JPS59145980A - Guided flying object - Google Patents

Guided flying object

Info

Publication number
JPS59145980A
JPS59145980A JP58020077A JP2007783A JPS59145980A JP S59145980 A JPS59145980 A JP S59145980A JP 58020077 A JP58020077 A JP 58020077A JP 2007783 A JP2007783 A JP 2007783A JP S59145980 A JPS59145980 A JP S59145980A
Authority
JP
Japan
Prior art keywords
signal
phase
antenna
target
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58020077A
Other languages
Japanese (ja)
Inventor
Hideo Yamane
山根 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58020077A priority Critical patent/JPS59145980A/en
Publication of JPS59145980A publication Critical patent/JPS59145980A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4481Monopulse hybrid systems, e.g. conopulse

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To execute a conical scan at the time of searching a target, and to execute a tracking by a monopulse after catching said target by driving to switch a phase shifter by a prescribed system. CONSTITUTION:When a flying object is launched, a sine wave signal having the same amplitude and a phase different by pi/2 are impressed to the four groups of phase shifters 9-12 through a transmitter, a duplexer 15 and a comparator 14, a conical scan is executed by corresponding left and right, and upper and lower antennas 5-8, and a target search is executed to obtain the high probability of geometrical lock-on and to catch the target in the center of an antenna beam. In this state, when the target is caught and a lock-on signal is outputted from a lock-on deciding circuit 27, the constant-voltage of the same phase is impressed to the phase shifters 9-12 through a controller 13 and the comparator 14, and it is possible to execute a quick switching to a target tracking with a good characteristic against a radio wave disturbance by the monopulse by the antennas 5-7, etc.

Description

【発明の詳細な説明】 この発明はレーダ装置を備えた誘導飛しよう体に係り、
さらに詳しくは、目標捜索時は、コニカルスキャンを行
って幾司学的ロックオン確率を高め、目標捕捉後はモノ
パルス追尾に切換えFi CCM性能を高めた追尾を行
うレーダ装置を備えた誘導飛しよう体を提案しようとす
るものである。
[Detailed Description of the Invention] The present invention relates to a guided flying object equipped with a radar device,
In more detail, when searching for a target, a guided flying object is equipped with a radar device that performs conical scanning to increase the probability of geometric lock-on, and after target acquisition, switches to monopulse tracking to perform tracking with enhanced Fi CCM performance. This is what we are trying to propose.

従来の地上あるいは航空機から発射される誘導飛しよう
体に装備されていたモノパルス方式のレーダ装置は、誘
導飛しよう体の発射直前にアンテナを目標とする航空機
(以後目標機という)の方向に向けて設定して発射され
5発射後はアンチナノビーム内に目標機を捕えると、こ
れにロックオンし、追尾に移る。しかし、目標機の方向
にアンテナを向ける設定誤差が大きい場合や、目標機が
急速な運動を行った場合には、目標機をアンテナビーム
の中央で捕えることができないという欠点があった。
Conventional monopulse radar equipment installed on guided flying vehicles launched from the ground or from aircraft uses an antenna that points its antenna in the direction of the target aircraft (hereinafter referred to as the target aircraft) immediately before the guided flying vehicle launches. It is set and fired, and after five shots it captures the target aircraft within the anti-nano beam, locks on to it, and moves on to tracking. However, if there is a large error in setting the antenna in the direction of the target aircraft, or if the target aircraft moves rapidly, there is a drawback that the target aircraft cannot be captured at the center of the antenna beam.

この発明は9以上の様な欠点を改善するためになされた
もので以下に詳述する。
This invention was made to improve the above-mentioned drawbacks, and will be described in detail below.

第1図はアンテナの寸法を同じくした場合のアンテナパ
ターンを示す図で、 (alはモノパルス、 (b)は
コニカルスキャン方式のアンテナパターンを示す。1例
として、モノパルス方式のアンテナビームの捕捉範囲を
ピークから3.3cLB低下の点とするならば、コニカ
ルスキャン方式の場合にはその捕捉範囲は2倍にするこ
とができる。したがって。
Figure 1 shows the antenna pattern when the dimensions of the antenna are the same. If the point is 3.3 cLB lower than the peak, then in the case of the conical scan method, the capture range can be doubled.

目標捜索時にコニカルスキャン方式で行えば、目標に対
する幾可学的ロックオン確率の向上が図れる。
If the conical scan method is used when searching for a target, the probability of geometric lock-on to the target can be improved.

次に誘導飛しよう体と目標機の状況を説明する。Next, I will explain the situation of the guided flying object and the target aircraft.

第2図において、(1)は誘導飛しよう体、(2)は目
標機、(3)は会合点、(4)は払1泪線である。誘導
飛しよう体+11&’iモノパルス及びコニカルスキャ
ン方式の両方式を切換えて使用できるレーダ装置を備え
In Figure 2, (1) is the guided flying object, (2) is the target aircraft, (3) is the rendezvous point, and (4) is the pay line. Equipped with a radar device that can switch between guided flying object +11&'i monopulse and conical scan methods.

そのアンテナは発射直前に綾目線(4)の方向に向けら
れる。発射後、誘導飛しよう体(1)に備えられたレー
ダ装置はコニカルスキャン方式で目標機(21を捜索し
、目標機(2)をアンテナビームで捕えるとこれにロッ
クオンし、アンテナビームの中心に引込む。その後レー
ダ装置はモノパルス方式に切換えて目標機(2)を追尾
し、誘導飛しよう体f11自身を会合点(31へと導く
The antenna is pointed in the direction of Aya's line of sight (4) just before launch. After launch, the radar device installed on the guided flying object (1) searches for the target aircraft (21) using a conical scan method, and when it captures the target aircraft (2) with its antenna beam, it locks onto it and locates the center of the antenna beam. The radar device then switches to the monopulse method to track the target aircraft (2) and guide the guided flying object f11 itself to the rendezvous point (31).

次にこの発明の原理を実現する一具体例を示す。Next, a specific example for realizing the principle of this invention will be shown.

第3図において、+51〜(8)ハ各々、アンテナ(A
)、アンテナ(131,7yテナ(C1,7yテナ(D
)、 +91〜12は後述する制御器からの制御信号に
対応して通過する信号の移相量を制御する移相器(A)
、移相器(B)、移相器(C)、移相器(D+、 +1
3は振幅は等しく、移相が90°づつ異なる4種の制御
信号を発生する制御器で後述する遅延回路からの信号を
受けると制御信号を全て定電、圧にする。C41は4個
の移相器を通った信号の和(以後、和信号という)〔移
相器(Al I91の出力+移相器(Bl (I[lの
出力〕と〔移相器(C1(Illの出力+移相器(Di
 oi+の出力〕の差(以後EL倍信号いう)、及び〔
移相器(A)+9+の出力+移相器(D) 1121の
出力〕と〔移相器CBl 01 )出力子B相a(C1
u)出力)の差(以後、AZ倍信号いう)を求めるコン
パレータ、a51は送受信信号を分離するチュープレク
サ。
In FIG. 3, +51 to (8) are each antenna (A
), antenna (131, 7y antenna (C1, 7y antenna (D
), +91 to 12 are phase shifters (A) that control the amount of phase shift of the passing signal in response to a control signal from a controller to be described later.
, phase shifter (B), phase shifter (C), phase shifter (D+, +1
Reference numeral 3 is a controller that generates four types of control signals that have the same amplitude and a phase shift of 90°.When receiving a signal from a delay circuit, which will be described later, all control signals are set to constant voltage and voltage. C41 is the sum of the signals passing through four phase shifters (hereinafter referred to as sum signal) [output of phase shifter (Al), output of I91 + phase shifter (Bl (output of I)] and [output of phase shifter (C1 (Output of Ill + phase shifter (Di
oi+ output] (hereinafter referred to as EL double signal), and [
output of phase shifter (A) + 9+ + output of phase shifter (D) 1121] and [phase shifter CBl 01 ) output child B phase a (C1
u) output) (hereinafter referred to as AZ multiplied signal), and a51 is a tuplexer that separates the transmitted and received signals.

(16)は送信信号を発生する送信器、 (17+は送
信器の発生する信号の周波数より11周波数の分だけ高
い周波数の信号を発生させる局部発振器、 amは局部
発振器面の出力電力を3等分する電力分配器(A)。
(16) is a transmitter that generates a transmission signal, (17+ is a local oscillator that generates a signal with a frequency that is 11 frequencies higher than the frequency of the signal generated by the transmitter, and am is the output power of the local oscillator surface by 3 etc. power divider (A).

(191,12印、 (21+はコンパレータ(I41
から出力される和信号、EL倍信号AZ倍信号局部発振
器(171の信号と混合してIP倍信号変換するミキサ
(7!、ミキサ(B)。
(191, 12 mark, (21+ is comparator (I41
A mixer (7!, mixer (B)) mixes the sum signal outputted from the EL multiplied signal, the AZ multiplied signal, and the local oscillator (171) to convert the IP multiplied signal.

ミキサ(C1,C121,n、 +24]は工F信号を
増幅する増幅器(A)、増幅器(B)、増幅器(C1,
(251はIP倍信号変換された和信号を3等分する電
力分配器(B)、圀)は周波数変換、不要信号の除去等
の信号処理を行う信号処理回路で、コニカルスキャン時
は角度誤差を含んだ変調信号を出力する。(271は信
号レベルが所定値を越えたことを検知してロックオン信
号を出すロックオン判定回路、(至)は目標捕捉時の最
大誤差角を収束するために必要な時間だけロックオン信
号を遅延させる遅延回路、 f2e、 Cl0Iは角度
誤差を含んだ変調信号を制御信号で位相検波して、EL
及びAZの角度誤差信号を取出す位相検波器(Al及び
位相検波器(B)、 C’ll+、 (3H’;mモノ
パルス追尾時、コンパレータ04)が出力し、工F信号
に変換されたEL倍信号びAZ倍信号IP倍信号変換さ
れた和信号で位相検波し、BL及びAZの角度誤差信号
を取出す位相検波器(C1及び位相検波器(Di、 1
331Gま角度誤差信号によってアンテナの指向する方
向を変えるサーボ装置で、ロックオン信号を受けて、遅
延回路例からの信号を受けない間は位相検波器(AI 
C21及び位相検波器(BH301からのコニカルスキ
ャンによる角度誤差信号で働き、遅延回路(28)から
の信号を受けJ↓ンつだ後は和とKL倍信号びAZ倍信
号ら角度誤差を出す位相検波器(C11311及び位相
検波器(D)(33からの角度誤差信号によって働く。
The mixer (C1, C121, n, +24) is an amplifier (A), an amplifier (B), an amplifier (C1,
(251 is a power divider (B) that divides the IP multiplied signal-converted sum signal into three equal parts) is a signal processing circuit that performs signal processing such as frequency conversion and removal of unnecessary signals. Outputs a modulated signal containing . (271 is a lock-on judgment circuit that detects that the signal level exceeds a predetermined value and outputs a lock-on signal. The delay circuits, f2e and Cl0I, phase-detect the modulation signal containing the angular error using the control signal and output the EL.
The phase detector (Al and phase detector (B), C'll+, (3H'; when tracking m monopulse, comparator 04) which takes out the angular error signal of A phase detector (C1) and a phase detector (Di, 1
331G is a servo device that changes the pointing direction of the antenna using an angle error signal, and when it receives a lock-on signal and does not receive a signal from a delay circuit, it uses a phase detector (AI).
It works with the angular error signal by conical scanning from C21 and phase detector (BH301), and after receiving the signal from the delay circuit (28) and combining it with J↓, the phase detector outputs the angular error from the sum, KL multiplied signal, and AZ multiplied signal. It works by the angular error signal from the detector (C11311) and the phase detector (D) (33).

、なお、ロックオン以前は、角度誤差信号によっては働
かない。
, Note that before lock-on, the angle error signal does not work.

また、サーボ装置(331は誘導飛しよう体fi+の機
械的振動に対してアンテナを空間的に安定化する働きも
する。
The servo device (331) also serves to spatially stabilize the antenna against mechanical vibrations of the guided flying object fi+.

このような構成で移相器(Al +9+にAs1n2π
ft、 移相器(BIQ[#にAs1n(zxft−丁
) 、移相器(C)unにAein(2πft −−)
+  移相器(DJ +121にAein(2πft3
π m=)の制御信号を与えるとアンテナ(Al +5+ 
、アンテナ(Bl (61、アンテナ(C1+71及び
アンテナ(D)+81はアンテナ軸回りに回転数fHz
で回転するコニカルスキャンとなり、アンテナ軸に対す
るアンテナビームの傾き角は制御信号の振幅Aによって
定まる。
With this configuration, a phase shifter (As1n2π to Al +9+
ft, phase shifter (BIQ [# to As1n (zxft-ding), phase shifter (C) un to Aein (2πft --)
+ Phase shifter (DJ +121 to Aein (2πft3
When a control signal of π m=) is given, the antenna (Al +5+
, antenna (Bl (61, antenna (C1 + 71 and antenna (D) + 81 have a rotation frequency fHz around the antenna axis)
The angle of inclination of the antenna beam with respect to the antenna axis is determined by the amplitude A of the control signal.

また、各々の移相器に加える制御信号を所定値の定電圧
(例えばOV)にすると各々の移相器の移相遅延量は一
定となり、コンパレータ(14)出力にはモノパルス方
式の和信号、KL倍信号AZ倍信号得られる。
Furthermore, if the control signal applied to each phase shifter is set to a predetermined constant voltage (for example, OV), the phase shift delay amount of each phase shifter becomes constant, and the comparator (14) outputs a monopulse sum signal, A KL multiplied signal and an AZ multiplied signal are obtained.

今、この構成で誘導飛しよう体(1)が発射されると、
送信器0■エデユープレクザ09を通って、コンパレー
タ(141で4分割されて各々の移相器に入る。
Now, when the guided flying object (1) is launched with this configuration,
The signal passes through the transmitter 0 and the eduplexer 09, is divided into four by a comparator (141), and enters each phase shifter.

各々の移相器には制φ1j器131が発生する振幅が等
しく、移相が一つつ異なる正弦波の制御信号が加えられ
ているため、各々の経路の移相器で制御信号に対応した
移相遅延を与えられた信号はアンテナへ導かれ、アンテ
ナ(A) +5+ 、アンテナ(Bl +61 、アン
テナ(C) ry+及びアンテナ(DJ +81のパタ
ーン合成により。
Since each phase shifter is applied with a sinusoidal control signal generated by the φ1j controller 131 with the same amplitude and a different phase, the phase shifter of each path has a shift corresponding to the control signal. The phase-delayed signal is guided to the antenna by pattern synthesis of antenna (A) +5+, antenna (Bl +61), antenna (C) ry+, and antenna (DJ +81).

コニカルスキャンをするアンテナビームとなって空間へ
放射される。アンテナビームの中に目標機(2)が入る
と、放射された信号は目標機(21で反射されて返って
くる。反射された信号は、逆の経路をたどり、コンパレ
ータ04)の和信号として出力される。この和信号はコ
ニカルスキャンの回転数fの振幅変調を受けている。振
幅変調された和信号はデユープレクサf+51を通りミ
キサ(四朋へと導かれ。
It becomes an antenna beam that performs conical scanning and is radiated into space. When the target aircraft (2) enters the antenna beam, the radiated signal is reflected by the target aircraft (21) and returns.The reflected signal follows the opposite path and is output as a sum signal of comparator 04. Output. This sum signal is subjected to amplitude modulation of the rotation speed f of the conical scan. The amplitude modulated sum signal passes through a duplexer f+51 and is guided to a mixer (Shiho).

ここで、電力分配器(A)0秒によって3等分された局
部発振器oTIの信号と混合されてIF倍信号なり。
Here, the signal is mixed with the local oscillator oTI signal divided into three equal parts by the power divider (A) 0 seconds to form an IF multiplied signal.

次いで工F増幅器(Al +221で増幅されて信号処
理回路c!印に入る。ここで周波数変換等の信号処理を
されてロックオン判定(271に入る。また、信号処理
回路cleは不要信号除去等の処理をして、角度誤差を
含んだ変調信号を位相検波器(A1 t29!及び位相
検波器(Bl(30)へ出力し、ここで制御信号によっ
て位相検波され、KL及びAZの角度誤差信号となる。
Next, it is amplified by the engineering F amplifier (Al +221 and enters the signal processing circuit c! mark. Here, it undergoes signal processing such as frequency conversion and enters the lock-on judgment (271). Also, the signal processing circuit cle removes unnecessary signals, etc. The modulated signal containing the angular error is output to the phase detector (A1 t29!) and the phase detector (Bl (30), where the phase is detected by the control signal and the angular error signal of KL and AZ is output. becomes.

ロックオン判定回路(2′71に入力した信号が所定値
を越えるとロックオン信号をサーボ装Ml +331及
び遅延回路■へ出力する。サーボ装置+33]はロック
オン信号を受けると位相検波器(Al■及び位相検波器
(B)t3ωからのEL及びAZの角度誤差信号によっ
て、アンテナの指向方向を変え角度誤差を減少させる。
When the lock-on determination circuit (2'71) exceeds a predetermined value, the lock-on signal is output to the servo device M1 +331 and the delay circuit ■.When the servo device +33 receives the lock-on signal, the phase detector (Al (2) The EL and AZ angle error signals from the phase detector (B) t3ω change the pointing direction of the antenna and reduce the angle error.

一方。on the other hand.

遅延回路伽)に入ったロックオン信号は所定の時間遅延
後、信号を制御器(131及びサーボ装機(33+に送
る。
After a predetermined time delay, the lock-on signal that has entered the delay circuit is sent to the controller (131) and the servo equipment (33+).

この信号を受は取ると、制御器O)は制御信号を定電圧
に変化させ、その移相の移相遅延量を4経路共、一定に
する。この結果、′コンパレータ(14)の出力には、
和信号、PL倍信号びAZ倍信号得られる。なお、和信
号は周波数fの振幅変調を受けていない。和信号、EL
倍信号及びAZ倍信号各々の経路のミキサでIF倍信号
変換され9次いで増幅される。増幅されたEL倍信号び
AZ倍信号各々1位相検波器(C)(311及び位相検
波器(DJ (3Zで電力分配器で3等分された和信号
で位相検波されて、EL及びAZの角度誤差信号となっ
てサーボ装置儲に入る。一方、遅延回路例の出力した信
号は、サーボ装置にも入力され、サーボ装置儲けこの信
号を受けると9位相検波器(C1(3++及び位相検波
器(Di +321の出力するFjL及びAZの角度誤
差信号でアンテナを駆動し、その角度誤差信号がゼロに
なるように働き、目標機(2)を連続して追尾する。
Upon receiving this signal, the controller O) changes the control signal to a constant voltage and makes the phase shift delay amount of the phase shift constant for all four paths. As a result, the output of comparator (14) is:
A sum signal, PL multiplied signal and AZ multiplied signal are obtained. Note that the sum signal is not subjected to amplitude modulation at frequency f. sum signal, EL
The double signal and the AZ double signal are converted into IF double signals by mixers on their respective paths, and then amplified. The amplified EL multiplied signal and AZ multiplied signal are each phase-detected by a phase detector (C) (311) and a phase detector (DJ (3Z) using a sum signal divided into three equal parts by a power divider. It becomes an angle error signal and enters the servo device.On the other hand, the signal output by the delay circuit example is also input to the servo device, and when this signal is received, the 9 phase detector (C1 (3++ and phase detector (The antenna is driven by the angle error signals of FjL and AZ output by Di +321, works so that the angle error signals become zero, and continuously tracks the target aircraft (2).

以上、説明したように、目標捜索時にコニカルスキャン
方式にすることにより1発射前のアンテナの角度設定誤
差が大きい場合でも9寸だ目標機が急速な旋回をした場
合でも、目標機をとらえることが可能となり、目標機に
対するロックオン確率が向上できる。
As explained above, by using the conical scan method when searching for a target, it is possible to capture the target aircraft even if the angle setting error of the antenna before one firing is large and even if the target aircraft makes a rapid turn. This makes it possible to improve the lock-on probability to the target aircraft.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアンテナパターンを説明する図、第2図は交戦
の状況を示す図、第3図はこの発明の原理を実現するレ
ーダ装置の構成図で、(1)は誘導飛しよう体、(21
は目標機、(3)は会合点、(4)は観目線。 (5)〜(81はアンテナ、(9)〜(121は移相器
、 +131は制御器。 (141はコンパレータ、 +151はデユープレクサ
、061は送信器、071は局部発振器、(lI+工電
力分配器、 f+9)〜Q1)はミキサ、 (221〜
(24)は工F増幅器、 +251は電力分配器。 0印は信号処理回路、 C171はロックオン判定回路
、■は遅延回路、鄭〜C121は位相検波回路、東はサ
ーボ装置である。 なお9図中同一あるいは相当部分には同一符号を付して
示しである。 代理人 葛 野 信 −
Fig. 1 is a diagram explaining the antenna pattern, Fig. 2 is a diagram showing the situation of engagement, and Fig. 3 is a configuration diagram of a radar device that realizes the principle of the present invention. 21
is the target aircraft, (3) is the meeting point, and (4) is the line of sight. (5) to (81 are antennas, (9) to (121 are phase shifters, +131 is a controller. (141 is a comparator, +151 is a duplexer, 061 is a transmitter, 071 is a local oscillator, (lI + industrial power divider , f+9)~Q1) is a mixer, (221~
(24) is a power amplifier, and +251 is a power divider. 0 mark is a signal processing circuit, C171 is a lock-on determination circuit, ■ is a delay circuit, Zheng~C121 is a phase detection circuit, and east is a servo device. Note that the same or corresponding parts in FIG. 9 are designated by the same reference numerals. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】 4個のアンテナ素子と、各々のアンテナ素子に接続され
る4個の移相器と、4個の移相器を通過した信号の和、
上下2組の信号の差及び左右2組の信号の差を求めるコ
ンパレータと、および移相″  器の移相遅延量を制御
する信号を発生器とで構成されるアンテナと、このアン
テナを介して信号の送受信を行う送信器及び受信器と、
受信信号の信号処理及び誤差信号の抽出を行う信号処理
回路と。 ロックオン判定を行う回路と、誤差信号から角度誤差を
取出す1組の移相検波器と、アンテナの和と差信号から
角度誤差を作出すもう1組の位相検波器と、角度誤差に
よりアンテナを駆動するサーボ装置から成るレーダ装置
を僧えた誘導飛しよう体において、目標捜索時は、4個
の移相器に各々振幅が等しく移相か一つつ異なる正弦波
信号を加えて、アンテナビームのコニカルスキャンを行
い目標を捕捉し、捕捉後は、移相器に加える信号を所定
値の直流電圧とし、角度誤差はコンパレータからの和と
差の信号で角度誤差によって目標を追尾するモノパルス
方式に切換えることを特徴とするレーダ装置を備えた誘
導飛しよう体。
[Claims] Four antenna elements, four phase shifters connected to each antenna element, the sum of signals passed through the four phase shifters,
An antenna consisting of a comparator that calculates the difference between the two sets of upper and lower signals and the difference between the two sets of left and right signals, and a generator that generates a signal that controls the amount of phase shift delay of the phase shifter; a transmitter and a receiver that transmit and receive signals;
A signal processing circuit that processes the received signal and extracts the error signal. A circuit that performs lock-on judgment, one set of phase shift detectors that extracts the angle error from the error signal, another set of phase detectors that creates the angle error from the antenna sum and difference signals, and drives the antenna using the angle error. In a guided flying vehicle equipped with a radar device consisting of a servo device, when searching for a target, a conical scan of the antenna beam is performed by adding sine wave signals of equal amplitude to each of the four phase shifters or with a different phase. After acquisition, the signal applied to the phase shifter is a DC voltage of a predetermined value, and the angular error is switched to a monopulse method in which the target is tracked using the sum and difference signals from the comparator. A guided flying object equipped with a distinctive radar device.
JP58020077A 1983-02-09 1983-02-09 Guided flying object Pending JPS59145980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58020077A JPS59145980A (en) 1983-02-09 1983-02-09 Guided flying object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58020077A JPS59145980A (en) 1983-02-09 1983-02-09 Guided flying object

Publications (1)

Publication Number Publication Date
JPS59145980A true JPS59145980A (en) 1984-08-21

Family

ID=12017032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58020077A Pending JPS59145980A (en) 1983-02-09 1983-02-09 Guided flying object

Country Status (1)

Country Link
JP (1) JPS59145980A (en)

Similar Documents

Publication Publication Date Title
US4357610A (en) Waveform encoded altitude sensor
US4979696A (en) System for determining the angular spin position of an object spinning about an axis
US5233351A (en) Local oscillator arrangement for a monopulse receiver in a semiactive missile guidance system
JP2642627B2 (en) Spin angle position determination method
JP3247393B2 (en) All-weather roll angle measurement of projectile
US3255984A (en) Beam riding guidance system
US4788547A (en) Static-split tracking radar systems
US3130402A (en) Means for tracking multiple target formations by radar
US4115776A (en) Adaptive gain control for radiometric target tracking system
JPS59145980A (en) Guided flying object
US3416751A (en) System for remote control of missiles
US3045232A (en) Electronic velocity indicator apparatus
JP3353991B2 (en) Angle detecting device, angle detecting method, and radar device
US3467963A (en) Monopulse radar apparatuses
US2700763A (en) Angle detector circuit for radar use
US3218639A (en) Non-scanning panoramic radar system
US5250953A (en) Tracking radar systems
RU2188436C1 (en) Airborne radar set for aircraft weapon control system
US3128461A (en) Clutter minimizer for monopulse radar
GB2257867A (en) Tracking radar system
US4210911A (en) Method for decreasing minimum observable velocity of moving targets
US4014020A (en) Automatic gain control circuit for high range resolution correlation radar
US3290676A (en) Coherent focusing radar system
JPH03282389A (en) Accurate measurement entry radar
JP2003255044A (en) Radar device