JPS5914402A - Single crystal diamond tool - Google Patents

Single crystal diamond tool

Info

Publication number
JPS5914402A
JPS5914402A JP12407682A JP12407682A JPS5914402A JP S5914402 A JPS5914402 A JP S5914402A JP 12407682 A JP12407682 A JP 12407682A JP 12407682 A JP12407682 A JP 12407682A JP S5914402 A JPS5914402 A JP S5914402A
Authority
JP
Japan
Prior art keywords
plane
face
machining
tool
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12407682A
Other languages
Japanese (ja)
Inventor
Isao Murakishi
勇夫 村岸
Yoshio Mochida
省郎 持田
Masashi Makino
牧野 正志
Kunio Nakada
中田 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12407682A priority Critical patent/JPS5914402A/en
Publication of JPS5914402A publication Critical patent/JPS5914402A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To make machining easier, give a longer tool life, and reduce the time required for regrinding by utilizing the anisotropy of diamond when forming a single crystal diamond tool. CONSTITUTION:A single crystal diamond is held on a tool shank in such a way that a crystal face, which is inclined in the direction of a face (110) from a face (100) at an angle alpha deg. of 12 deg., is used as the face, a face (010) side is used for the front flank, and the face (110) side becomes the bottom of the shank. Thus, when the machining is made, in forming the face, from the shank side toward the fron flank side, the machining efficiency is improved about 1.5 times more than in the case of using the conventional longitudinal edge tool which has provided easy machining of faces, while a slick surface is also provided.

Description

【発明の詳細な説明】 本発明は単結晶ダイヤモンドバイトに関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single crystal diamond cutting tool.

従来の単結晶ダイヤモンドバイトにおいては、バイトの
すくい面に(110)面、または(11o)面と結晶学
上回等となる面を用い、前にげ面に、(100)面と結
晶学上回等となる面のうち、すくい面と直交する面を用
い、すくい面の加工容易な方向(耐摩耗強度が小さくな
る方向)と、切ぐずの流出方向とを一致させて成形した
縦刃バイトと、すくい面に(110)面、または(11
o)。
In conventional single-crystal diamond cutting tools, the rake face of the cutting tool is a (110) plane, or a plane that is crystallographically equivalent to the (11o) plane, and the front curved surface is a crystallographically equivalent plane to the (100) plane. A vertical cutting tool formed by using the surface perpendicular to the rake face among the surfaces that become circular, and making the rake face's easy-to-process direction (the direction in which wear resistance decreases) and the chip outflow direction coincide. and (110) or (11) on the rake face.
o).

面と結晶学上回等となる面を用い、前にげ面に、(11
0)面と結晶学上回等となる面のうち、すくい面と直交
する面を用い、すくい面の加工容易°な方向と切ぐずの
流出する方向とが、すくい面内で直交する様に成形した
横刃バイトがあった。
Using a surface that is superior to the crystallographic surface, (11
0) Use a surface that is perpendicular to the rake face among the surfaces that are crystallographically similar to the surface, so that the direction in which the rake face is easy to machine and the direction in which chips flow are perpendicular to each other within the rake face. There was a molded horizontal blade bit.

縦刃バイトではその方向性のためにすくい面の摩耗が著
しくしたがってバイトの寿命が短かく、横刃バイトは逆
にその方向性のためにバイトの寿命が縦刃バイトよりも
長く専らよく使用されている。
Due to the directionality of vertical cutting tools, the wear of the rake face is significant and the life of the cutting tool is short, whereas horizontal cutting tools, on the other hand, have a longer lifespan than vertical cutting tools due to their orientation and are often used exclusively. ing.

しかしながら、横刃バイトにしてもバイトの成形は非常
な困難を伴ないそれほどバイトの寿命も長くはなく、バ
イトの再研摩にも長い時間を要するといった欠点を有し
ていた。
However, even when using a horizontal cutting tool, it is very difficult to form the tool, the tool life is not very long, and it takes a long time to re-sharpen the tool.

本発明は上記欠点に鑑み、ダイヤモンドの加工の異方性
を明確に理解したうえで、バイトを成形する際加工が容
易に行なえてバイト寿命がさらに長くなり再研摩にもあ
まり時間を要しない一巣結晶ダイヤモンドバイトを提供
しようとするものである0 まず、本発明を充分理解するため、単結晶ダイヤモンド
の加工の異方性について図面を参照しながら説明する。
In view of the above-mentioned drawbacks, the present invention was developed based on a clear understanding of the anisotropy of diamond machining, and was developed to enable easier machining when forming a cutting tool, to extend the life of the tool, and to reduce the need for re-sharpening. First, in order to fully understand the present invention, the anisotropy of processing single crystal diamond will be explained with reference to the drawings.

第1図は、(1o○)面、捷たは(100)面と結晶学
上回等な面から、(110)面まだは(110)面と結
晶学上回等な面までの間の、ダイヤモンドの各結晶面に
おける加工の異方性を示したもので、横軸に(100)
面、または(10o)面と結晶学上回等な面からの角度
、縦軸に、加工量を示している。第2図はダイヤモンド
の結晶面を示している。第1図において、1は第2図に
示す矢印B方向の加工特性線図1,2は矢印り方向の加
工特性線図、3は矢印A及びC方向の加工特性線図であ
る。図から明らかな様に各結晶面において加工の方向に
より加工量は著しく異なる特性を示し、(100)面、
または、(1ω)面と結晶学上回等な面から、(11o
)面、捷だは(110)面と結晶学上回等な面方向に5
°〜17°の角度をなす結晶面では、第2図矢印B方向
(第1図、加工特性線図1)の加工量は、従来の縦刃バ
イトのすくい面である(11o)面、または、(11o
)面と結晶学上回等な面の加工容易な方向(第1図、加
工特性線図3)の加工量より大きい。このことは上記5
°〜17°の角度をなす結晶面をバイトのすくい面とし
、第2図に示す矢印B方向に加工したときに従来よりも
容易に、しかも面を精度よく仕上ることができることを
示している。まだ、上記5°〜17°の角度をなす結晶
面において、第2図矢印り方向(第1図の加工特性線図
2)の加工量は、従来の横刃バイトのすくい面である(
110)面、または(11o)面と結晶学上回等な面の
加工困難方向(第1図、加工特性線図1,2)の加工量
より小さい。このことは、上記50〜17°の角度をな
す結晶面をバイトのすくい面とし、第2図に示す矢印り
方向を切ぐず流出方向としたときに従来よりもすくい面
の耐摩耗性にすぐれていることを示している。
Figure 1 shows the range from the (1o○) plane, the (100) plane and the crystallographically equivalent plane to the (110) plane and the (110) plane and the crystallographically equivalent plane. , which shows the anisotropy of processing in each crystal plane of diamond, with (100) on the horizontal axis.
The angle from the plane or the (10o) plane and the crystallographically superior plane, and the amount of processing are shown on the vertical axis. Figure 2 shows the crystal planes of diamond. In FIG. 1, 1 is a machining characteristic diagram in the direction of arrow B shown in FIG. 2; 1 and 2 are machining characteristic diagrams in the direction of arrow A; and 3 is a machining characteristic diagram in the direction of arrows A and C. As is clear from the figure, the processing amount of each crystal plane exhibits characteristics that vary significantly depending on the direction of processing, and the (100) plane,
Or, from a crystallographically equivalent plane to the (1ω) plane, (11o
) plane, the plane is 5 in the direction of the (110) plane and the crystallographically superior plane.
For crystal planes forming an angle of 17° to 17°, the machining amount in the direction of arrow B in Fig. 2 (Fig. 1, machining characteristic diagram 1) is the (11o) plane, which is the rake face of a conventional vertical cutting tool, or , (11o
) plane and the crystallographically superior plane in the direction in which it is easy to process (Fig. 1, machining characteristic diagram 3). This is explained in 5 above.
It is shown that when a crystal plane forming an angle of 17 degrees is used as the rake surface of a cutting tool and the cutting surface is machined in the direction of arrow B shown in FIG. 2, the surface can be finished more easily and with higher accuracy than before. However, in the crystal plane forming an angle of 5° to 17°, the amount of machining in the direction of the arrow in Figure 2 (machining characteristic line 2 in Figure 1) is the same as the rake face of a conventional horizontal cutting tool (
It is smaller than the amount of processing in the difficult-to-process direction (Fig. 1, processing characteristic diagrams 1 and 2) of the 110) plane or the crystallographically equivalent plane to the (11o) plane. This means that when the crystal plane forming an angle of 50 to 17 degrees is used as the rake face of the cutting tool, and the direction of the arrow shown in Fig. 2 is the direction of chip flow, the wear resistance of the rake face is better than that of the conventional one. It shows that

以下本発明の一実施例を、第3図、第4図より詳細に説
明する。第3図は、バイトの上面図を示し、4は単結晶
ダイヤモンドバイト、5はバイトの刃先を保持するシャ
ンク部である。バイト刃先の先端は、丸味を帯びておら
ず、わずかに角度が付いており、前切刃角は200、横
切刃角は0゜の角度が付しである。第4図はバイト刃先
先端部の拡大図を示し、6はWW線断面(すくい面に垂
直な断面)部であり、前にげ角は10°の角度をなす。
An embodiment of the present invention will be described in detail below with reference to FIGS. 3 and 4. FIG. 3 shows a top view of the cutting tool, where 4 is a single crystal diamond cutting tool, and 5 is a shank portion that holds the cutting edge of the cutting tool. The tip of the cutting edge is not rounded and is slightly angled, with a front cutting edge angle of 200 degrees and a side edge angle of 0 degrees. FIG. 4 shows an enlarged view of the tip of the cutting edge of the cutting tool, and 6 is a cross section along the WW line (a cross section perpendicular to the rake face), and the forward angle is 10°.

7は、XX線断面(すくい面に垂直な断面)部であり、
前にげ角は1o0の角度をなす。5.8はYY線断面(
横切刃に垂直で、すくい面に垂直な断面)部であり、横
にげ角は30°の角度をなす。
7 is an XX-line cross section (a cross section perpendicular to the rake face);
The forward angle forms an angle of 1o0. 5.8 is the YY line cross section (
The cross section is perpendicular to the side cutting edge and perpendicular to the rake face, and the side angle is 30°.

9はZZ線断面(前切刃に垂直で、すくい面に垂直な断
面)部であり、前にげ角はooをなす。バイトすくい角
はOOとなっている。
9 is a ZZ line cross section (a cross section perpendicular to the front cutting edge and perpendicular to the rake face), and the forward angle is oo. The bite rake angle is OO.

この単結晶ダイヤモンドバイトを成形する場合、すくい
面に、(100)面から(110)面方向に12°の角
度をなして傾斜した結晶面を用い、(010)面側を前
にげ面とし、(1oo)面側が、バイトシャンクの下面
となる様にして単結晶ダイヤモンドをシャンク部に保持
した。この様にして、すくい面の成形を行なう際、加工
方向をシャンク側から前にげ面側に向う方向とすると、
従来からあるすくい面の加工が容易であった縦刃バイト
に比べ加工能率が1.5倍向上し、更に容易に鏡面を得
ることができた。シャンク側から前にげ面側に加工方向
をとるということは、第2図におけるB方向の加工であ
り、第1図における加工特性線図1で(1oO)面、ま
たは、(1oo)面と結晶学上回等な面からの角度が1
2°の場合に相当し、最も耐摩耗性が小さくなるところ
である。
When forming this single-crystal diamond cutting tool, the rake face is a crystal plane that is inclined at an angle of 12 degrees from the (100) plane to the (110) plane, with the (010) plane being the forward curved plane. , (1oo) plane side was held in the shank part so that the lower surface of the bite shank. When forming the rake face in this way, if the processing direction is from the shank side to the forward facing side,
Machining efficiency was improved by 1.5 times compared to the conventional vertical cutting tool, which was easy to machine the rake face, and mirror surfaces could be obtained more easily. Taking the machining direction from the shank side to the forward curved surface side means machining in the B direction in Figure 2, and the machining direction is the (1oO) plane or (1oo) plane in the machining characteristic diagram 1 in Figure 1. The angle from the crystallographically superior plane is 1
This corresponds to the case of 2°, where the wear resistance is the lowest.

また、この様にして成形した単結晶ダイヤモンドバイト
を用いて、アルミニウムの円筒を加工したところ、従来
からある耐摩耗性にすぐれた横刃バイトのすくい面にで
きるクレータ摩耗が発生するまでの時間が約3倍となり
、著しいバイト寿命の向上を示した。この場合の切ぐず
の流出方向は、第2図におけるD方向で、第1図におけ
る加工特性線図2で(100)面、または(1oo)面
と結晶学上回等な面からの角度が120の場合に相当し
、最も耐摩耗性が大きくなるところである。
In addition, when an aluminum cylinder was machined using a single-crystal diamond cutting tool formed in this way, it was found that the time required for crater wear to occur on the rake face of a conventional horizontal cutting tool, which has excellent wear resistance, was It was approximately three times as long, indicating a significant improvement in the tool life. In this case, the flow direction of the chips is direction D in Fig. 2, and the angle from the crystallographically equivalent plane to the (100) plane or (1oo) plane in machining characteristic diagram 2 in Fig. 1 is This corresponds to the case of No. 120, where the wear resistance is the highest.

また、この単結晶ダイヤモンドバイトにおいてすくい面
を(1oo)面から(110)面方向に00〜5°、1
7°〜450の範囲でとった場合、切ぐず流出時の耐摩
耗性は優れているが、すくい面を成形するとき、0°〜
6°の範囲では、本実施例の12°に比べ2倍から7倍
の時間を要し、17°〜46°の範囲では2倍から30
倍の時間を要し、コスト面で実用的ではない。更に00
〜5゜の範囲では耐摩耗性も本実施例の12°に比べお
から1/12と低下しバイト寿命が実用的でない。
In addition, in this single-crystal diamond cutting tool, the rake face is 00 to 5 degrees from the (1oo) plane to the (110) plane, and 1
When the angle is set in the range of 7° to 450°, the wear resistance during chip flow is excellent, but when forming the rake face, the angle between 0° and
In the range of 6 degrees, it takes 2 to 7 times as long as in the case of 12 degrees in this example, and in the range of 17 degrees to 46 degrees, it takes 2 to 30 times longer.
It takes twice as much time and is not practical in terms of cost. 00 more
In the range of ~5°, the abrasion resistance is also reduced to 1/12 of the okara as compared to 12° in this example, and the tool life is impractical.

なお、本実施例においてバイトのすくい面を、(100
)面から(110)面方向に12°の角度をなす面を用
いだが、これは5〜170の範囲の面を用いてもよい。
In addition, in this example, the rake face of the cutting tool is (100
Although a plane forming an angle of 12° from the (110) plane in the direction of the (110) plane is used, a plane in the range of 5 to 170 may also be used.

まだ、本実施例において、(100)面より(110)
面方向に12°@けた面をすくい面とし、(010)面
側に前にげ面を形成し、(1QO)面側をバイトシャン
クの下面としだが、すくい面、にげ面、バイトシャンク
の下面、それぞれの面の位置関係が、本実施例のものと
、結晶学上回等となる様に構成され−そいればよい。
In this example, the (110) plane is still smaller than the (100) plane.
The rake surface is a surface that is 12° in the direction of the surface, the (010) side is formed with a bent surface, and the (1QO) side is the lower surface of the bite shank. It is only necessary that the positional relationship between the lower surface and each surface is crystallographically superior to that of this embodiment.

以」二本発明によるとバイトの寿命は従来のバイトの2
倍以上の長さとなり、更に能率よくすくい面を加工でき
るため、安価なバイトを提供できるという効果を奏する
According to the present invention, the lifespan of the cutting tool is 2 times longer than that of the conventional cutting tool.
The length is more than twice as long, and the rake face can be machined more efficiently, making it possible to provide an inexpensive cutting tool.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は単結晶ダイヤモンドの(10Q)面または(1
00)面と結晶学上回等な面から(110)面まだは(
110)面と結晶学上回等な面捷での各結晶面における
加工特性線図、第2図はダイヤモンドの結晶体の説明図
、第3図は本発明の一実施例における単結晶ダイヤモン
ドバイトの断面図、第4図(イ)、(ロ)、(ハ)、(
5)、(ホ)は同単結晶ダイヤモンドバイトの刃先の拡
大断面図である。 4・・・・・・単結晶ダイヤモンドバイト、5・・・・
・・シャンク部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 2*111<100葡 第 3 図
Figure 1 shows the (10Q) plane or (1
From the 00) plane and the crystallographically superior plane, the (110) plane is (
Fig. 2 is an explanatory diagram of a diamond crystal, and Fig. 3 is a single-crystal diamond cutting tool according to an embodiment of the present invention. Cross-sectional view of Figure 4 (A), (B), (C), (
5) and (E) are enlarged cross-sectional views of the cutting edge of the same single-crystal diamond cutting tool. 4... Single crystal diamond bite, 5...
...Shank part. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 2 * 111 < 100 Grapes Figure 3

Claims (1)

【特許請求の範囲】[Claims] ダイヤモンドの単結晶面の(100)面より、(11o
)面方向に、5°〜17°の角度をなす面を、バイトの
すくい面とし、(olo)面側に前にげ面を形成し、(
100)面側をバイトシャンクの下面とした単結晶ダイ
ヤモンドバイト。
From the (100) plane of the diamond single crystal plane, (11o
) The surface forming an angle of 5° to 17° in the direction of the cutting tool is the rake surface of the cutting tool, and the (olo) surface is formed with a forwardly bent surface.
100) Single-crystal diamond bit with the bottom side of the bit shank.
JP12407682A 1982-07-15 1982-07-15 Single crystal diamond tool Pending JPS5914402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12407682A JPS5914402A (en) 1982-07-15 1982-07-15 Single crystal diamond tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12407682A JPS5914402A (en) 1982-07-15 1982-07-15 Single crystal diamond tool

Publications (1)

Publication Number Publication Date
JPS5914402A true JPS5914402A (en) 1984-01-25

Family

ID=14876333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12407682A Pending JPS5914402A (en) 1982-07-15 1982-07-15 Single crystal diamond tool

Country Status (1)

Country Link
JP (1) JPS5914402A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451204A (en) * 1987-08-19 1989-02-27 Hitachi Ltd Diamond bite
JPH01222802A (en) * 1988-03-01 1989-09-06 Osaka Diamond Ind Co Ltd Diamond tool
JPH05183308A (en) * 1991-12-27 1993-07-23 Uniden Corp Dielectric filter
US6023207A (en) * 1996-02-09 2000-02-08 Ngk Spark Plug Co., Ltd. Dielectric filter and method for adjusting resonance frequency of the same
JP2008207334A (en) * 2008-06-09 2008-09-11 Allied Material Corp Single crystal diamond cutting tool and its manufacturing method
JP2019202402A (en) * 2018-05-25 2019-11-28 アイシン・エィ・ダブリュ株式会社 Reamer and reamer manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451204A (en) * 1987-08-19 1989-02-27 Hitachi Ltd Diamond bite
JPH01222802A (en) * 1988-03-01 1989-09-06 Osaka Diamond Ind Co Ltd Diamond tool
JPH05183308A (en) * 1991-12-27 1993-07-23 Uniden Corp Dielectric filter
US6023207A (en) * 1996-02-09 2000-02-08 Ngk Spark Plug Co., Ltd. Dielectric filter and method for adjusting resonance frequency of the same
JP2008207334A (en) * 2008-06-09 2008-09-11 Allied Material Corp Single crystal diamond cutting tool and its manufacturing method
JP4688110B2 (en) * 2008-06-09 2011-05-25 株式会社アライドマテリアル Single crystal diamond tool and method for manufacturing the same
JP2019202402A (en) * 2018-05-25 2019-11-28 アイシン・エィ・ダブリュ株式会社 Reamer and reamer manufacturing method

Similar Documents

Publication Publication Date Title
KR880001405B1 (en) Cutter
JPH04294910A (en) Inserting tip for peeling working and cutting tool
ATE136831T1 (en) FILLET GEOMETRY ON ROTATING DIAMOND CUTTING TOOL
JP2519801B2 (en) Parting off tool
JP2532936B2 (en) Cutting insert with chip control
JPS637888B2 (en)
JP2723768B2 (en) Ball end mill
JPH0129641B2 (en)
JPS5914402A (en) Single crystal diamond tool
US4662801A (en) Cutting tool
JPS5919609A (en) Monocrystal diamond tool
JP2631398B2 (en) Diamond tips for tools and cutting tools using diamond tips
JPH0113961B2 (en)
JP2677712B2 (en) Cutting tools
JP2632388B2 (en) Internal thread cutting tool
JPS6236562Y2 (en)
JPH01228705A (en) Cutting tool
CN217941984U (en) Heavy cutting milling cutter disc
JP2519081Y2 (en) Indexable inserts for face milling
JPS63212401A (en) Turning method
JPS6284904A (en) Throw away tip
JPH063502U (en) Cutting tools
JPH07136813A (en) Cutting tool provided with chip breaker
JP2536999Y2 (en) Indexable tip
JPH0584603A (en) Throwaway tip