JPS59145387A - Sliding vane type rotary compressor - Google Patents

Sliding vane type rotary compressor

Info

Publication number
JPS59145387A
JPS59145387A JP1832583A JP1832583A JPS59145387A JP S59145387 A JPS59145387 A JP S59145387A JP 1832583 A JP1832583 A JP 1832583A JP 1832583 A JP1832583 A JP 1832583A JP S59145387 A JPS59145387 A JP S59145387A
Authority
JP
Japan
Prior art keywords
cylinder
discharge port
high pressure
discharge
rotary compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1832583A
Other languages
Japanese (ja)
Inventor
Susumu Kawaguchi
進 川口
Ken Morinushi
森主 憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1832583A priority Critical patent/JPS59145387A/en
Publication of JPS59145387A publication Critical patent/JPS59145387A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/122Arrangements for supercharging the working space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0035Equalization of pressure pulses

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To reduce the intensity of generated shock waves for aiming at reducing pulsation in a compression chamber, by forming, in the inner wall of a cylinder in the direction of the rotor reversing from a discharge port, a slight spill groove which is contiguous to the discharge port so that the high pressure gas section is gradually communicated with a low pressure chamber. CONSTITUTION:High pressure gas compressed in a high pressure chamber 6b is discharged therefrom through a discharge valve 7 which is opened when the high pressure exceeds its discharge pressure. During this compressing step, when each vane 3 passes through in the vicinity of a discharge port 7, the high pressure gas section in the vicinity of the space 11 in the discharge port 7 is gradually communicated with the low pressure chamber 5a by such an effect of a spill groove 8, formed in the inner wall of a cylinder 1, that a slight communication is established between the high pressure gas section in the vicinity of a space 11 within the discharge port 7 and a low pressure chamber 5a in a period from the timing which is an earlier crank angle position from the discharge port 7 to the timing at which each vane 3 advances, and therefore, the intensity of a generated shock waves is decreased. As a result, the level of noise due to the shock waves may be greatly reduced.

Description

【発明の詳細な説明】 この発明は、スライディングベーン型ロータリー圧縮機
の騒音低減に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to noise reduction in a sliding vane rotary compressor.

一般に、スライディングベーン型ロータリー圧縮機は、
ローターの1回転に対してベーン枚数と同じだけの回数
にわたって圧縮動作が行なわれるものであるが、回転数
が高くかつ高圧縮比になると、この圧縮動作過程におい
て吐出口をベーンが通過する時に吐出口内空間付近の高
圧ガスとシリンダ低圧室内の低圧ガスとが一瞬の内に連
通し、衝撃波管の高圧側と低圧側を仕切る隔膜を急に破
った時と同じように低圧室内に衝撃波が生じ、その圧力
脈動がシリンダおよびローター等の圧縮機構成部品を加
振し、これが騒音レベルを急増させる原因となっている
In general, sliding vane rotary compressors are
The compression operation is performed the same number of times as the number of vanes per revolution of the rotor, but when the rotation speed is high and the compression ratio is high, during this compression operation process, when the vanes pass through the discharge port, the discharge is The high-pressure gas near the oral cavity and the low-pressure gas in the low-pressure chamber of the cylinder communicate in an instant, and a shock wave is generated in the low-pressure chamber, similar to when the diaphragm separating the high-pressure side and low-pressure side of a shock wave tube suddenly ruptures. The pressure pulsations cause compressor components such as the cylinder and rotor to vibrate, which causes the noise level to increase rapidly.

従って、この発明は上記問題を解決するためになされた
ものであって、上記シリンダ内空間の内壁面に、ベーン
が吐出口を通過するよりも早いクランク角度位置より吐
出口にかかるまでの範囲のクランク角度において高圧ガ
ス部と低圧室とをわずかに連通ずるにがし溝を設け、上
記高圧ガス部と低圧室とを徐々に連通させることにより
、上記発生衝撃波の強さを減じることにより、圧縮室内
の圧力が脈動するのを/J%さくしたものである。以下
、図面を用いてこの発明によるスライディングベーン型
ロータリー圧縮機を詳細に説明する。
Therefore, this invention has been made to solve the above problem, and has a surface area on the inner wall surface of the cylinder interior space from the crank angle position earlier than the vane passing through the discharge port to the time when the vane reaches the discharge port. By providing a groove that slightly communicates the high-pressure gas section and the low-pressure chamber at the crank angle, the high-pressure gas section and the low-pressure chamber are gradually communicated with each other, thereby reducing the strength of the generated shock wave. The pulsation of the pressure in the room is reduced by /J%. Hereinafter, a sliding vane type rotary compressor according to the present invention will be explained in detail using the drawings.

第1図はこの発明によるスライディングベーン型ロータ
リー圧縮機の一実施例を示す要部断面図であって、第2
図は矢印Aから見た内面図である。
FIG. 1 is a sectional view of main parts showing one embodiment of a sliding vane rotary compressor according to the present invention, and FIG.
The figure is an internal view seen from arrow A.

同図に於いて、lは内部が円形の空洞となったシリンダ
、2は前記シリンダlの内壁に一部接するようにし、か
つシリンダlの中心から偏心させて電動機またはエンジ
ン等の回転駆動機により回転されるローター、3は前記
シリンダlの内周に当接しながら前記ローター2に設け
た2ケ所のベーン溝4を往復摺動する2枚のベーン、5
は前記シリンダ1の内壁とローター2の外壁およびベー
ン3により形成される圧縮室であって、説明の便宜上、
5凰を低圧室、5bを高圧室と称す。6は圧縮室5ヘガ
スを導びくための吸入口であり、7は圧縮されたガスを
シリンダlの外部へ吐出するための吐出口である。8は
前記吐出ロアから前記ローターlの反回転方向にシリン
ダlの内壁に設けられたKがし溝である。9は前記シリ
ンダlの内外を仕切るために前記吐出ロアの出口側圧設
けられた吐出弁である。なお、第1図には示していない
が、圧縮室5の両側面を塞ぐと同時にローター2と一体
化された回転軸lOの軸受部も兼ねた2つの軸受板も当
然設けられている。また、第2図は第1図に示すにがし
溝8を正面から見た図である。
In the same figure, l is a cylinder with a circular hollow inside, and 2 is a cylinder that is partially in contact with the inner wall of the cylinder l, and is eccentric from the center of the cylinder l, and is driven by a rotary drive machine such as an electric motor or an engine. A rotating rotor 3 includes two vanes 5 that slide back and forth in two vane grooves 4 provided in the rotor 2 while contacting the inner periphery of the cylinder 1.
is a compression chamber formed by the inner wall of the cylinder 1, the outer wall of the rotor 2, and the vane 3, and for convenience of explanation,
5o is called a low pressure chamber, and 5b is called a high pressure chamber. 6 is a suction port for guiding gas to the compression chamber 5, and 7 is a discharge port for discharging the compressed gas to the outside of the cylinder l. Reference numeral 8 denotes a K relief groove provided on the inner wall of the cylinder l in a direction opposite to the rotation direction of the rotor l from the discharge lower. Reference numeral 9 denotes a discharge valve provided with pressure on the outlet side of the discharge lower for partitioning the inside and outside of the cylinder 1. Although not shown in FIG. 1, two bearing plates that close both sides of the compression chamber 5 and also serve as bearings for the rotating shaft lO integrated with the rotor 2 are naturally provided. Further, FIG. 2 is a front view of the dipping groove 8 shown in FIG. 1.

このように構成されたスライディングベーン型ロータリ
ー圧縮機において、吸入口6より低圧室5a[流入した
ガスは、ローター2が回転するに伴なって徐々に圧縮さ
れることKより高圧ガスとなる。高圧室5bに於いて圧
縮された高圧ガスは、吐出圧力以上となった所で吐出弁
9が開き、吐出ロアを通って高圧室5bよりガスが吐出
される。
In the sliding vane rotary compressor configured as described above, the gas flowing into the low pressure chamber 5a from the suction port 6 is gradually compressed as the rotor 2 rotates, and becomes a high pressure gas. When the high pressure gas compressed in the high pressure chamber 5b reaches a discharge pressure or higher, the discharge valve 9 opens, and the gas is discharged from the high pressure chamber 5b through the discharge lower.

この圧縮過程において、吐出ロアの付近をベーン3が通
過すると、吐出口よりクランク角度で早いタイミングか
ら吐出ロアに至るタイミングで吐出口内空間ll付近の
高圧ガス部と低圧室5aとをわずかに連通ずるにがし溝
8の効果により、吐出口内空間11付近の高圧ガス部が
低圧室5aと徐々に連通されることになり、衝撃波管の
隔膜をゆっくりと破いた場合と同様になり、これに伴な
って発生衝撃波の強さが減じられる。この結果、従来品
に於いて、衝撃波による騒音が大きかった運転条件での
騒音レベルを大幅に低減することが可能になる。
In this compression process, when the vane 3 passes near the discharge lower, the high-pressure gas part near the inner space 11 of the discharge port is slightly communicated with the low-pressure chamber 5a from a timing earlier in crank angle than the discharge port until reaching the discharge lower. Due to the effect of the bittering groove 8, the high-pressure gas part near the internal space 11 of the discharge port gradually communicates with the low-pressure chamber 5a, similar to when the diaphragm of a shock wave tube is slowly ruptured. This reduces the strength of the generated shock wave. As a result, it becomes possible to significantly reduce the noise level under operating conditions where conventional products generate large noise due to shock waves.

第3図はこの発明による他の実施例を示す要部断面図で
あって、第1図と同一部分は同一記号を用いて示しであ
る。この第3図は、シリンダlの内部形状を楕円形とし
、ローター2の外径を前記楕円形のシリンダlの短径と
略同−としてその回転中心をシリンダlの中心とした楕
円シリンダタイプのスライディングベーン型ロータリー
圧縮機に、前記実施例と同様のにがし溝8を設けた場合
であり、この場合に於いても上記第1図の場合と同様な
効果が得られる。
FIG. 3 is a sectional view of a main part showing another embodiment according to the present invention, and the same parts as in FIG. 1 are indicated using the same symbols. Fig. 3 shows an elliptical cylinder type in which the internal shape of the cylinder l is oval, the outer diameter of the rotor 2 is approximately the same as the short axis of the oval cylinder l, and the center of rotation is the center of the cylinder l. This is a case in which a sliding vane type rotary compressor is provided with the same bridging grooves 8 as in the previous embodiment, and in this case as well, the same effects as in the case of FIG. 1 can be obtained.

なお、以上の説明に於いては、ベーン3の枚数が2枚(
楕円形シリンダタイプは4枚)の場合について述べたが
、1枚以上(楕円形シリンダタイプは2枚以上)であれ
ば何枚でもほぼ同様な効果が得られる。また、以上の説
明ではシリンダ1の内壁に設けた4ケ所の吐出ロアのそ
れぞれににがし溝8を設けた場合について説明したが、
吐出1コアが軸受板に設けられていたり、各吐出ロアの
にがし溝8がつなげられて一体化されている場合に於い
ても、はぼ同様な効果が得られるものである。
In addition, in the above explanation, the number of vanes 3 is 2 (
Although the case has been described in which the elliptical cylinder type has four cylinders, substantially the same effect can be obtained with one or more cylinders (two or more cylinders in the elliptical cylinder type). Furthermore, in the above explanation, the case where the stripping grooves 8 were provided in each of the four discharge lowers provided on the inner wall of the cylinder 1 was explained.
Even if one discharge core is provided on a bearing plate, or if the washout grooves 8 of each discharge lower are connected and integrated, substantially the same effect can be obtained.

【図面の簡単な説明】 第1図はこの発明によるスライディング型ロータリー圧
縮機の一実施例を示す要部断面図、第2図はにがし溝を
シリンダの内側で第1図の矢印入方向から見た図、第3
図はこの発明による他の実施例を示す要部断面図、第4
図はにがし溝をシリンダの内側で第3図の矢印A方向か
ら見た図である。 l・・・・・・シリンダ、2・・・・・・ローター、3
・・・・・・ベーン、5・・・・・・圧縮室、7・・・
・・・吐出口、8・・・・・・にがし溝、9・・・・・
・吐出弁。 なお、図中同一符号は同一または相当部分を示している
。 代理人 為 野 信 −(ほか1名)
[Brief Description of the Drawings] Fig. 1 is a cross-sectional view of essential parts showing an embodiment of a sliding type rotary compressor according to the present invention, and Fig. 2 shows a peeling groove inside the cylinder in the direction indicated by the arrow in Fig. 1. View from 3rd
The figure is a sectional view of main parts showing another embodiment according to the present invention.
This figure is a view of the peeling groove inside the cylinder as seen from the direction of arrow A in FIG. 3. l...Cylinder, 2...Rotor, 3
...Vane, 5...Compression chamber, 7...
...Discharge port, 8...Nigari groove, 9...
・Discharge valve. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Nobu Tameno - (1 other person)

Claims (1)

【特許請求の範囲】[Claims] (1)  円形状をなしたシリンダ内壁の一部と接しな
がらシリンダ中心より偏心して回転する円形のローター
と、前記シリンダの内周に当接しながら前記ローターに
設けた複数個所のベーン溝を往復摺動するベーンと、前
記シリンダの両端面をそれぞれ閉塞してシリンダ内に空
間を形成する2個の軸受板と、前記シリンダ内へガスを
流入させるために前記シリンダおよび2個の軸受板の少
なくとも1個所に設けられた吸入口と、前記シリンダ内
で圧縮されたガスをシリンダ外へ流出させるために前記
シリンダおよび2つの軸受板の少なくとも1個所に設け
られた吐出口と、この吐出口の出口側に設けられたシリ
ンダの内外を仕切る吐出弁とを備えたスライディングベ
ーン型ロータリー圧縮機に於いて、全吐出口から前記ロ
ーターの反転方向に全吐出口と接するように前記シリン
ダおよび2個の軸受板の内壁の少なくとも1個所以上に
わずかなにがし溝を設けたことを特徴とするスライディ
ングベーン型ロータリー圧縮機。
(1) A circular rotor rotates eccentrically from the center of the cylinder while contacting a part of the inner wall of a circular cylinder, and a rotor slides back and forth through multiple vane grooves provided on the rotor while contacting the inner circumference of the cylinder. a vane that moves; two bearing plates that respectively close both end faces of the cylinder to form a space within the cylinder; and at least one of the cylinder and the two bearing plates for causing gas to flow into the cylinder. a suction port provided at a location, a discharge port provided at at least one location of the cylinder and two bearing plates for causing gas compressed in the cylinder to flow out of the cylinder, and an outlet side of the discharge port. In a sliding vane type rotary compressor equipped with a discharge valve that partitions the inside and outside of the cylinder provided in A sliding vane type rotary compressor, characterized in that a slight groove is provided in at least one place on the inner wall of the rotary compressor.
JP1832583A 1983-02-07 1983-02-07 Sliding vane type rotary compressor Pending JPS59145387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1832583A JPS59145387A (en) 1983-02-07 1983-02-07 Sliding vane type rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1832583A JPS59145387A (en) 1983-02-07 1983-02-07 Sliding vane type rotary compressor

Publications (1)

Publication Number Publication Date
JPS59145387A true JPS59145387A (en) 1984-08-20

Family

ID=11968459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1832583A Pending JPS59145387A (en) 1983-02-07 1983-02-07 Sliding vane type rotary compressor

Country Status (1)

Country Link
JP (1) JPS59145387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378181U (en) * 1986-11-10 1988-05-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378181U (en) * 1986-11-10 1988-05-24

Similar Documents

Publication Publication Date Title
JPH0428918B2 (en)
KR100263408B1 (en) Rotary compressor with discharge chamber pressure relief groove
US6241496B1 (en) Hermetic rotary compressor
KR20060024739A (en) Multi-cylinder type compressor
JPS58135396A (en) Movable-blade compressor
JPS59145387A (en) Sliding vane type rotary compressor
JP2013139725A (en) Oscillating piston type compressor
WO2008007612A1 (en) Scroll compressor
KR100286836B1 (en) Resonator of a rotary compressor
JPS5960093A (en) Scroll compressor
JP2937895B2 (en) Rotary compressor
JPS59113289A (en) Rotary compressor
KR0140048B1 (en) Rotary compressor
JPH0968180A (en) Gas compressor
JPS5999088A (en) Rolling piston type compressor
KR100309289B1 (en) Wankel compressor without discharge valve
KR20040097810A (en) Muffler for hermetic rotary compressor
KR100304556B1 (en) Structure for reducing noise of rotary compressor
KR100389537B1 (en) Discharge port of rotary compressor
JPS59141787A (en) Rolling piston type compressor
JP3372000B2 (en) Scroll compressor
KR20010064535A (en) Discharge noise reduction structure for sealed type rotary compressor
KR19980067737A (en) Rotary compressor
KR100336135B1 (en) Cylinder design for rotary compressor
KR100556939B1 (en) Apparatus reducing noise for scroll compressor