JPS59143930A - Large type wall surface stress gage - Google Patents

Large type wall surface stress gage

Info

Publication number
JPS59143930A
JPS59143930A JP58017784A JP1778483A JPS59143930A JP S59143930 A JPS59143930 A JP S59143930A JP 58017784 A JP58017784 A JP 58017784A JP 1778483 A JP1778483 A JP 1778483A JP S59143930 A JPS59143930 A JP S59143930A
Authority
JP
Japan
Prior art keywords
pressure receiving
receiving plate
stress
strain
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58017784A
Other languages
Japanese (ja)
Other versions
JPH0319495B2 (en
Inventor
Koichi Yabe
興一 矢部
Yoshihiro Suzuki
鈴木 芳博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOWA DENGIYOU KK
Kyowa Electronic Instruments Co Ltd
Original Assignee
KYOWA DENGIYOU KK
Kyowa Electronic Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOWA DENGIYOU KK, Kyowa Electronic Instruments Co Ltd filed Critical KYOWA DENGIYOU KK
Priority to JP58017784A priority Critical patent/JPS59143930A/en
Publication of JPS59143930A publication Critical patent/JPS59143930A/en
Publication of JPH0319495B2 publication Critical patent/JPH0319495B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • G01L1/2218Special supports with preselected places to mount the resistance strain gauges; Mounting of supports the supports being of the column type, e.g. cylindric, adapted for measuring a force along a single direction
    • G01L1/2225Special supports with preselected places to mount the resistance strain gauges; Mounting of supports the supports being of the column type, e.g. cylindric, adapted for measuring a force along a single direction the direction being perpendicular to the central axis

Abstract

PURPOSE:To provide a large gage in a simple constitution at a relatively low cost and to detect the vertical stress and horizontal stress, which are yielded in a retaining wall without interference each other, at the same time accurately, by connecting one end of each load cell to a pressure receiving plate rigidly, connecting the other end thereof to a main body rigidly, and detecting the vertical stress and the horizontal stress yielded at the wall surface of the retaining wall without interference each other. CONSTITUTION:When a force is applied in the vertical direction to a pressure receiving plate 2, a beam 1a of a load cell 1 is bent in the direction (y) with a connecting part 1f that is rigidly connected to a main body 3 as a fixed end. Strain gages SG5-SG8, which are attached to the bottom surfaces of holes 1d and 1e that are vertical to the pressure receiving plate 2, detect the shearing strain that is the vertical component with respect to the pressure receiving plate 2. The electrical signal proportional to the strain is outputted. At the same time, the beam 1a is bent in the direction (x) by the horizontal force with respect to the pressure receiving plate 2, i.e., the frictional force yielded on the pressure receiving surface of the pressure receiving plate 2. Strain gages SG1-SG4, which are attached to the bottoms of holes 1b and 1c that are the horizontal surface with respect to the pressure receiving plate 2, detect the shearing stress that is the horizontal component with respect to the pressure receiving plate 2. Then, the electrical signal proportional to the strain is outputted.

Description

【発明の詳細な説明】 本発明は、コンクリート等の擁壁に埋設固定し、例えば
、擁壁面が土砂等から受ける垂直応力(土圧)と水平応
力(摩擦応力)を検出するための大型壁面心力計に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a large wall surface that is embedded and fixed in a retaining wall made of concrete, etc., and used to detect vertical stress (earth pressure) and horizontal stress (frictional stress) that the retaining wall surface receives from earth and sand, etc. It concerns a psychocardiometer.

従来、壁面に対しての垂直方向応力を測定する壁面土圧
計として、例えば、本願出願人が先に出願した特願昭5
6−132165号がある。この従来の壁面土圧計は、
剛性大なる受圧板と剛性大なる起歪筒の一端に形成され
た剛性小なるダイヤフラムとを伝達棒を介して連結し、
前記受圧板と前記起歪筒の側周部とを弾性を有し剛性小
なる円輪板を介して連結し、前記起歪筒の他端と剛性大
なる取付はフランジを有する有底筒状ケースの底部とを
取着し、前記受圧板の受圧面を露出させて前記受圧板お
よび起歪筒を前記有底筒状ケースに水密手段を介して収
納してなり、前記受圧板にかかる垂直荷重を前記伝達棒
を介して前記起歪筒のダイヤフラムに伝達し、そのダイ
ヤフラムに生じたひずみ量をそのダイヤフラムに添着し
てなるひずみゲージによって電気的出力に変換して取出
すように構成されている。
Conventionally, as a wall soil pressure meter that measures the stress in the vertical direction to the wall surface, for example, the patent application filed in 1973 by the applicant of the present application has been proposed.
There is No. 6-132165. This conventional wall soil pressure gauge is
A pressure receiving plate with high rigidity and a diaphragm with low rigidity formed at one end of a highly rigid strain tube are connected via a transmission rod,
The pressure receiving plate and the side circumferential portion of the strain tube are connected via a circular plate having elasticity and low rigidity, and the other end of the strain tube and the mounting portion having high rigidity are connected to each other in the shape of a bottomed cylinder having a flange. The pressure receiving plate and strain cylinder are housed in the bottomed cylindrical case via watertight means by attaching the bottom part of the case and exposing the pressure receiving surface of the pressure receiving plate. The load is transmitted to the diaphragm of the strain tube via the transmission rod, and the amount of strain generated in the diaphragm is converted into an electrical output by a strain gauge attached to the diaphragm and taken out. .

また壁面に対しての水平方向応力の測定装置としては、
例えば特開昭51−124.481号に開示されている
ように、外箱と外箱内に配置された内箱とよりなり、内
箱は外箱に対し摩擦面と平行な方向には自由に移動でき
、摩擦面と垂直な方向の動きは、規制されるようにして
ボールブツシュあるいはチェーンにて支持されており、
また内箱が移動する方向には内箱に摩擦力を直接検出す
るロードセルが設けられ、そして外箱にロードセルと接
触し ロードセルと共に摩擦力に抵抗する支圧ネジを設
けて成る摩擦力測定装置が提案されている。
In addition, as a measuring device for horizontal stress on the wall surface,
For example, as disclosed in JP-A-51-124.481, it consists of an outer box and an inner box placed inside the outer box, and the inner box is free in the direction parallel to the friction surface with respect to the outer box. It is supported by a ball bush or chain so that the movement in the direction perpendicular to the friction surface is restricted.
In addition, in the direction in which the inner box moves, a load cell that directly detects the frictional force is installed in the inner box, and a friction force measuring device is installed in the outer box that includes a bearing screw that contacts the load cell and resists the frictional force together with the load cell. Proposed.

しかしながら、これら従来の土圧計または摩擦力測定装
置は、垂直方向または水平方向の応力のみを測定するも
ので、同時に両方向の応力を測定し得ないものであった
However, these conventional earth pressure gauges or friction force measuring devices measure only stress in the vertical or horizontal direction, and cannot measure stress in both directions at the same time.

更に、他の従来例として、変位板(摩擦板)と検出部と
を一体にして検出ブロックとなし、該検出部は摩擦方向
にたわみ易い薄板状に形成され、その薄板状部にひずみ
ゲージが接着され、該検出ブロックはケース内にゆるく
嵌入され且つその一端がケース底部に固定された構成の
摩擦力計が提案されている(日本機械学会論文集第44
巻381号1778頁〜1788頁参照)。
Furthermore, as another conventional example, a displacement plate (friction plate) and a detection part are integrated into a detection block, and the detection part is formed into a thin plate shape that is easily deflected in the friction direction, and a strain gauge is attached to the thin plate part. A friction force meter has been proposed in which the detection block is loosely fitted into the case and one end is fixed to the bottom of the case (Proceedings of the Japan Society of Mechanical Engineers, No. 44).
(See Vol. 381, pp. 1778-1788).

しかしながら、この摩擦力計は、ひずみ検出機構に曲げ
機構を採用しているために変位量が大きくなり、また摩
擦部材の材質が擁壁の材質と異なるため正確な摩擦応力
が求められない、という問題があるほか、構造が複雑で
機械加工が困難であるため、小型のものしか得られず、
特に本発明において対象としている大きな受圧面積(例
えば1−>をもつ大型壁向応力計に適用することは、機
械加工上および組立作業上不可能である。
However, since this friction force meter uses a bending mechanism for the strain detection mechanism, the amount of displacement is large, and since the material of the friction member is different from that of the retaining wall, accurate friction stress cannot be determined. In addition to the problems, the structure is complex and difficult to machine, so only small pieces can be obtained.
In particular, it is impossible to apply the present invention to a large wall stress meter having a large pressure receiving area (for example, 1->) due to machining and assembly operations.

本発明は、このような事情に鑑みなされたもので、簡単
な構成で、比較的安価に大型化できると共に、擁壁に生
ずる垂直応力と水平応力とを互いに干渉することなく同
時にしかも高精度に検出し得る大型壁向応力計を提供す
ることを目的としている。
The present invention has been developed in view of these circumstances, and has a simple configuration that allows for relatively inexpensive and large-scale expansion, as well as simultaneous and highly accurate control of vertical stress and horizontal stress occurring in a retaining wall without interfering with each other. The purpose is to provide a large wall stress meter that can detect stress.

以下、図面に示す実施例に基づき本発明の詳細な説明す
る。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図は、本発明に係る大型壁向応力計の一実施例の構
成を示す正面図、第2図は第1図A−A線矢視方向断面
図、第3図は本発明の一構成要素である二成分ビーム型
ロードセルの一実施例の構成を示す斜視図である。
FIG. 1 is a front view showing the configuration of an embodiment of a large wall stress meter according to the present invention, FIG. 2 is a sectional view taken along the line A-A in FIG. FIG. 2 is a perspective view showing the configuration of an embodiment of a two-component beam type load cell that is a component.

第1図および第2図に示した実施例の場合、大別して4
個の二成分ビーム型ロードセル(以下単にロードセルと
いう)1と、受圧板2と、本体3と、シール用のバッキ
ング4から構成されている。
In the case of the embodiment shown in FIG. 1 and FIG.
It consists of two-component beam type load cells (hereinafter simply referred to as load cells) 1, a pressure receiving plate 2, a main body 3, and a backing 4 for sealing.

ここでロードセル1は、第3図に示す如く断面正方形(
長方形の場合もある)をなすビーム1aの中間部に、上
面および下面から上下方向(後述する受圧板2に対し垂
直方向)に等しい深さの穴1b、ICが穿設され、その
穴1bおよびICの底面にそれぞれひずみゲージ8G1
.S02およびSG3.804が接着等の手段により、
添着されている。ひずみゲージ8G1と802,803
とSG4は、ビーム1aの長手方向軸線に対し±45°
をなす方向に添着されている。また、ビーム1aの上記
穴1b、ICとやや離れた中間部に、左側面および右側
面から左右方向(受圧板に対し水平方向)に等しい深さ
の穴1d、teを穿設し、その穴1dおよび1eの底面
にそれぞれひずみゲージSG5 、SG6およJ?8G
7.8G8がビーム1aの長手方向軸線に対し、±45
°をなす方向に添着されている。そしてビーム1aの一
端側の下面を若干突出させて後述の本体3への連結部1
fを形成し、また、ビーム1aの他端側の上面を若干突
出させて受圧板2への連結部1gを形成しである。この
ビーム1aの材質としては、この場合、ニッケルクロム
モリブデン鋼を用いているが、これに限定されるもので
はない。
Here, the load cell 1 has a square cross section (
A hole 1b and an IC having the same depth in the vertical direction (perpendicular to the pressure receiving plate 2 described later) from the upper and lower surfaces are bored in the middle part of the beam 1a, which has a rectangular shape (sometimes rectangular). Strain gauge 8G1 on the bottom of each IC
.. S02 and SG3.804 are bonded together,
It is attached. Strain gauge 8G1 and 802,803
and SG4 are ±45° to the longitudinal axis of beam 1a.
It is attached in the direction of forming. In addition, in the hole 1b of the beam 1a, holes 1d and te of equal depth in the left and right direction (horizontal direction to the pressure receiving plate) are bored from the left and right sides of the beam 1a in the middle part slightly away from the IC. Strain gauges SG5, SG6 and J? are placed on the bottom of 1d and 1e, respectively. 8G
7.8G8 is ±45 with respect to the longitudinal axis of beam 1a.
It is attached in a direction that forms an angle. Then, the lower surface of one end of the beam 1a is slightly protruded to connect the connecting portion 1 to the main body 3, which will be described later.
f, and the upper surface of the other end of the beam 1a is slightly protruded to form a connecting portion 1g to the pressure receiving plate 2. In this case, nickel chromium molybdenum steel is used as the material for the beam 1a, but the material is not limited thereto.

受圧板2は、第1図、第2図に示すように矩形板状をな
し、鋼板に補強リプ(図示省略)を設けて、剛性を大き
くしてあり、その受圧部2a側には凹状部2bを形成し
、この凹状部2b内には、擁壁面の材質、特に摩擦係数
が等しい材質のものを添着する。この実施例の場合、凹
状部2bにはコンクリ−1−5が打設しである。
The pressure receiving plate 2 has a rectangular plate shape as shown in FIGS. 1 and 2, and has a reinforcing lip (not shown) provided on the steel plate to increase rigidity, and has a concave portion on the pressure receiving portion 2a side. 2b is formed, and a retaining wall surface material, particularly a material having the same coefficient of friction, is attached to the inside of this concave portion 2b. In this embodiment, concrete 1-5 is poured into the recessed portion 2b.

本体3は、前記ロードセル1と受圧板2とを内部に収納
し得るよ・うに一端が開口された箱形状をなし、その開
口には、前記受圧板2が所定の隙間を存して嵌入し得る
大きさとし、底部3aの4筒所に設けられたロードセル
取付部3b、3C。
The main body 3 has a box shape with an opening at one end so that the load cell 1 and the pressure receiving plate 2 can be housed therein, and the pressure receiving plate 2 is fitted into the opening with a predetermined gap. The load cell mounting portions 3b and 3C are sized to meet the requirements and are provided at four cylindrical locations on the bottom portion 3a.

3d 、3eには前記ビーム1aの連結部1fかボルト
締め、または溶接により強固に連結されている。そして
本体30表面側にも、受圧板20表面に添着されたもの
と同じ材料、この場合コンクリ−l−6か打設されてお
り、これらコンクリ−1−5と6とは、同一平面に形成
されている。
3d and 3e are firmly connected to the connecting portion 1f of the beam 1a by bolting or welding. The same material as that attached to the surface of the pressure receiving plate 20, in this case concrete l-6, is also cast on the surface side of the main body 30, and these concretes 1-5 and 6 are formed on the same plane. has been done.

シール用のバッキング4は、受圧板2の外周と本体3の
開口内周との間に生ずる隙間7をシ、−ルするためのも
ので、例えば、ゴム等の可撓性部材からなり前記隙間7
をまたぐようにして張り渡され、その片側は、バッキン
グ押さえ板8で受圧板20周縁部に固定され、他側は、
バッキング押さえ板9で本体3に固定されている。 伺
、押さえ板8および9は、図示省略の締付ねしによって
、受圧板2および本体3に押さえ付けられる。
The sealing backing 4 is for sealing the gap 7 created between the outer periphery of the pressure receiving plate 2 and the inner periphery of the opening of the main body 3, and is made of a flexible material such as rubber, for example. 7
One side of the backing press plate 8 is fixed to the peripheral edge of the pressure receiving plate 20, and the other side is
It is fixed to the main body 3 with a backing press plate 9. The pressing plates 8 and 9 are pressed against the pressure receiving plate 2 and the main body 3 by tightening screws (not shown).

第4図は、本発明に係る壁面応力計を擁壁に埋設した状
態を示す断面図である。
FIG. 4 is a sectional view showing a wall stress meter according to the present invention embedded in a retaining wall.

同図において、壁面応力計は、受圧板2の表面と本体3
0表面がコンクリート擁壁10の受圧面]Oaと同一平
面をなすようにして、コンクリート擁壁10に埋設され
ている。尚、第4図におし)てGよ、1つの壁面応力計
を設置した例を示しであるが、上下方向に縦列状に複数
個設置したり、またコンクリート擁壁10の底部受圧面
10bにも、縦夕1]状に複数個設置することもある。
In the figure, the wall stress meter includes the surface of the pressure receiving plate 2 and the main body 3.
It is buried in the concrete retaining wall 10 so that its surface is flush with the pressure receiving surface Oa of the concrete retaining wall 10. Although the example in which one wall stress meter is installed is shown in FIG. In some cases, multiple units may be installed in a vertical and vertical pattern.

次に、このような構成よりなる実施例の作用につき説明
する。擁壁10の受圧面10a側には、土砂が堆積され
ているものとする。今、堆積土砂力号隆起または沈下す
ると、受圧板2に垂直方向および水平方向の力がコンク
リート5を介して伝達される。この受圧板に対し垂直方
向の力が加えられると、受圧板2に連結部1gが強固に
連結されたロードセル1のビーム1aは、本体3に強固
に連結された連結部1fを固定端として、第3図示のX
方向に曲げられる。すると、受圧板2に対し垂直方向の
面である穴id、teの底面に添着されたひずみゲージ
5C15〜S’G8が、受圧板2に対する垂直方向成分
のせん断ひずみを検出し加えられた力に比例した厄気的
信号を出力する。これと同時に受圧板2に対し水平方向
の力、すなわち受圧板2の受圧面に生ずる摩擦力によっ
てビームlaは、第3図においてX方向に曲げられるの
で、受圧板2に対し水平方向の面である穴Jb、ICの
底面に添着されたひずみゲージ801〜SG4が受圧板
2に対し水平方向成分のせん断ひずみを検出し、受圧板
2に作用する摩擦力に比例した電気信号を出力する。こ
の実施例の場合、ロードセル1は、受圧板2と本体3の
底部3aとの間における4隅に4個設置されており、各
ロードセル1には、それぞれ受圧板2に対し垂直方向の
せん断ひずみ検出用のひずみゲージSG5〜SG8が4
枚、水平方向のせん断ひずみ検出用のひずみゲージSG
1〜8G4が4枚添着され、それぞれ周知のホイートス
トンブリッジ回路を構成し且つそれらのホイートストン
ブリッジ回路をそれぞれ並列に接続して垂直方向および
水平方向のせん断ひずみを得るように構成しである。従
って、本実施例によれば、例えば受圧板2に局部的な偏
心荷重が加った場合や受圧板2内の位置による応力分布
が不均一であったとしても、各4個のロードセル1のそ
れぞれの出力ひずみは違って検出されるが、その4個の
出力の和は、常に受圧板面積内での安定した積分値とし
ての指示値を検出することになる。
Next, the operation of the embodiment having such a configuration will be explained. It is assumed that earth and sand are deposited on the pressure receiving surface 10a side of the retaining wall 10. Now, when the accumulated soil force rises or sinks, vertical and horizontal forces are transmitted to the pressure receiving plate 2 via the concrete 5. When a vertical force is applied to this pressure receiving plate, the beam 1a of the load cell 1 whose connecting portion 1g is firmly connected to the pressure receiving plate 2, with the connecting portion 1f firmly connected to the main body 3 as a fixed end, X shown in the third diagram
be bent in the direction Then, the strain gauges 5C15 to S'G8 attached to the bottom surfaces of the holes id and te, which are surfaces perpendicular to the pressure receiving plate 2, detect the shear strain of the vertical component to the pressure receiving plate 2 and respond to the applied force. Outputs a proportional nuisance signal. At the same time, the beam la is bent in the X direction in FIG. Strain gauges 801 to SG4 attached to the bottom of the IC in a certain hole Jb detect horizontal component shear strain on the pressure receiving plate 2, and output an electric signal proportional to the frictional force acting on the pressure receiving plate 2. In the case of this embodiment, four load cells 1 are installed at four corners between the pressure receiving plate 2 and the bottom 3a of the main body 3, and each load cell 1 has a shear strain in a direction perpendicular to the pressure receiving plate 2. There are 4 strain gauges SG5 to SG8 for detection.
Strain gauge SG for horizontal shear strain detection
1 to 8G4 are attached, each forming a well-known Wheatstone bridge circuit, and these Wheatstone bridge circuits are connected in parallel to obtain shear strain in the vertical and horizontal directions. Therefore, according to this embodiment, even if a local eccentric load is applied to the pressure receiving plate 2 or the stress distribution is uneven depending on the position within the pressure receiving plate 2, each of the four load cells 1 Although each output strain is detected differently, the sum of the four outputs always detects the indicated value as a stable integral value within the area of the pressure receiving plate.

このことは、受圧板2に対して、垂直方向および水平方
向のいずれのひずみ検出についてもいえることである。
This is true for strain detection both in the vertical and horizontal directions with respect to the pressure receiving plate 2.

また、本実施例のひずみ検出は、曲げによる圧縮または
引張りひずみを検出するのとは異なり、せん断ひずみを
検出するものであるから、ロードセル1の軸方向の長さ
によって、出力ひずみが変化するようなことはないとい
う利点がある。そして、垂直方向および水平方向のけん
断ひずみを検出するひずみゲージは、ロードセル1のビ
ーム1aの互いに直交する面にそれぞれ添着されている
ため、受圧板に対する垂直応力と水平応力が、各々増減
しても互いに干渉なく高精度な測定が可能である。因み
に、本実施例のものにおいては、干渉性を05%以内に
おさえることができた。
In addition, the strain detection in this embodiment is different from the detection of compressive or tensile strain due to bending, and is to detect shear strain, so the output strain changes depending on the axial length of the load cell 1. The advantage is that nothing happens. Since the strain gauges that detect the shear strain in the vertical and horizontal directions are attached to the mutually perpendicular surfaces of the beam 1a of the load cell 1, the vertical stress and horizontal stress on the pressure receiving plate increase and decrease, respectively. It is also possible to perform highly accurate measurements without mutual interference. Incidentally, in this example, the interference was able to be suppressed to within 0.5%.

また、上記実施例によれば、受圧板2の受圧面2a側に
凹状部2bを形成しであるから、この凹状部に、擁壁面
10と同じ摩擦係数をもった材料(コンクリ−1−、モ
ルタル等)を添着できる。従って、現実に擁壁面に生ず
るであろう摩擦応力を高精度に求めることができる。更
にまた、上記実施例は、機械的摩擦部分を有しないから
ヒステリシスが小さく繰り返し性のよい長期間安定した
測定データを得ることができる。
Further, according to the above embodiment, since the recessed portion 2b is formed on the pressure receiving surface 2a side of the pressure receiving plate 2, this recessed portion is made of a material (concrete 1-, Mortar, etc.) can be attached. Therefore, the frictional stress that would actually occur on the retaining wall surface can be determined with high precision. Furthermore, since the above embodiment does not have a mechanical friction part, it is possible to obtain stable measurement data over a long period of time with small hysteresis and good repeatability.

尚、本発明は、上述し、且つ図面に示した実施例のみに
限定されるものではなく、本発明の要旨に含まれる範囲
において種々変形して実施することができる。
Note that the present invention is not limited to the embodiments described above and shown in the drawings, but can be implemented with various modifications within the scope of the gist of the present invention.

例えば、擁壁は、コンクリートによるものばかりではな
く、モルタルその他の材料を用いて作られる場合もあり
、そのような場合には受圧板2の表面および本体30表
面等には、そこで用いられる材料とほぼ同一の摩擦係数
をもったものを添着すればよい。
For example, retaining walls are not only made of concrete but may also be made of mortar or other materials, and in such cases, the surface of the pressure receiving plate 2 and the surface of the main body 30 may be made of the materials used therein. It is sufficient to attach a material having almost the same coefficient of friction.

また、ロードセルは、4個用いた例につき述べたが、3
個または5個以上であってもよい。
In addition, although the example using four load cells was described, three
or 5 or more.

また、シール用バッキング4は、板状のものに限らず、
受圧板2の動きを拘束しないようなゴム状コンパウンド
(例えば密封気泡入りクロロプレンゴム)からなる変形
吸収層を受圧板2と本体30間(隙間7)に設けてもよ
い。
Furthermore, the sealing backing 4 is not limited to a plate-shaped one.
A deformation absorbing layer made of a rubber compound (for example, chloroprene rubber with sealed cells) that does not restrict the movement of the pressure plate 2 may be provided between the pressure plate 2 and the main body 30 (in the gap 7).

以上詳述したように本発明によれば、加工、組立が容易
な簡単な構成であるため、比較的安価に大型化が実現可
能であると共に擁壁に生ずる垂直応力と水平応力とを互
いに干渉することなく同時にしかも高精度に検出し得る
大型壁向応力計を提供することができる。
As described in detail above, the present invention has a simple structure that is easy to process and assemble, so it can be made larger at a relatively low cost, and the vertical stress and horizontal stress generated in the retaining wall can be prevented from interfering with each other. Therefore, it is possible to provide a large-sized wall stress meter that can detect the stress at the same time and with high precision without having to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る大型壁向応力計の一実施例の構成
を示す正面図、第2図は第1図A−A線矢視方向断面図
、第3図は本発明の一構成要素である二成分ビーム型の
ロードセルの一実施例の構成を示す斜視図、第4図は、
本発明に係る大型壁向応力計を擁壁に埋設した状態を示
す断面図である。 1・・・二成分ビーム型ロードセル、 1a ・・・ビーム、  1b〜1e・・・・・・穴、
If、Ig・・・・・・連結部、  2・・・・・・受
圧板、2a・・・・・凹状部、 3・・・・・・本体、
3b〜3e・・・・二成分ビーム型ロードセル取付部、
4・・・・バッキング、  5,6・・・・・・コンク
リ−1−17・・・・・・隙間、 」0 ・・・コンク
リート擁壁。
FIG. 1 is a front view showing the configuration of an embodiment of a large wall stress meter according to the present invention, FIG. 2 is a sectional view taken along the line A-A in FIG. 1, and FIG. 3 is a configuration of the present invention. FIG. 4 is a perspective view showing the configuration of an embodiment of a two-component beam type load cell as an element.
FIG. 2 is a sectional view showing a state in which a large wall stress meter according to the present invention is embedded in a retaining wall. 1... Two-component beam type load cell, 1a... Beam, 1b to 1e... Hole,
If, Ig...Connecting portion, 2...Pressure plate, 2a...Concave portion, 3...Main body,
3b to 3e...Two-component beam type load cell mounting part,
4...Backing, 5,6...Concrete 1-17...Gap, 0...Concrete retaining wall.

Claims (1)

【特許請求の範囲】[Claims] (11擁壁に生ずる壁面での垂直応力と水平応力を測定
するための大型壁面心力計において、ビームの縦軸に平
行でかつそれぞれが直交する二つの面にせん断力検出用
のひずみゲージをそれぞれ添着してなる二成分ビーム型
の複数個のロードセルと、前記擁壁の摩擦係数と略同じ
摩擦係数よりなる材料を受圧面に添着してなる剛性大な
る受圧板と、前記ロードセルと前記受圧板とを内部に収
容する箱形状をなし前記擁壁に埋設固定される剛性大な
る本体と、前記受圧板と前記本体との間に生ずる隙間を
シールする可撓性を有するバッキングとを備え、前記各
ロードセルの一端を、前記受圧板に、その他端を前記本
体にそれぞれ強固に連結してなり、前記擁壁に生ずる壁
面での垂直応力と水平応力とを互いに干渉なく同時に検
出し得るように構成したことを特徴とする大型壁面心力
計。
(11) In a large-scale wall dynamometer for measuring vertical stress and horizontal stress on the retaining wall, strain gauges for shear force detection are installed on two surfaces parallel to the longitudinal axis of the beam and perpendicular to each other. a plurality of two-component beam type load cells attached to each other; a highly rigid pressure receiving plate having a pressure receiving surface attached to a material having a friction coefficient substantially the same as that of the retaining wall; and the load cell and the pressure receiving plate. and a highly rigid main body that is embedded and fixed in the retaining wall, and has a flexible backing that seals a gap that occurs between the pressure receiving plate and the main body, One end of each load cell is firmly connected to the pressure receiving plate, and the other end is firmly connected to the main body, so that vertical stress and horizontal stress on the wall surface generated in the retaining wall can be detected simultaneously without interference with each other. A large wall dynamometer that is characterized by:
JP58017784A 1983-02-05 1983-02-05 Large type wall surface stress gage Granted JPS59143930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58017784A JPS59143930A (en) 1983-02-05 1983-02-05 Large type wall surface stress gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58017784A JPS59143930A (en) 1983-02-05 1983-02-05 Large type wall surface stress gage

Publications (2)

Publication Number Publication Date
JPS59143930A true JPS59143930A (en) 1984-08-17
JPH0319495B2 JPH0319495B2 (en) 1991-03-15

Family

ID=11953337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58017784A Granted JPS59143930A (en) 1983-02-05 1983-02-05 Large type wall surface stress gage

Country Status (1)

Country Link
JP (1) JPS59143930A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122874A (en) * 1984-07-10 1986-01-31 住友ゴム工業株式会社 Ball hitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122874A (en) * 1984-07-10 1986-01-31 住友ゴム工業株式会社 Ball hitting device
JPH0456630B2 (en) * 1984-07-10 1992-09-09 Sumitomo Rubber Ind

Also Published As

Publication number Publication date
JPH0319495B2 (en) 1991-03-15

Similar Documents

Publication Publication Date Title
KR100199691B1 (en) 6-component load cell
CN108519175B (en) Variable-range soil pressure measuring method based on Bragg fiber grating
JP3314107B2 (en) Accelerometer mounting structure
US4522066A (en) Temperature-compensated extensometer
CN105547235A (en) Method for measuring pull-press and bending composite deformation field of variable cross section beam structure
AU681306B2 (en) Force measuring device
US20210041312A1 (en) Force sensor and sensing element thereof
JPS59143930A (en) Large type wall surface stress gage
JP2011191126A (en) Strain element, load cell, and multi-point type balance
JP2000136970A (en) Flexible shear-measuring sensor
JPH0617839B2 (en) Maybe force detector and maybe force detector using the same
US4058005A (en) Improvements in or relating to strain transducers
JP3203590U (en) Earth pressure gauge
GB2284669A (en) Determination of in situ stress in concrete
JP7437702B2 (en) wall soil pressure gauge
JP2604692B2 (en) 2 component force / 1 moment detector
JP3159092B2 (en) Load cell
JPH02641Y2 (en)
JPS6119928B2 (en)
JP2730596B2 (en) Structural deformation detector
Megson et al. Measurement of the geometric initial imperfections in diaphragms
JP3852291B2 (en) Load cell
JPH0450970B2 (en)
RU2280847C2 (en) Force pickup
WO1995005589A1 (en) Strain gauged force transducers