JPS59143943A - Device for measuring moisture content rate wherein judgement of kind of grain is automated - Google Patents

Device for measuring moisture content rate wherein judgement of kind of grain is automated

Info

Publication number
JPS59143943A
JPS59143943A JP1741983A JP1741983A JPS59143943A JP S59143943 A JPS59143943 A JP S59143943A JP 1741983 A JP1741983 A JP 1741983A JP 1741983 A JP1741983 A JP 1741983A JP S59143943 A JPS59143943 A JP S59143943A
Authority
JP
Japan
Prior art keywords
grain
moisture
sample
load
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1741983A
Other languages
Japanese (ja)
Other versions
JPH0249652B2 (en
Inventor
Masanori Sugimoto
真規 杉本
Toru Shimohara
下原 融
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd filed Critical Shizuoka Seiki Co Ltd
Priority to JP1741983A priority Critical patent/JPS59143943A/en
Publication of JPS59143943A publication Critical patent/JPS59143943A/en
Publication of JPH0249652B2 publication Critical patent/JPH0249652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/048Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance for determining moisture content of the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To exclude erroneous operation accompanied by manual switching operations, by correlating the measured data of inputted water contents and loads with associated tables in a memory part, judging the kind of sample grain, and automating the switching operation of equipment in correspondence with the kind of the grain. CONSTITUTION:Sample grain is mounted on a central part 6a of a lower electrode part 6. An upper electrode part 4 is lowered, and a load is applied to compress the sample. The load is detected and measured by a load sensor 42 comprising a gage 18. The load value and the water content value of the sample, which is measured by the upper and lower electrode parts 4 and 6, are sent to a multiplexer 32 and further sent to a CPU36 through an A/D converter circuit 34. The grain A, B... correspond to the measured data M of the inputted water contents. The measured data Wa, Wb... of the loads for the kinds of grains are compared with the actually measured load data W. For example when W=Wa, the measured data M of the water content is converted into the water content value Ma of the grain A. By the series of operations described above, the result that the sample to be measured is the grain A and the water content value is Ma is obtained.

Description

【発明の詳細な説明】 この発明は含水率測定装置の改良に係り、特に、穀物の
種類を判別し得る穀物種判別を自動化した含水率測定装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a moisture content measuring device, and more particularly to a moisture content measuring device that automates grain type discrimination.

一般に、一対の電極間にて試料穀物を圧砕挟持し、該電
極間に発生した電気抵抗値を検出して複数種類の穀物の
水分値を測定する含水率測定装置において、電気抵抗値
と水分値との相関関係は穀物の種類によって異なり同一
ではない。
Generally, in a moisture content measuring device that crushes and clamps a sample grain between a pair of electrodes and detects the electrical resistance value generated between the electrodes to measure the moisture value of multiple types of grain, the electrical resistance value and the moisture value are The correlation with grains differs depending on the type of grain and is not the same.

この為、従来、異種穀物を同一機器にて測定できるよう
にするために、抵抗式水分計ではノー−ドウエア処理又
はソフトウェア処理とが有る。ノー−ドウエア処理ば水
分計の操作面上に配置された選択スイッチ50にて、第
9図に示すように、穀物の種類に合わせて測定回路の回
路素子を切換えている。即ち、試料を直列に挿入した抵
抗Raと、帰還回路のダイオードと直列に挿入した抵抗
Rbの定数とを切換え、各々の穀物の種類に合わせた水
分値を得るようにリニアライズ回路を切換えしている。
For this reason, resistance type moisture meters have conventionally required hardware processing or software processing in order to be able to measure different types of grains with the same device. In the nodeware processing, a selection switch 50 arranged on the operating surface of the moisture meter switches the circuit elements of the measuring circuit according to the type of grain, as shown in FIG. That is, the constants of the resistor Ra inserted in series with the sample and the resistor Rb inserted in series with the diode of the feedback circuit are switched, and the linearization circuit is switched to obtain a moisture value suitable for each type of grain. There is.

一方、ラフ1−ウェア処理では、水分測定回路の切換え
を廿ず、選択スイッチにて設定した穀物の種類データを
マイクロ・コンピュータ等に読込み、予め記憶しである
換算式または換算表にて穀物の種類に対応した水分値に
換算している。
On the other hand, in rough 1-ware processing, the grain type data set by the selection switch is read into a microcomputer, etc. without switching the moisture measuring circuit, and the grain type data is read into a microcomputer etc. using a pre-stored conversion formula or conversion table. It is converted into a moisture value corresponding to the type.

然しなから、水分計では、穀物を選択する操作は手動で
あり、人間が介在する為、常に誤操作が考えられる。そ
して、穀物の選択に誤操作があれば、異種穀物の水分値
が表示されることとなり、特に穀物乾燥機に装着される
自動水分計では過乾燥や乾燥不足が生じ、その結果、穀
物の種類に応じた最適状態に乾燥された穀物を得ること
ができない欠点があった。
However, with a moisture meter, the operation for selecting grains is manual and requires human intervention, so there is always the possibility of erroneous operation. If there is an error in the selection of grains, the moisture value of different types of grains will be displayed, and automatic moisture meters installed in grain dryers in particular will cause overdrying or underdrying, resulting in incorrect grain types. There was a drawback that it was not possible to obtain grains dried to the optimum condition.

そこでこの発明の目的は、上記の欠点を除去し、異種穀
物の水分値を同一機器にて測定する場合、穀物の種類に
合わせた機器の切換操作を自動化し、手動切換操作に伴
う誤操作を排除しfJるようにした含水率測定装置を実
現するにある。
Therefore, the purpose of this invention is to eliminate the above-mentioned drawbacks, and to automate the switching operation of the equipment according to the type of grain when measuring the moisture value of different types of grains using the same equipment, thereby eliminating the erroneous operation caused by manual switching operation. The object of the present invention is to realize a moisture content measuring device that can perform

この目的を達成するためにこの発明は、一対の電極間に
て試料穀物を圧砕挟持し、該電極間に発生した電気抵抗
値を検出して複数種類の穀物の水分値を測定する含水率
測定装置において、該電気抵抗値の変化を測定する測定
回路部と、両電極間の試料穀物に加えられる荷重を測定
する荷重センサ部と、該測定回路部と荷重センサ部との
出力を受けて電気デジタル量の測定データに変換するA
/D変換手段と、予め求められた各試料穀物の種類毎の
水分と荷重との測定データの関係テーブルを記憶した記
憶部と、該A/D変換手段から入力した水分と荷重との
測定データを上記記憶部内の関係テーブルと対応させて
試料穀物の種類を判別し、判別した穀物の種類に対応し
て該水分の測定データを水分値に変換して出力する演算
処理部とを具備したことを特徴とする。
In order to achieve this objective, the present invention is a moisture content measurement method that measures the moisture content of multiple types of grain by crushing and sandwiching a sample grain between a pair of electrodes and detecting the electrical resistance value generated between the electrodes. The device includes a measurement circuit unit that measures the change in the electrical resistance value, a load sensor unit that measures the load applied to the sample grain between both electrodes, and an electrical Converting to digital measurement data A
/D conversion means, a storage unit storing a relationship table of measurement data between moisture and load for each type of sample grain determined in advance, and measurement data between moisture and load input from the A/D conversion means. and an arithmetic processing unit that determines the type of sample grain by associating it with the relational table in the storage unit, converts the moisture measurement data into a moisture value corresponding to the determined type of grain, and outputs the moisture value. It is characterized by

以下図面に基づいて、この発明の実施例を詳細且つ具体
的に説明する。
Embodiments of the present invention will be described in detail and specifically below based on the drawings.

第1図乃至第4図において、2ば試料を圧砕挟持して電
気抵抗値により水分値を測定する測定部で、該測定部2
ば主に上部電極部4及び該上部電極部4に上下に対設す
る下部電極部6からなる。
In FIGS. 1 to 4, 2 is a measuring section that crushes and clamps a sample and measures the water content based on the electrical resistance value;
It mainly consists of an upper electrode part 4 and a lower electrode part 6 vertically opposed to the upper electrode part 4.

第1図及び第2図は、上記測定部2の第1実施例を示す
もので、上記上部電極部4は中空円筒状の外装部8と該
外装部8の中空部に螺合した内装部10からなる。この
外装部8の上端部の左右側面に凹溝を形成し、該両凹溝
にクラッシュスプリング12の先端を各々没入して、両
クラッシュスプリング12によって上記上部電極部4を
上下動可能に保持する。このため、上記両クラッシュス
プリング12の他端上面を、左右に対設する側壁14−
1の上面にスプリング押え具16により押止する。そし
て、この両クラッシュスプリング12のいずれか一方の
上下両面Aにひずめゲージ18を取付け、上部電極部4
を保持するクラッシュスプリング12に生ずる変位によ
り、上下部電極部4.6間に圧砕挟持される試料に作用
する荷重を検出する。なお、該ひずみゲージ18は試料
に作用する荷重を検出できるものであればよいから、取
付箇所は必ずしも上記位置に限定されるものではなく、
例えば、B、C位置でもよい。一方、上記内装部10は
図示しない駆動源からの駆動力により+1旋運動して、
上下方向に昇降可能である。
1 and 2 show a first embodiment of the measuring section 2, in which the upper electrode section 4 includes a hollow cylindrical exterior section 8 and an interior section screwed into the hollow section of the exterior section 8. Consists of 10. Concave grooves are formed on the left and right side surfaces of the upper end of the exterior part 8, and the tips of the crush springs 12 are respectively inserted into the concave grooves, and the upper electrode part 4 is held by both crush springs 12 so as to be movable up and down. . For this reason, the upper surface of the other end of both the crush springs 12 is separated from the side walls 14-
1 by a spring presser 16. Then, a strain gauge 18 is attached to the upper and lower surfaces A of either one of the crush springs 12, and the upper electrode part 4
The load acting on the sample crushed and held between the upper and lower electrode parts 4.6 is detected by the displacement that occurs in the crush spring 12 that holds the . Note that the strain gauge 18 only needs to be able to detect the load acting on the sample, so the mounting location is not necessarily limited to the above position.
For example, the positions B and C may be used. On the other hand, the interior portion 10 rotates by +1 due to a driving force from a driving source (not shown).
It can be moved up and down.

また、内装部10の下面に、該下面の中央部から小内部
を経て段差状に下方に突出させて円形部4aを形成する
Further, on the lower surface of the interior portion 10, a circular portion 4a is formed so as to protrude downward in a step-like manner from the center of the lower surface through the small interior.

下部電極部6は図示しない乾燥機内部から抽出した試料
を直接載せると共に、上記上部電極部4と一体となって
後述する一対の電極部を構成するものである。また、下
部電極部6の円形の外周縁部を突起させて中央部6aを
囲繞することにより、試料を中央部6aに載せた下部電
極部6が上記上部電極部4と上下方向に対向する位置ま
で到来する間に、試料が下部電極部6から逸脱するのを
防ぐ役割をなしている。
The lower electrode part 6 directly places a sample extracted from inside the dryer (not shown), and together with the upper electrode part 4 constitutes a pair of electrode parts to be described later. In addition, by protruding the circular outer peripheral edge of the lower electrode part 6 and surrounding the central part 6a, the lower electrode part 6 with the sample placed on the central part 6a is located at a position facing the upper electrode part 4 in the vertical direction. This serves to prevent the sample from deviating from the lower electrode section 6 while the sample reaches the lower electrode section 6.

第3図は測定部2の第2実施例を示すもので、上記上部
電極部4の外装部8を左右から突出した側壁14−2に
より直接支持する。また、下部電極部6は直接載置台2
0により支1ヲすると共に、この載置台20を上方に折
曲した先端で直接支持する2個の板状の弾性部月22−
1の他端を、左右に位置する上記両側壁14−2の下面
に各々緊締具で取付ける。ひずみゲージ18は上記弾性
部1J22−1のいずれか一方の上下両面Aに取付ける
。この取付箇所は弾性部材22−1上である必要はなく
、例えば、B位置でもよいことは第1実施例の場合と同
様である。上述以外の構成は第1実施例の場合と同じ構
成である。
FIG. 3 shows a second embodiment of the measuring section 2, in which the exterior section 8 of the upper electrode section 4 is directly supported by side walls 14-2 protruding from the left and right sides. In addition, the lower electrode part 6 is directly attached to the mounting table 2.
Two plate-shaped elastic parts 22- support the mounting table 20 by the 0 and directly support the mounting table 20 with their upwardly bent ends.
1 are attached to the lower surfaces of the left and right side walls 14-2 using respective fasteners. The strain gauge 18 is attached to the upper and lower surfaces A of either one of the elastic parts 1J22-1. This attachment point does not need to be on the elastic member 22-1, and may be at position B, for example, as in the case of the first embodiment. The configuration other than the above is the same as that of the first embodiment.

第4図は第3実施例を示すもので、上部電極部4の支持
状態は第2実施例の場合と同じであるが、下部電極部6
ば、該下部電極部6を支持する載置台20とこの載置台
20を下方から支持する支持台24との間に板状の弾性
部材22−2を介装して支持する。ひずみゲージ18は
弾性部材22−2内Aに取付けるが、既述の如くこの位
置に限定されるものではな(、例えば、B位置でもよい
FIG. 4 shows a third embodiment, in which the support state of the upper electrode part 4 is the same as in the second embodiment, but the lower electrode part 6
For example, a plate-shaped elastic member 22-2 is interposed between the mounting table 20 that supports the lower electrode section 6 and the support table 24 that supports the mounting table 20 from below. Although the strain gauge 18 is attached to the inside of the elastic member 22-2 at A, the position is not limited to this as described above (for example, it may be at the B position).

要は上下部電極部4.6間に挟持する試料に作用する荷
重を検出できる位置であればよいのである。
The point is that the position may be any position as long as it can detect the load acting on the sample held between the upper and lower electrode parts 4.6.

なお、上記支持台24はその両端を緊締具で上記両側壁
14−2の下面に取付ける。上述以外の構成は第1実施
例の場合と同じである。
Note that both ends of the support stand 24 are attached to the lower surfaces of the both side walls 14-2 using fasteners. The configuration other than the above is the same as in the first embodiment.

第5図はこの発明の制御機構を示す回路図で、26は試
料を圧砕挟持してその間へ塩気抵抗値を検出する一対の
電極で、該一対の電極2Gは既に述べた上下部電極部4
.6から構成され、前記測定部2内に位置する。2日は
上記一対の電極26間に生じた電気抵抗値を電圧信号に
増幅変換する変換増幅回路であり、測定部4とともに測
定回路部を構成する。42は既に述べたひずみゲージ1
8でブリッジを構成した荷重センサで、拡散形半導体方
式のひずみゲージ18でフルブリッジ方式を構成し、圧
力が加わらないときは4個の感圧抵抗は等しいが、圧力
が加わるとブリッジの抵抗バランスが崩れ、差動アンプ
の入力電圧が印加される圧力に比例して増加し、圧力を
検出することができるのである。なお、ひずみゲージ1
8は拡散形半導体方式に限定されないことは云うまでも
なく、ブリッジの構成もフルブリッジ方式に限定されず
、ひずみゲージ18をブリッジの一辺または二辺に挿入
した構成でも良い。3oば上記荷重センサ42に生じる
電圧を増幅するアンプ、32は上記変換増幅回路28及
びアンプ3oがら別々に送られてくる電圧信号を時分割
等の方法により共通伝送するマルチプレクサ、34は上
記マルチプレクサ32から送られてくるアナログ量とし
ての電圧を入力し、これをケシタル信号に変換するA/
D変換回路である。36はA/D変換回路から送られて
くるデジタル信豊により演算、制御などを行う部分と主
記憶装置とからなるマイクロ・コンピュータ(CPU)
 、’38は制御用プロクラムを予め記憶しているリー
ドオンリメモリ (ROM)で、上記CPU36にデー
タを供給するものである。40ば上記CPU36の演算
結果や入力データ等を一時記憶する複数の記憶領域から
なるリードおよびライト可能なデータ用ランダムアクセ
スメモリ(RAM)である。41は、前記CPU36と
ROM38とRAM40とからなる演算処理部である。
FIG. 5 is a circuit diagram showing the control mechanism of the present invention. Reference numeral 26 denotes a pair of electrodes for crushing and sandwiching the sample and detecting the salt air resistance between them.
.. 6, and is located within the measuring section 2. The second circuit is a conversion/amplification circuit that amplifies and converts the electrical resistance value generated between the pair of electrodes 26 into a voltage signal, and together with the measuring section 4 constitutes a measuring circuit section. 42 is the strain gauge 1 already mentioned.
8 constitutes a bridge, and a full bridge system is constructed with a diffused semiconductor type strain gauge 18.When no pressure is applied, the four pressure-sensitive resistors are equal, but when pressure is applied, the resistance balance of the bridge changes. collapses, the input voltage of the differential amplifier increases in proportion to the applied pressure, and the pressure can be detected. In addition, strain gauge 1
It goes without saying that 8 is not limited to the diffused semiconductor type, and the bridge configuration is not limited to the full bridge type, but may also have a configuration in which the strain gauge 18 is inserted on one or two sides of the bridge. 3o is an amplifier that amplifies the voltage generated in the load sensor 42; 32 is a multiplexer that commonly transmits the voltage signals sent separately from the conversion amplifier circuit 28 and the amplifier 3o by a method such as time division; and 34 is the multiplexer 32. A/A that inputs the voltage as an analog quantity sent from the
This is a D conversion circuit. 36 is a microcomputer (CPU) consisting of a main memory and a section that performs calculations and control based on the digital signal sent from the A/D conversion circuit.
, '38 is a read-only memory (ROM) that stores a control program in advance and supplies data to the CPU 36. Reference numeral 40 denotes a readable and writable data random access memory (RAM) consisting of a plurality of storage areas for temporarily storing calculation results of the CPU 36, input data, and the like. 41 is an arithmetic processing unit consisting of the CPU 36, ROM 38, and RAM 40.

44ば穀物の種類と測定された水分値を同時に表示する
表示器で、穀物の種類A(米)、B(小麦)、C(大麦
)を表示する表示部44a、44b、44cと水分値を
表示する表示部44dとからなる。46は演算処理部4
1がら出力される水分値データを表示器44に表示する
ための表示ドライブ回路である。なお、自動水分針では
演算処理部41で処理された水分値のデータを穀物乾燥
機を制御する為の情報として読込む。
44 is a display that simultaneously displays the type of grain and the measured moisture value, and displays 44a, 44b, and 44c that display the type of grain A (rice), B (wheat), and C (barley) and the moisture value. It consists of a display section 44d for displaying information. 46 is the arithmetic processing unit 4
This is a display drive circuit for displaying the moisture value data output from 1 on the display 44. Note that the automatic moisture needle reads the moisture value data processed by the arithmetic processing section 41 as information for controlling the grain dryer.

なお、第5図で、G及びMは各々測定された荷重値Gと
水分値Mの伝送経路を示したものである。
In addition, in FIG. 5, G and M indicate the transmission paths of the measured load value G and moisture value M, respectively.

第6図は制御用プログラムのフローチャートを示してい
る。この制御用プログラムは上記ROM38に記憶され
ていて、前記測定部2及び制御機構、特にその入力部と
出力部は、その制御用プログラムによって制御され、一
連の動作をする。
FIG. 6 shows a flowchart of the control program. This control program is stored in the ROM 38, and the measuring section 2 and the control mechanism, especially its input section and output section, are controlled by the control program and perform a series of operations.

この発明は上述の如く構成されているので、以下の如く
作用する。
Since the present invention is constructed as described above, it operates as follows.

まず、□図示しない穀物乾燥機内から被測定用の試料穀
物を抽出し、下部電極部6の中央部6a内に取入れ、こ
れを測定部2内に移送し、測定部2内の上部電極部4と
上下に対向する位置にセソ1−する。次に、図示しない
駆動源からの駆動力により、上部電極部4の内装部1o
を螺−旋運動させて、内装部10を降下する。降下した
内装部1’Oの下面に形成した円形部4aは、下部電極
部6に載置された試料に当接すると同時に試料を押圧し
て荷重を加えることになる。このとき、上下部電極部4
.6は試料に加える荷重と等しい反作用を受ける。この
場合、第1実施例では、上部電極部4はクラッシュスプ
リング12で保持されるのみであるので、反作用を受け
ると上方に変位し、上部電極部4を保持しているクラッ
シュスプリング12も上方にたわみ、クラッシュスプリ
ング12の上面側は縮み、下面側は伸びる。これをクラ
ッシュスプリング12に取付けたひずみゲージ18によ
り検出する。このとき、試料に加えられる荷重Wは、W
=に−dl+d2の関係にある。ここで、Kはクラッシ
ュスプリングの弾性定数、dlは上下部電極部間の距離
、d2は定数である。なお、下部電極部6は測定部2の
剛性の底部に載置されているので、上下方向の変位が拘
束される。一方、第2実施例及び第3実施例では、上部
電極部4は両側壁14−2により上下方向の変位が拘束
されるので、反作用を受ける−と下部電極部6のみが下
方に変位する。第2実施例では、下部電極部6を支持す
る弾性部材22−1が下方にたわみ、弾性部材22−1
の上面側は伸び、下面側は縮む。これを上下両面に取付
けたひずみゲージ18により検出する。第3実施例では
、板状の弾性部材22−2が圧縮し、この圧縮量をひず
みケージ18で検出する。また、実施例には揚けてない
が、上記式中の上下部電極間比li!1tdlを変位量
センサ等で測定して、上式を用いて試料に加えられる荷
重を求める方法もある。
First, sample grain to be measured is extracted from inside a grain dryer (not shown), taken into the center part 6a of the lower electrode part 6, transferred into the measurement part 2, and then transferred to the upper electrode part 4 in the measurement part 2. Seso 1- in the position opposite to the top and bottom. Next, the interior portion 1o of the upper electrode portion 4 is driven by a driving force from a driving source (not shown).
The inner part 10 is lowered by making a spiral movement. The circular part 4a formed on the lower surface of the lowered interior part 1'O comes into contact with the sample placed on the lower electrode part 6, and at the same time presses the sample and applies a load. At this time, the upper and lower electrode parts 4
.. 6 undergoes a reaction force equal to the load applied to the sample. In this case, in the first embodiment, the upper electrode part 4 is only held by the crush spring 12, so when it receives a reaction, it is displaced upward, and the crush spring 12 holding the upper electrode part 4 also moves upward. When deflected, the upper surface side of the crush spring 12 contracts, and the lower surface side expands. This is detected by a strain gauge 18 attached to the crush spring 12. At this time, the load W applied to the sample is W
There is a relationship of -dl+d2. Here, K is the elastic constant of the crush spring, dl is the distance between the upper and lower electrode parts, and d2 is a constant. Note that since the lower electrode section 6 is placed on the rigid bottom of the measurement section 2, displacement in the vertical direction is restrained. On the other hand, in the second and third embodiments, since the upper electrode part 4 is restrained from vertical displacement by the side walls 14-2, only the lower electrode part 6 receives the reaction and is displaced downward. In the second embodiment, the elastic member 22-1 supporting the lower electrode section 6 is bent downward, and the elastic member 22-1
The upper side of will expand and the lower side will contract. This is detected by strain gauges 18 attached to both the upper and lower surfaces. In the third embodiment, the plate-shaped elastic member 22-2 is compressed, and the amount of compression is detected by the strain cage 18. Although not mentioned in the examples, the ratio between the upper and lower electrodes in the above formula li! There is also a method of measuring 1 tdl with a displacement sensor or the like and using the above equation to find the load applied to the sample.

これらのひずみゲージ1Bで構成した荷重センサ42に
より検出させた荷重のへ11定値は、電圧に変換されて
アンプ30を介してマルチプレクサ32に送られる。一
方、上下部電極部4.6で測定された試料の水分値は、
変換増幅回路28で電圧に変換されてマルチプレクサ3
2に送られる。
The constant value of the load detected by the load sensor 42 constituted by these strain gauges 1B is converted into a voltage and sent to the multiplexer 32 via the amplifier 30. On the other hand, the moisture value of the sample measured at the upper and lower electrode sections 4.6 is
It is converted into a voltage by the conversion amplifier circuit 28 and sent to the multiplexer 3.
Sent to 2.

そこで、CPtJ36からの制御信号により、上記両信
号をA/D変換回路34でA/D変換を行ってCP’L
136へ送り込む。荷重センサ部が変位量、センサを用
いている場合には、下記の処理を行う前に、送り込まれ
た変位量信号を前記式にて換算しておく。CPU36で
は第6図のフローチャートに従ってそれを処理する。即
ち、CPU36では次の処理が行われる。まず、A/D
変換回路34から送られてきた水分と荷重の測定データ
M・Wを入力する。次に入力した水分の測定データMに
対応した穀物A、B、C1・・・、各種類別の荷重の測
定データWa、Wb、Wc、・・・を第7図の表から読
み出す。次に実測した荷重の測定データWと各々の荷重
Wa、Wb、Wc・・・と比較する。
Therefore, according to the control signal from the CPtJ36, both of the above signals are A/D converted by the A/D conversion circuit 34, and the CP'L
Send it to 136. When the load sensor section uses a displacement sensor, the displacement signal sent in is converted using the above formula before performing the following processing. The CPU 36 processes it according to the flowchart shown in FIG. That is, the CPU 36 performs the following processing. First, A/D
The measurement data M and W of moisture and load sent from the conversion circuit 34 are input. Next, grains A, B, C1, . . . corresponding to the input moisture measurement data M, load measurement data Wa, Wb, Wc, . . . for each type are read out from the table in FIG. Next, the measured data W of the actually measured loads are compared with each of the loads Wa, Wb, Wc, . . . .

いま例えばW = W aであれば、水分の測定データ
Mを穀物Aの水分値Maに換算する。これは既に述べた
ように、水分の測定データMと実際の水分値が穀物の種
類によって相違するからである。以上の一連の演算処理
によって、被測定試料は穀物Aであり、その水分値はM
aであるという結果を4る。そして、最終的には穀物の
種類Aと水分値Maを表示窓44 a、44dにそれぞ
れ表示したり、自動水分計においては穀物乾燥機の制御
情報として扱う。
For example, if W = W a, the moisture measurement data M is converted into the moisture value Ma of grain A. This is because, as already mentioned, the moisture measurement data M and the actual moisture value differ depending on the type of grain. Through the above series of calculations, the sample to be measured is grain A, and its moisture value is M
Multiply the result that a is 4. Finally, the grain type A and the moisture value Ma are displayed on the display windows 44a and 44d, respectively, and are handled as control information for the grain dryer in an automatic moisture meter.

ここで、上述した第7図の表について第8図を用いて説
明する。第8図は被測定穀物の水分の測定データMと荷
重の測定データWの関係を示す。
Here, the table shown in FIG. 7 mentioned above will be explained using FIG. 8. FIG. 8 shows the relationship between the moisture measurement data M and the load measurement data W of the grain to be measured.

ある穀物Aを電気抵抗式水分計で測定した場合、その水
分の測定データMと試料に加えられる荷重とは一対一の
関係を持つことを発見した。これは含有水分によって、
穀物の硬度が決定される為である。前記した一対の電極
部26で構成される水分針で測定する場合、低水分の穀
物はど硬度が高く、圧砕しにくい。従って、挟持中の上
下電極間距離が大きくなり、被測定試料に加えられる荷
重は高くなるのである。更にこの関係は穀物の種類によ
って異なり、これをグラフ化したのが第8図である。ま
た、電極を支持するハネのハネ定数によって、傾きは異
なる為、実験的にその関係を求めておく必要がある。こ
の関係を記憶する方法として第8図を図表化したものが
第7図であり、実測した荷重の測定データWと比較する
ために水分の測定データMに対応した穀物の荷重の測定
データWa、Wb、Wcをこの表から読の出すのである
。但し、上記説明では表としているが、関係式を記憶さ
せ、測定の都度計算により求める方法もある。
It was discovered that when a certain grain A is measured with an electrical resistance moisture meter, there is a one-to-one relationship between the moisture measurement data M and the load applied to the sample. This depends on the moisture content
This is because the hardness of the grain is determined. When measuring with the moisture needle constituted by the pair of electrode parts 26 described above, grains with low moisture have high hardness and are difficult to crush. Therefore, the distance between the upper and lower electrodes during clamping increases, and the load applied to the sample to be measured increases. Furthermore, this relationship differs depending on the type of grain, and this is graphed in Figure 8. Furthermore, since the slope differs depending on the spring constant of the springs supporting the electrode, it is necessary to experimentally determine the relationship. FIG. 7 is a graphical representation of FIG. 8 as a method for memorizing this relationship. In order to compare with the actually measured load measurement data W, the grain load measurement data Wa corresponding to the moisture measurement data M, Wb and Wc are read from this table. However, although the above explanation uses a table, there is also a method of storing the relational expression and calculating it each time a measurement is made.

以上の説明から明らかなように、この発明の構成によれ
ば、穀物に加えられる荷重とそのときの穀物の水分値を
測定することによって、穀物の種類を判別することがで
きるので、異種穀物を同一機器にて穀物の水分値を測定
したり、あるいはその測定値を用いて穀物の乾燥制御を
行う場合、機器の穀物の種類に合わせた切換操作を自動
的に行うことが可能となる。従って、従来のような手動
による穀物の種類の切換操作が不要となり、誤操作の生
じる惧れが全く無くなる。そして、手動水分計では測定
した穀物の種類と水分値を自動的に表示するので、作業
者はその表示に基づき以後の穀物乾燥作業を誤りなく行
うことができる。また自動水分計では測定した穀物の種
類と水分値を得て、これらの値により穀物乾燥機の制御
を的確に行うことができる。その結果、穀物の種類に応
じた最適状態に乾燥された穀物を確実に得ることが可能
となる等、極めて新規的有益な効果を奏するものである
As is clear from the above description, according to the configuration of the present invention, the type of grain can be determined by measuring the load applied to the grain and the moisture value of the grain at that time, so different types of grain can be distinguished. When measuring the moisture value of grain with the same device or controlling the drying of grain using the measured value, it becomes possible to automatically perform a switching operation according to the type of grain of the device. Therefore, there is no need to manually switch the type of grain as in the past, and there is no possibility of erroneous operation. Since the manual moisture meter automatically displays the type of grain and moisture value measured, the operator can perform subsequent grain drying operations without error based on the display. In addition, an automatic moisture meter can obtain the type and moisture value of the measured grain, and these values can be used to accurately control the grain dryer. As a result, it is possible to reliably obtain grains that have been dried in an optimal state according to the type of grains, which brings about extremely novel and beneficial effects.

勧化した含水率測定装置の実施例を示し、第1図は第1
実施例の測定部の側面図、第2図は第1図の平面図、第
3図は第2実施例の測定部の側面図、第4図は第3実施
例の測定部の側面図、第5図は制御機構の回路図、第6
図はフローチャー1−1第7図は水分の測定データMと
各穀物の荷重の測定データWの関係を示した表、第8図
は水分の測定データMと各穀物の荷重の測定データWの
関係を示したグラフである。第9図は従来説明図である
An example of the recommended moisture content measuring device is shown in Figure 1.
2 is a plan view of FIG. 1, FIG. 3 is a side view of the measuring section of the second embodiment, FIG. 4 is a side view of the measuring section of the third embodiment, Figure 5 is a circuit diagram of the control mechanism, Figure 6
The figure is flowchart 1-1. Figure 7 is a table showing the relationship between moisture measurement data M and load measurement data W for each grain. Figure 8 is a table showing the relationship between moisture measurement data M and load measurement data W for each grain. This is a graph showing the relationship between FIG. 9 is an explanatory diagram of the conventional technology.

図中、2は測定部、4は上部電極部、6は下部電極部、
8は外装部、IOは内装部、12はクラッシュスプリン
グ、14は側壁、16はスプリング押え具、18はひず
みゲージ、20は載置台、22は弾性部材、24は支持
台、2Gは一対の電極部、28は変換増幅回路、30ば
アンプ、32はマルチプレクサ、34はA/D変換回路
、36は演算処理部(CPU)、38はリードオンリメ
モリ (ROM) 、40はランダムアクセスメモリ(
RAM) 、42は荷重センサ、44は表示器、44a
、44b、44C1・・・は表示窓、46は表示ドライ
ブ回路、50は選択スイッチである。
In the figure, 2 is a measurement part, 4 is an upper electrode part, 6 is a lower electrode part,
8 is an exterior part, IO is an interior part, 12 is a crush spring, 14 is a side wall, 16 is a spring presser, 18 is a strain gauge, 20 is a mounting table, 22 is an elastic member, 24 is a support table, 2G is a pair of electrodes 28 is a conversion amplifier circuit, 30 is an amplifier, 32 is a multiplexer, 34 is an A/D conversion circuit, 36 is an arithmetic processing unit (CPU), 38 is a read-only memory (ROM), and 40 is a random access memory (
RAM), 42 is a load sensor, 44 is an indicator, 44a
, 44b, 44C1, . . . are display windows, 46 is a display drive circuit, and 50 is a selection switch.

代理人 弁理士 西郷義美 2− 第6図 第7図 閉            水分の刀「1定チ一γM[
%]第9図 手続補正書動却 昭和58年 6月14日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和58年特許願第17419号 2、発明の名称 穀物種判別を自動化した含水率測定装置3、補正をする
者 事件との関係  特許出願人 住 所  静岡県袋井市山名町4番地の1名 称  静
 岡 製 機 株式会社 代表者鈴木重夫 4、代 理 人 〒105 1m  03−438−2
241  (代表)住 所  東京都港区虎ノ門3丁目
4番17号(発送日 昭和58年5月31日) 6、補正の対象 (1) 明細書の発明の詳細な説明の欄(2) 明細書
の図面の簡単な説明の欄(3) 図面 (4) 別紙表 7、補正の内容 (1) 明細書第2頁第14行「第9図」を「第8図」
に訂正する。
Agent Patent Attorney Yoshimi Saigo 2- Fig. 6 Fig. 7 Closed Sword of Moisture “1 Constant Chi γM [
%] Figure 9 Procedural amendment motion June 14, 1980 Kazuo Wakasugi, Commissioner of the Patent Office1, Indication of the case 1982 Patent Application No. 174192, Name of the invention Water-containing automatic grain type discrimination Relationship between rate measuring device 3 and the case of the person making the amendment Patent applicant address: 4 Yamana-cho, Fukuroi City, Shizuoka Prefecture Name: Shizuoka Seiki Co., Ltd. Representative: Shigeo Suzuki 4, Agent: 105 1m 03- 438-2
241 (Representative) Address: 3-4-17 Toranomon, Minato-ku, Tokyo (Shipping date: May 31, 1988) 6. Subject of amendment (1) Detailed description of the invention in the specification (2) Specification Column for a brief explanation of the drawings in the document (3) Drawings (4) Appendix Table 7, contents of amendments (1) Page 2, line 14, “Figure 9” of the specification was changed to “Figure 8”
Correct to.

(2) 明細書第13頁第8行「第7図」を「別紙」に
訂正する。
(2) "Figure 7" on page 13, line 8 of the specification is corrected to "Attachment."

(3) 明細書第14頁第1行「第7図」を「別紙」に
、「第8図」を「第7図」に夫々訂正する。
(3) In the first line of page 14 of the specification, "Fig. 7" is corrected to "Attachment" and "Fig. 8" is corrected to "Fig. 7."

(4) 明細書第14頁第2行「第8図」を「第7図」
に訂正する。
(4) Change “Figure 8” to “Figure 7” on page 14, line 2 of the specification.
Correct.

(5) 明細書第14頁第13行「第8図」を「第7図
」に訂正する。
(5) "Figure 8" on page 14, line 13 of the specification is corrected to "Figure 7."

(6) 明細書第14頁第17行「第8図」を1第7図
」に、「第7図」を「別紙の表」に夫々訂正する。
(6) On page 14, line 17 of the specification, ``Fig. 8'' is corrected to ``Fig. 1 7'' and ``Fig. 7'' is corrected to ``Table of attachment.''

(7) 明細書第16頁第4行「第8図」を「第7図」
に訂正する。
(7) Page 16 of the specification, line 4, “Figure 8” was changed to “Figure 7”
Correct.

(8) 明細書第16頁第10行「第7図は・・・」か
ら第11行「・・・示した表、」を削除する。
(8) Delete from page 16 of the specification, line 10, ``Figure 7...'' to line 11, ``The table shown...''.

(9) 明細書第16頁第11行「第8図」を「第7図
」に訂正する。
(9) "Figure 8" on page 16, line 11 of the specification is corrected to "Figure 7."

(10)  明細書第16頁第13行「第9図」を1第
8図」に訂正する。
(10) "Figure 9" on page 16, line 13 of the specification is corrected to "Figure 1, Figure 8."

(11)  図面第7図を削除する。(11) Figure 7 of the drawing will be deleted.

(12)  図面「第8図」を添イ]図面の朱記の如く
「第7図」と訂正する。
(12) Attach the drawing ``Figure 8''] Correct it to ``Figure 7'' as written in red on the drawing.

(13)  図面「第9図」を添付図面の朱記の如く「
第8図」と訂正する。
(13) The drawing “Fig. 9” was changed to “
Figure 8” is corrected.

(14)  別紙表を提出する。(14) Submit the attached table.

[kg] 〜 〜[kg] ~ ~

Claims (1)

【特許請求の範囲】[Claims] 一対の電極間にて試料穀物を圧砕挟持し、該電極間に発
生した電気抵抗値を検出して複数種類の穀物の水分値を
測定する含水率測定装置において、該電気抵抗値の変化
を測定する測定回路部と、両電極間の試料穀物に加えら
れる荷重を測定する荷重センサ部と、該測定回路部と荷
重センサ部との出力を受けて電気デジタル量の測定デー
タに変換するA/D変換手段と、予め求められた各試料
穀物の種類毎の水分と荷重との測定データの関係テーブ
ルを記憶した記憶部と、該A/D変換手段から入力した
水分と荷重との測定データを上記記憶部内の関係チー″
プルと対応させて試料穀物の種類を判別し、判別した穀
物の種類に対応して該水分の測定データを水分値に変換
して出力する演算処理部とを具備したことを特徴とする
穀物種判別を自動化した含水率測定装置。
A moisture content measurement device that crushes and clamps a sample grain between a pair of electrodes, detects the electrical resistance value generated between the electrodes, and measures the moisture value of multiple types of grains.Changes in the electrical resistance value are measured. a load sensor unit that measures the load applied to the sample grain between both electrodes, and an A/D that receives the outputs of the measurement circuit unit and load sensor unit and converts them into measurement data of electrical digital quantities. A conversion means, a storage unit storing a relationship table of measurement data of moisture and load for each type of sample grain determined in advance, and the measurement data of moisture and load inputted from the A/D conversion means as described above. Relationship Qi in the storage department
A grain type characterized in that it is equipped with an arithmetic processing unit that determines the type of sample grain in correspondence with the grain type and converts the measured moisture data into a moisture value and outputs it in accordance with the determined type of grain. A moisture content measuring device that automates discrimination.
JP1741983A 1983-02-07 1983-02-07 Device for measuring moisture content rate wherein judgement of kind of grain is automated Granted JPS59143943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1741983A JPS59143943A (en) 1983-02-07 1983-02-07 Device for measuring moisture content rate wherein judgement of kind of grain is automated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1741983A JPS59143943A (en) 1983-02-07 1983-02-07 Device for measuring moisture content rate wherein judgement of kind of grain is automated

Publications (2)

Publication Number Publication Date
JPS59143943A true JPS59143943A (en) 1984-08-17
JPH0249652B2 JPH0249652B2 (en) 1990-10-30

Family

ID=11943485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1741983A Granted JPS59143943A (en) 1983-02-07 1983-02-07 Device for measuring moisture content rate wherein judgement of kind of grain is automated

Country Status (1)

Country Link
JP (1) JPS59143943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185043A (en) * 1988-01-19 1989-07-24 Sony Corp Method for allocating device numbers in multidrop system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512731Y2 (en) * 1990-10-22 1996-10-02 本田技研工業株式会社 Vehicle bumper

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111451A (en) * 1980-02-08 1981-09-03 Ketsuto Kagaku Kenkyusho:Kk Multipurpose electric type moisture meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111451A (en) * 1980-02-08 1981-09-03 Ketsuto Kagaku Kenkyusho:Kk Multipurpose electric type moisture meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185043A (en) * 1988-01-19 1989-07-24 Sony Corp Method for allocating device numbers in multidrop system
JP2512978B2 (en) * 1988-01-19 1996-07-03 ソニー株式会社 Device number allocation method in the multi-drop method

Also Published As

Publication number Publication date
JPH0249652B2 (en) 1990-10-30

Similar Documents

Publication Publication Date Title
US4020911A (en) Load cell scale
US7278317B2 (en) Pressure measurement
US3831687A (en) Flexure base scale
US3666032A (en) Flexure base scale
US4621533A (en) Tactile load sensing transducer
US5663650A (en) Portable grain moisture meter
US2822095A (en) Weighing apparatus for lifting equipment
JPS59143943A (en) Device for measuring moisture content rate wherein judgement of kind of grain is automated
US6570395B2 (en) Portable grain moisture meter
JPH1010253A (en) Method and apparatus for adjusting machine
US4561511A (en) Torsion load cell
CN208398989U (en) A kind of weighing batch can scale
US4757867A (en) Single load cell weighing systems
US20080041638A1 (en) Low Profile Load Cell
JPS6067846A (en) Water content measuring apparatus
JP2604593Y2 (en) Gas sensor
CN216815842U (en) Pressure switch detection device
CN219416409U (en) Electronic scale damping device, electronic scale structure and isolator
CN212470152U (en) Mistake proofing device in nut welding process
KR200177655Y1 (en) A dual electronic scale
CN211121569U (en) Bin weighing device
US4662463A (en) Prestressed single load cell weighing systems
CN112050724A (en) Deformation detection device and deformation detection method for building structure
JPS59216046A (en) Method for measuring moisture content
JPS6019250B2 (en) Improvement of medical beds