | 1981-05-06 | 1981-05-06 | Force storage device using variable inertia body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5914634B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110098680A (en) * | 2018-01-29 | 2019-08-06 | 本田技研工业株式会社 | Rotating electric machine |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6181310U (en) * | 1984-11-02 | 1986-05-30 | ||
GB2386668B (en) | 2002-03-20 | 2005-06-29 | Perkins Engines Co Ltd | Variable inertia flywheel |
DE10231087A1 (en) * | 2002-07-10 | 2004-01-22 | Rwe Piller Gmbh | Electrical machine with a rotor rotating around a vertical axis of rotation |
DE102006030467A1 (en) * | 2006-07-01 | 2008-01-03 | Frank Burger | Mechanical energy storage with flywheel and method for operating such |
GB2463534A (en) * | 2008-09-23 | 2010-03-24 | Heptron Ltd | Liquid flywheel with emergency liquid release |
US10221917B2 (en) * | 2015-03-15 | 2019-03-05 | Daniel Anthony Maiullo | Variable moment flywheel |
CN105857271B (en) * | 2016-05-30 | 2018-08-28 | 张晓春 | Brake energy recovery and release device |
JP2022043947A (en) * | 2020-09-04 | 2022-03-16 | 太平洋工業株式会社 | Generator and tire condition monitoring device |
-
1981
- 1981-05-06 JP JP6786781A patent/JPS5914634B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110098680A (en) * | 2018-01-29 | 2019-08-06 | 本田技研工业株式会社 | Rotating electric machine |
JP2019134506A (en) * | 2018-01-29 | 2019-08-08 | 本田技研工業株式会社 | Rotating electric machine |
Also Published As
Publication number | Publication date |
---|---|
JPS57183578A (en) | 1982-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107683558B (en) | Electric driver | |
AU2002326878B8 (en) | Flywheel energy storage systems | |
US6236127B1 (en) | Flywheel energy accummulator | |
JPS5914634B2 (en) | Force storage device using variable inertia body | |
NO743006L (en) | ||
US20080180067A1 (en) | Flywheel Electric Generator | |
WO1989004081A1 (en) | Drives with double-rotating electric machines | |
MXPA01012528A (en) | Device for coupling at least one auxiliary assembly to a main assembly. | |
WO1982000322A1 (en) | Flywheel type electric power storage apparatus | |
US20210328526A1 (en) | Large Dynamic Range Electric Motor | |
US4725766A (en) | Multiple spoke energy storage system for space environment | |
JP2004266883A (en) | Power generation provision | |
US4892467A (en) | Balanced rolling rotor motor compressor | |
CN201966745U (en) | Inner and outer double-rotation motor set | |
JPH11168852A (en) | Dynamoelectric machine with incorporated flywheel, load drive device using the dynamoelectric machine and its operation method | |
US5982116A (en) | Controllable combined power system using an active power source rotation speed as the proportional control reference | |
CN102170193A (en) | Internal and external double-rotation motor set | |
CN210839285U (en) | Motor with differential rotor structure | |
CN2098753U (en) | Speed-regulating motor having differential and speed-dividing brake | |
WO1997036362A1 (en) | Variable speed electromagnetic machine | |
JPS5928871A (en) | Mechanism with power machine for operating driven unit by principle of loading-back method | |
US20220329130A1 (en) | Rotary machine having an unbalance drive | |
JP4159239B2 (en) | Combined motor and its operation method | |
SU1094706A1 (en) | Friction welding device | |
JPS61196737A (en) | Generating set utilizing inertia |