JPS59143976A - Magnetostriction measuring apparatus - Google Patents

Magnetostriction measuring apparatus

Info

Publication number
JPS59143976A
JPS59143976A JP1843383A JP1843383A JPS59143976A JP S59143976 A JPS59143976 A JP S59143976A JP 1843383 A JP1843383 A JP 1843383A JP 1843383 A JP1843383 A JP 1843383A JP S59143976 A JPS59143976 A JP S59143976A
Authority
JP
Japan
Prior art keywords
sample
coil
magnetic field
microscope
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1843383A
Other languages
Japanese (ja)
Inventor
Satoshi Nehashi
聡 根橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP1843383A priority Critical patent/JPS59143976A/en
Publication of JPS59143976A publication Critical patent/JPS59143976A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/18Measuring magnetostrictive properties

Abstract

PURPOSE:To measure bend of a sample simply by naked eyes directly or a photography or the like using an ordinary metal microscope by applying an even magnetic field to the sample employing a spherical coil. CONSTITUTION:A winding of a coil is wound so as to have a circular current overlapping at an equal space. A sample chamber is provided inside and an object lens 4 of a microscope is placed from a lens insertion port on the top thereof to observe displacement of a standing sample 2 focusing the end thereof. For a thin film sample, the measurement of magnetostriction is equivalent to measuring bend of a sample and therefore, the sample 2 is formed on a cover glass, a microsheet or the like to make it easy to bend. This enables the application of an even magnetic field to a sample with a small coil because the magnetic field becomes uniform within a spherical coil.

Description

【発明の詳細な説明】 本発明は、薄膜の磁気ひずみを測定する装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring magnetostriction of thin films.

従来、磁気ひずみの測定には、抵抗線音用いたひずみゲ
ージによる方法が一般的であるが、これは、試料がある
程If厚みを持ったものに用いられろ方法である。・薄
膜の場合、ひずみゲージよりうける応力が問題になって
しまうので、この方Lt用いることができない。また薄
膜試料の磁気ひずみ測定には、光てこを用いる方法、容
重変化を用いる方法があるが、光てこ法は、変位全拡大
する7でめに、広い場所が必要となる。
Conventionally, magnetostriction has been generally measured using a strain gauge using a resistance wire sound, but this method is suitable for use when the sample has a certain If thickness. - In the case of a thin film, the stress exerted by the strain gauge becomes a problem, so Lt cannot be used in this case. In addition, there are methods for measuring magnetostriction of thin film samples, such as methods using an optical lever and methods using volume/gravity changes, but the optical lever method requires a large space because the displacement is fully expanded.

本発明は、かかる点([−鑑みでできね7ヒもので、そ
の目的は、通常の金属顕微iI!愛用いて簡単に磁気ひ
ずみ會測定することにある。
The present invention has been made in view of the above, and its purpose is to easily measure magnetostriction using an ordinary metal microscope.

薄j莫の作成は、必らず基鈑が必要であるため、磁憔体
のひずみは、基叛f含んだ全体のそりとして検出される
。したがって薄膜試料の場合、磁気ひずみの測定は、試
料のそりを測定することと等しい。そこで、試料のそり
を直接肉眼あるいは写貢笠で測定する装置を、以下に示
す。
Since a base plate is always required to create a thin film, the distortion of the magnetic body is detected as the warpage of the entire body including the base plate. Therefore, for thin film samples, measuring magnetostriction is equivalent to measuring the warpage of the sample. Therefore, an apparatus for measuring the warpage of a sample directly with the naked eye or with a photocoat is shown below.

もθ気ひずみの抑]矩には、蝿嚇が必安であり、試料に
は一様な磁場を印加することが望ましい。ヘルムホルツ
コイル等で磁場f:発生させる場合、顕微鏡の鋭・、筒
と試料台の間隔は、比較的狭く、十分な大きさのへルム
ホルツコイルを設すすることは困難である。また、顕微
鏡全本ケ(1好Jijt中にIN〈ようにした場合、例
えばヘルムホルツコイルの中に顕微鏡を置くなどすると
、顕微鏡の操作が困難になる。
In order to suppress θ-induced distortion, it is essential to deter flies, and it is desirable to apply a uniform magnetic field to the sample. When a magnetic field f is generated using a Helmholtz coil or the like, the distance between the microscope's sharp tube and the sample stage is relatively narrow, and it is difficult to install a Helmholtz coil of sufficient size. In addition, if the microscope is turned on while the microscope is in use, for example, if the microscope is placed inside a Helmholtz coil, it will become difficult to operate the microscope.

そこで本発明は、磁場発生用コイルとして球状コイルを
用いることで、以上の問題全解決した。
Therefore, the present invention solves all of the above problems by using a spherical coil as the magnetic field generating coil.

球状コイルとは、球形の型に、巻線を唸とこしたもので
ある。すなわち、径の異なる円電流を球状に積み重ねた
ものと考えることが可能である。
A spherical coil is a spherical coil with coiled wire. In other words, it can be thought of as a spherical stack of circular currents with different diameters.

第1図にその様子に示す。コイルを球状にn段巻いであ
るとし、肛流工を流すと、一つの円電流は m−μO工 S の磁気モーメントに対応する。μoU真空の透磁率、S
は日1五流の囲む面積である。ここでコイルが造る球の
直径fcflとすると、1つの円電流rよ、厚さR/ 
nで円電流を縁とした円形の磁石板と等価の磁場をつく
ると考えられる。第2図にその容子を示す。磁石の磁化
をMとすると と表わされる。電流工は一定であるから、一様に(融化
した円形磁石板がn段積み重なったものとみなせる。n
が十分大き(r、−れば、球状コイルは一様に磁化した
磁石球と等価である。これ(rよコイル外部のことであ
って、コイル内部では、(磁化は存在しないので、内部
の磁場は異なるが、磁束密度は連続であるため、外部の
磁場が等しいならば、内部でも磁束密要ハ、磁石球と球
状コイルで等しい。
Figure 1 shows the situation. Assuming that the coil is wound into a spherical shape with n stages and a current is passed through the coil, one circular current corresponds to a magnetic moment of m-μO S. μoU vacuum permeability, S
is the area encompassed by the 15th school day. If the diameter of the sphere formed by the coil is fcfl, one circular current r, the thickness R/
It is thought that a magnetic field equivalent to a circular magnetic plate with a circular current at the edge is created at n. Figure 2 shows its appearance. If the magnetization of the magnet is M, it is expressed as follows. Since the electric current is constant, it can be considered as n stacks of uniformly melted circular magnetic plates.n
If (r, -) is sufficiently large, then the spherical coil is equivalent to a uniformly magnetized magnetic sphere. Although the magnetic fields are different, the magnetic flux density is continuous, so if the external magnetic field is equal, the internal magnetic flux density is the same for the magnet ball and the spherical coil.

強磁性体内部の磁場が一様であることは、次のように証
明できる。単位体積あlc !J Q、 ITIおよび
−q mの密度の磁極が存在する球コと考え、第6図の
ようにこの球をdだけずらせて市ねたとする。
The fact that the magnetic field inside a ferromagnetic material is uniform can be proven as follows. Unit volume alc! Assume that a sphere has magnetic poles of density J Q, ITI and -q m, and that this sphere is placed on the market with a displacement of d as shown in Fig. 6.

各場所で M=qm11d の磁気モーメントをもつ。+qllの密度の球の中心か
らrの位置の磁場H+ (r )  げH+(r)=(
qm/6μo)・r となり、68位Vm+は VB+ =  S H+(r )dr =(−qm/6・μ0)・r2 −qmの密度の球に関し−Cも同様に行なえば、Vm 
−= (qrn/6μo)−r2−4− q mの球’
jc−qmの球にdずらせて重ねると、dの位置での研
位Vmは (ずらした方向kx方回とする) であるから I よって磁場Hxは こ7″Lは、位置の変数を含まない。よって内部の磁場
は一定である。この磁性体球内部の磁束密度は、B−μ
o H−1−M で与えらね、H,Mが場所によらないことから、Bは内
部で一定の値ヲ持つ。球状コイルではHのイ1σが異な
るが、Bは同一であるので、B=−μ、H’ より球状コイル内の磁場H′ は一定である。
Each location has a magnetic moment of M=qm11d. The magnetic field at a position r from the center of a sphere with a density of +qll H+ (r) H+(r)=(
qm/6μo)・r, and the 68th place Vm+ is VB+ = S H+(r)dr = (-qm/6・μ0)・r2 If you do the same for −C for a sphere with a density of -qm, then Vm
-= (qrn/6μo)-r2-4- q m sphere'
When stacking jc-qm spheres with a shift of d, the grinding position Vm at the position of d is (assuming the shifted direction is kx direction), so I Therefore, the magnetic field Hx is 7″L, which includes the position variable. Therefore, the internal magnetic field is constant.The magnetic flux density inside this magnetic sphere is B-μ
o H-1-M Since H and M are independent of location, B has a constant value internally. In the spherical coil, the i1σ of H is different, but B is the same, so the magnetic field H' in the spherical coil is constant from B=-μ, H'.

このように、球状コイル内でばflB、場が一様になる
ので、小さなコイルで試料に−(斧な11ば場を加える
ことができる。実際には、対物レンズの挿入口が必要と
なるため、完全ではないが、レンズ挿入口付近のコイル
の巻き方を変化させることでjlI?r決できる。
In this way, the flB field becomes uniform within the spherical coil, so it is possible to apply a -(axe field) to the sample using a small coil.In reality, an insertion port for the objective lens is required. Therefore, although it is not perfect, it can be resolved by changing the way the coil is wound near the lens insertion port.

i fc、前述の証明で明らかなように、コイルの巻線
の施し方は、第1図のように、円IF/−屯流が等間隔
で積重なったように巻く。そして第4図のように、内部
に試料室を設け、土部のレンズ挿入口より顕微鏡の対物
レンズを入れ、(2)のように立てた試料の端部に焦点
全台せて、その変位を観察する。捷/ζ、試料台に試料
を固定するため、第5図のようにコイルを分割式にする
必要があるが、分割式にすることによって、顕微説の試
料台と鏡筒の間隔が狭くても、コイル全固定することが
可能である。
i fc As is clear from the above proof, the coil is wound in such a way that circles IF/-currents are stacked at equal intervals, as shown in FIG. Then, as shown in Fig. 4, a sample chamber is set up inside, the objective lens of the microscope is inserted through the lens insertion opening in the base part, and the entire focus is placed on the end of the sample that is erected as shown in (2). Observe. In order to fix the sample on the sample stage, it is necessary to split the coil as shown in Figure 5, but by using the split type, the distance between the sample stage and the lens barrel in the microscope theory is narrow. It is also possible to completely fix the coil.

測定は第6図に示すように行なう。試料は反りやすいよ
うに、カバーガラス、マイクロソートなどに形成する。
The measurements are carried out as shown in FIG. The sample is formed into a cover glass, microsort, etc. so that it is easily warped.

またコイルに電流を流した際、コイルの発生する熱によ
ってコイル型が変形し、観測に影響がでるのを防ぐf(
、W)、第4図に示すように、試料台とコイルを分離し
ておく。
In addition, when a current is passed through the coil, the heat generated by the coil deforms the coil shape and prevents it from affecting observation.
, W), as shown in FIG. 4, the sample stage and coil are separated.

顕微鏡の最大倍率は、通常1000倍程度であり、肉眼
で(rJ’ 0.2 ミクロンメートル程の反り?:確
認することしかできないが、写真を使用するなどすれば
、もう少し分解能を上げることが可能である。
The maximum magnification of a microscope is usually about 1000 times, and it is only possible to confirm it with the naked eye (rJ' 0.2 micrometer warpage?), but it is possible to increase the resolution a little more by using photographs. It is.

以上の通り、本発明による磁気ひずみ測定装置を用いる
ことにより、簡単に磁気ひずみを測定することが可能で
ある。特に、磁気ひずみの大小の比較、1負の1′I]
定などは、非常に簡単に行なうことが可能である。
As described above, by using the magnetostriction measuring device according to the present invention, it is possible to easily measure magnetostriction. In particular, the comparison of the magnitude of magnetostriction, 1 negative 1'I]
This can be done very easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は球形コイルの模式図である。 (1)口断皿石 第3図 (1)+qmの磁化のつまつ/ζ球 (2)−qmの磁化のつまった球 第4図(は球形コイル及び試料室の配置図である。 (1)コイル型 (2)試料 (6)試料台 (4)対物レンズ (5)コイル台 第5図は、コイル型の分割の例である。 第6図は、顕微鏡に球形コイルを配f樅した揚台の図で
ある。 (1)球形コイル (2)金属顕微鏡 (3)写真機 、′、(4)電源装置 シ、上 出願人 株式会社 −V訪狛工舎 代理人 弁理士 最上  務 第4図 第5 Li ;、、、rS 6図 手続補正書(方式) 1 事件の表示 11β和58年  特許願第 1B455吋2 発明の
名称 磁気ひずみ測定装置 3 前圧をする者 代表取締役中村恒也 4代理人 8、抽圧の内容 別紙の辿り 手 続 補 正 書 (方式) %式% 「褐5図」とある會、 [第3図は+qm、’11”のim Iビのつ1つ1仮
想球を示す図である。」に抽正する。 以上 イー(−里へ帰1:J>i
FIG. 1 is a schematic diagram of a spherical coil. (1) Cut-out plate stone Figure 3 (1) + qm magnetization block / ζ sphere (2) - qm magnetization block Figure 4 (Figure 4 is a layout diagram of the spherical coil and sample chamber. 1) Coil type (2) Sample (6) Sample stand (4) Objective lens (5) Coil stand Figure 5 is an example of dividing the coil type. Figure 6 shows how a spherical coil is installed in the microscope. (1) Spherical coil (2) Metallic microscope (3) Photographer, (4) Power supply unit Figure 4 Figure 5 Li ;,,, rS Figure 6 Procedural amendment (method) 1 Indication of the case 11β Japanese 58 years Patent application No. 1B455 x 2 Name of the invention Magnetostriction measuring device 3 Person who applies forward pressure Representative director Hisashi Nakamura也4 Representative 8, Procedure for following the attached sheet of lottery contents Amendment book (method) % formula % A meeting called ``Brown 5 Diagram'', [Figure 3 is +qm, '11'' im I bi 1 This is a diagram showing a virtual sphere.

Claims (1)

【特許請求の範囲】[Claims] 薄膜試)−1の磁気ひずみ測定装置において、試料に磁
場を与える球状コイル、及び核球状コイルの中心付近に
設置した試料固定台、及び微小変化金銭fllllする
顕微て眞を備えたことを9寺徴とした磁気ひずみ測定装
置。
In the magnetostriction measurement device of Thin Film Test)-1, nine temples were equipped with a spherical coil that applied a magnetic field to the sample, a sample fixing stage installed near the center of the nuclear spherical coil, and a microscope lever to detect minute changes. Magnetostriction measuring device used for this purpose.
JP1843383A 1983-02-07 1983-02-07 Magnetostriction measuring apparatus Pending JPS59143976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1843383A JPS59143976A (en) 1983-02-07 1983-02-07 Magnetostriction measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1843383A JPS59143976A (en) 1983-02-07 1983-02-07 Magnetostriction measuring apparatus

Publications (1)

Publication Number Publication Date
JPS59143976A true JPS59143976A (en) 1984-08-17

Family

ID=11971508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1843383A Pending JPS59143976A (en) 1983-02-07 1983-02-07 Magnetostriction measuring apparatus

Country Status (1)

Country Link
JP (1) JPS59143976A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126697A (en) * 1984-07-16 1986-02-05 Daicel Chem Ind Ltd Lubricating composition
CN111965243A (en) * 2020-07-29 2020-11-20 华南理工大学 Magnetic field loading dynamic control device for experiment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126697A (en) * 1984-07-16 1986-02-05 Daicel Chem Ind Ltd Lubricating composition
CN111965243A (en) * 2020-07-29 2020-11-20 华南理工大学 Magnetic field loading dynamic control device for experiment

Similar Documents

Publication Publication Date Title
Fowler Jr et al. Magnetic domains by the longitudinal Kerr effect
JPH03505260A (en) Electro-optical method and device for determining the direction of movement by moving an optical image field in dual irradiation velocimetry
JPS59143976A (en) Magnetostriction measuring apparatus
Hill et al. Whole wafer magnetostriction metrology for magnetic films and multilayers
Craik et al. New techniques for the study of Bitter figures
Mayer Observations on MnBi Films during Heat Treatment
JPS594670B2 (en) Magnetic field distribution measuring device
Rave et al. Refinement of the quantitative magnetooptic domain observation technique
Moses et al. A novel instrument for real-time dynamic domain observation in bulk and micromagnetic materials
Dally et al. Initial studies in three-dimensional dynamic photoelasticity
Speliotis et al. Magnetic and thermomagnetic analysis of metal evaporated tape
Babiskin A float for liquid helium
Wade The measurement of magnetic microfields
JPH0240579A (en) Observing apparatus of domain
Johnson A braun tube hysteresigraph
Schuldt et al. Wall stability of cylindrical (bubble) domains in thin films and platelets
EP0724162A2 (en) High sensitivity magnetic viewer
Searle Experimental optics: a manual for the laboratory
Katagiri Experimental investigation of chromatic aberration in the electron microscope
Bonnema et al. Magnetic domain observations in 50-percent Ni-Fe tapes
Ringo The Velocity Spectrum of α-Particles
Bonnema Kerr Magneto-optic Studies of the Domain Patterns in Nickel Iron Tapes
KR100371600B1 (en) Magnetooptical Microscope Magnetometer
Clash Jr et al. Directions of discontinuous changes in magnetization in monocrystal bars and disks of silicon-iron
Penn et al. Measuring ferromagnetic film magnetostriction by means of magnetoresistance