JPS59142488A - Optical radar equipment - Google Patents

Optical radar equipment

Info

Publication number
JPS59142488A
JPS59142488A JP58015690A JP1569083A JPS59142488A JP S59142488 A JPS59142488 A JP S59142488A JP 58015690 A JP58015690 A JP 58015690A JP 1569083 A JP1569083 A JP 1569083A JP S59142488 A JPS59142488 A JP S59142488A
Authority
JP
Japan
Prior art keywords
light
signal
pulse
circuit
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58015690A
Other languages
Japanese (ja)
Inventor
Hiroshi Endo
寛 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58015690A priority Critical patent/JPS59142488A/en
Publication of JPS59142488A publication Critical patent/JPS59142488A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Abstract

PURPOSE:To detect exactly a range to a target object even in a fog, a snow, etc. by providing a sensitivity variable means which sets the receiving sensitivity of a reflected light signal to a low sensitivity at a prescribed level when light sending an optical signal increasing thereafter as time elapses. CONSTITUTION:A light sending device G emits pulse light Lt from a laser diode 12 in response to the supply of the transmitting trigger signal St of a period Tp from a control circuit F. On the other hand, a light receiving device H condenses the incident light containing reflected pulse light Lr. A photodetecting output making the reflected light Lr incident to a photodetector 17 is amplified by a pre-amplifier 18 to obtain the photodetecting signal Sr of an analog pulse and is inputted to the control circuit F. The control circuit F is constituted of a clock circuit 20, a time variable attenuating circuit 21, a wide band amplifier 22 and a signal processing circuit 23, and basing on a delay time extending from the time point of arrival of a trigger pulse Sd from the clock circuit 20 to the arrival time point of a photodetecting pulse Se, a range data DR corresponding to a range to a target object is formed by the processing circuit 23 and outputted.

Description

【発明の詳細な説明】 この発明は光を用いて対象物体までの距離を検出づる光
レーダ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical radar device that detects the distance to a target object using light.

従来の光レーダ装置には、例えば第1図に示すようなも
のがある。
2. Description of the Related Art Conventional optical radar devices include one shown in FIG. 1, for example.

この光レーダ装置は、電気信号を発生および処理する制
御回路Xと、一定波長の光を鋭いビーム状に改削する送
光器Yと、物体からの反射光を集光して電気信号に変換
する受光器Zとから構成されている。
This optical radar device consists of a control circuit X that generates and processes electrical signals, a light transmitter Y that modifies light of a certain wavelength into a sharp beam, and a condensed light beam reflected from an object that converts it into an electrical signal. It consists of a light receiver Z.

そして、第2図に示す如くパルス変調器1より繰り返し
周期Tp (約10.0μs)、パルス幅1−W (約
5Qns)、波高値Voの駆動パルス信号aを出力して
送光器Yへ供給するとともに、これと同一時間に発生ず
るトリガ信号すを信号処理回路3へと入力する。上記駆
動パルス信号aにより送光器Yに取り付けられた発光素
子2が高速パルス変調駆動され、波長λ、パルス幅Tw
ηパルス光Ltが発生する。このパルス光Itはレンズ
4により集光され、拡がり角θtのビーム状に整形され
て前方に放射される。
Then, as shown in FIG. 2, the pulse modulator 1 outputs a driving pulse signal a with a repetition period Tp (about 10.0 μs), a pulse width of 1-W (about 5 Qns), and a peak value Vo to the light transmitter Y. At the same time, a trigger signal generated at the same time is input to the signal processing circuit 3. The light emitting element 2 attached to the light transmitter Y is driven by high-speed pulse modulation by the drive pulse signal a, and the wavelength λ and pulse width Tw
η pulsed light Lt is generated. This pulsed light It is condensed by a lens 4, shaped into a beam having a divergence angle θt, and radiated forward.

そして、上記受光器Zにおいて、前方にある物体からの
微弱な反射パルス光1rを口径の大きいレンズ5で集光
し、その焦点に収束させる。
Then, in the light receiver Z, the weak reflected pulsed light 1r from the object in front is condensed by a lens 5 with a large diameter and converged to its focal point.

レンズ5で集光された反射パルス光しrは、背光ノイズ
(太陽光9人工照明光等の外来光)を除く光フィルタ6
を透過し、レンズ5の焦点にその受光面が来るように取
り付けられた受光素子7の受光面に入制し、光電変換さ
れて高速微少パルスの反射光受光信号Cを生ずる。
The reflected pulsed light focused by the lens 5 is passed through an optical filter 6 that removes backlight noise (external light such as sunlight 9 and artificial lighting).
The light passes through the light and enters the light receiving surface of the light receiving element 7, which is mounted so that the light receiving surface is at the focal point of the lens 5, and is photoelectrically converted to produce a reflected light light receiving signal C in the form of a high-speed minute pulse.

反射光受光信号Oは広帯域増幅器8に入力されて所定レ
ベルまで増幅され、整形された後高速パルス侶号dとな
り、信号処理回路3に入力される。
The reflected light reception signal O is input to the broadband amplifier 8, amplified to a predetermined level, and after being shaped, becomes a high-speed pulse signal d, which is input to the signal processing circuit 3.

信号処理回路3では、送光器Yより放射されるパルス光
Ltに対する反射パルス光1−rの伝播遅延時間τをト
リガ信号すと高速パルス信号dとの時間関係により検出
し、物体までの距離Rを次式により算出する。
In the signal processing circuit 3, the propagation delay time τ of the reflected pulsed light 1-r with respect to the pulsed light Lt emitted from the light transmitter Y is detected based on the time relationship with the high-speed pulse signal d when a trigger signal is received, and the distance to the object is determined. R is calculated using the following formula.

r<=C−7:/2・・・(1) ここで、Rの単位はm、τの単位はSであり、またCは
約3X108m/sである。
r<=C-7:/2 (1) Here, the unit of R is m, the unit of τ is S, and C is approximately 3×108 m/s.

そして、この光レーダ装置の用途としては、先に本出願
人により提案されているASCD (定速走行制御装置
)等を挙げることができ、これらの用途に使用される場
合、光レーダ装置を構成する送光器Yと受光器Zとは、
車両の前部フロントグリル内にそれぞれ前方へ向【ノて
取り付【ノられて自車の前方に存在する先行車や障害物
までの距離を検出することとなる。
Applications of this optical radar device include ASCD (constant speed cruise control device), which was previously proposed by the applicant, and when used for these purposes, the optical radar device is configured. The transmitter Y and receiver Z are
The sensors are installed in the front grille of the vehicle and are used to detect the distance to preceding vehicles and obstacles in front of the vehicle.

ところで、例えば霧の中を走行する場合には、第2図に
示す如く、先行車から反射してくる反射パルス光1−r
sを受光Jる以前に、霧粒子で散乱された反射パルス光
1rrが受光される。
By the way, when driving in fog, for example, as shown in FIG. 2, the reflected pulsed light 1-r reflected from the preceding vehicle
Before receiving s, reflected pulsed light 1rr scattered by fog particles is received.

霧の反射率は車体の反射率に比してかなり小さいが、霧
の反射パルス光11’fは至近距離から反射してくるた
め、その強度は強い(反射光の強度は距離の4乗に反比
例する)。
The reflectance of fog is quite small compared to the reflectance of the vehicle body, but the reflected pulse light 11'f of the fog is reflected from a close distance, so its intensity is strong (the intensity of reflected light is proportional to the fourth power of the distance). (inversely proportional).

しかしながら、上記のような従来の光レーダ装置にあっ
ては、反射パルス光1rの受信感度(上記受光素子の特
性、増幅器の利得等で決まる)は一定であるため、上記
霧による反射パルス光L1゛[を受光したことによる受
光信号dfが出力され、送光パルス光信号Ltに対する
伝播遅延時間τtに基づいて距離の締出が行われてしま
う。このような現象は霧の発生時の他に降雪時等にも同
様にして現われる− この発明は上記の事情に艦みてなされたもので、その目
的とするところは、上記のようにfI+降雪笠の中でも
、目標物体までの距離の検出が正確に行なえる光レーダ
装置を提供することにある。
However, in the conventional optical radar device as described above, since the reception sensitivity of the reflected pulsed light 1r (determined by the characteristics of the light receiving element, the gain of the amplifier, etc.) is constant, the reflected pulsed light L1 due to the fog is A light reception signal df resulting from the reception of "[" is output, and the distance is determined based on the propagation delay time τt with respect to the light transmission pulse optical signal Lt. Such a phenomenon appears not only when fog occurs but also when it snows. This invention was made in view of the above circumstances, and its purpose is to calculate fI + snow cap as described above. Among other things, it is an object of the present invention to provide an optical radar device that can accurately detect the distance to a target object.

上記目的を達成するために、この発明は、反射光信号の
受信感度を、前記光信口の送光時に所定レベルの低感度
とし、以後経時的に増大させる感度可変手段を設けたこ
とを特徴とするものである。
In order to achieve the above object, the present invention is characterized in that a sensitivity variable means is provided for setting the receiving sensitivity of the reflected optical signal to a predetermined low level at the time of transmitting light through the optical port and increasing it over time thereafter. It is something to do.

以下、本発明の実施例を第3図以下の図面を用いて詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to FIG. 3 and the subsequent drawings.

第3図は、本発明に係る光レーダ装置の一実施例を示す
図である。
FIG. 3 is a diagram showing an embodiment of the optical radar device according to the present invention.

同図に示す光レーダ装置は、前記第1図に示した従来例
のものと略同様に、制御回路Fと送光器Gと受光器1−
1とから構成されている。
The optical radar device shown in the same figure has a control circuit F, a light transmitter G, a light receiver 1-
It is composed of 1.

上記送光器Gは、制御回路Fから周期Tl)の送信トリ
ガ信号Stが供給されるのに応答して、レーザダイオー
ド12からパルス光Ltを発射するものであり、円筒状
の筐体の中に、パルス駆動回路11.レーザダイオード
12等が収容されているとともに、筺体の一端開口部に
は凸レンズ13が嵌め込まれている。上記パルス駆動回
路11は第4図に示すような構成となっている。
The light transmitter G emits pulsed light Lt from the laser diode 12 in response to being supplied with a transmission trigger signal St with a period Tl) from the control circuit F, and is located inside a cylindrical housing. , pulse drive circuit 11. A laser diode 12 and the like are housed therein, and a convex lens 13 is fitted into an opening at one end of the housing. The pulse drive circuit 11 has a configuration as shown in FIG.

そして、上記制御回路Fから出力される送信トリガ信号
Stが同軸コネクタ14を介ルで上記パルス駆動回路1
1へ入力されると、このパルス駆動回路11内のトラン
ジスタQ+が上記送信トリが信号Stによってトリガさ
れてオンとなり、これに伴って、このトランジスタQ1
のコレクタに接続されているコンデンサC1に蓄積され
ていた高電圧Va  (’=150V)の電荷が、上記
トランジスタQ1のエミッタ・アース間に挿入されてい
るレーザダイ−オード12に供給される。
The transmission trigger signal St output from the control circuit F is transmitted to the pulse drive circuit 1 via the coaxial connector 14.
1, the transistor Q+ in this pulse drive circuit 11 is turned on as the transmission trigger is triggered by the signal St, and accordingly, this transistor Q1
The charge of high voltage Va ('=150V) stored in the capacitor C1 connected to the collector of the transistor Q1 is supplied to the laser diode 12 inserted between the emitter of the transistor Q1 and ground.

このとき、レーザダイオード12には、パルス幅が数十
ns、尖頭値が数10Aのパルス電流が流れて、波長λ
、パルス幅Tp=数十ns、尖頭出力Wのパルスレーザ
光(パルス光Lt)が発射される。このパルス光1tは
、上記凸レンズ13によって拡がり角θ劃のビーム状に
整形されて前方へ照射される。
At this time, a pulse current with a pulse width of several tens of ns and a peak value of several tens of A flows through the laser diode 12, and
, pulsed laser light (pulsed light Lt) with pulse width Tp=several tens of ns and peak output W is emitted. This pulsed light 1t is shaped by the convex lens 13 into a beam having a divergence angle of θ and is irradiated forward.

また、上記受光器Hの円筒状の筐体の一端間口部には、
凸レンズ15が嵌め込まれており、この凸レンズ15に
よって上記送光器Gから発射されたパルス光1tが、前
方に存在する先行車等の対象物体に反射して戻ってくる
反射パルス光1−rを含む入射光を集光する。
In addition, at one end of the cylindrical casing of the light receiver H, there is a
A convex lens 15 is fitted, and the convex lens 15 converts the pulsed light 1t emitted from the light transmitter G into reflected pulsed light 1-r, which is reflected back to a target object such as a preceding vehicle located ahead. Collects the incident light containing the

この凸レンズ15で集光された入射光は、干渉フィルタ
等の光学フィルタ16を介して反射パルス光1r以外の
背光ノイズが除去されて、受光素子(PINフォトダイ
オード等)17へ導入される。
The incident light condensed by the convex lens 15 passes through an optical filter 16 such as an interference filter, backlight noise other than the reflected pulsed light 1r is removed, and is introduced into a light receiving element (such as a PIN photodiode) 17.

この受光素子17に上記反射パルス光L「が入射された
時に出力されるパルス電圧の受光出力は、帯域幅が数十
MH2、利得20〜30dBのプリアンプ18で増幅さ
れてアf Oグパルスの受光信号Srとなり、同軸コネ
クタ19を介して出力され、制御回路Fへ入力される。
The light receiving output of the pulse voltage that is output when the reflected pulsed light L" is incident on the light receiving element 17 is amplified by a preamplifier 18 with a bandwidth of several tens of MH2 and a gain of 20 to 30 dB, and then the light receiving output of the pulse voltage L" is amplified by a preamplifier 18 with a bandwidth of several tens of MHz and a gain of 20 to 30 dB. The signal Sr is output via the coaxial connector 19 and input to the control circuit F.

上記制911回路Fは、第5図に示す如く、クロック回
路20と、時間可変減衰回路21と、広帯域増幅器22
および信号処理回路23とから構成されている。
As shown in FIG.
and a signal processing circuit 23.

上記クロック回路20は、前配送光器Gへ供給する送信
トリガ信号S[と、この送信トリが信号Stに同期して
パルス幅約2μsのトリガパルスSdを出力するもので
、トリがパルス3dは上記時間可変減衰回路21と信号
処理回路23へ供給されている。
The clock circuit 20 outputs a transmission trigger signal S [to be supplied to the pre-distribution optical device G], and this transmission trigger outputs a trigger pulse Sd with a pulse width of about 2 μs in synchronization with the signal St, and the trigger pulse 3d is The signal is supplied to the time variable attenuation circuit 21 and the signal processing circuit 23.

上記時間可変減衰回路21は、前記受光器1−1 hl
ら出力される受光信号3rを入力してこの受光信号3r
を経時的に可変減衰して出力するものであり、例えば第
6図に示すような構成となっている。
The time variable attenuation circuit 21 is connected to the light receiver 1-1 hl.
Input the received light signal 3r output from the received light signal 3r.
The output signal is outputted after being variably attenuated over time, and has a configuration as shown in FIG. 6, for example.

上記受光信号Srはバッファ回路24を介してデプレシ
ョン型FETQ2に入力されており、上記トリガパルス
Sdは傾斜信号発生回路26に供給されている。
The light reception signal Sr is input to the depletion type FET Q2 via the buffer circuit 24, and the trigger pulse Sd is supplied to the slope signal generation circuit 26.

上記傾斜信号発生回路26は、第7図に示づ如く、上記
クロック回路20からトリガパルスS dが到来する直
前t1までは上記FETQ2がピンチA)状態となる負
電圧=■pポル1〜であって、以後所定時間Ts  (
Ts=400ns)の間でOボルトまで直線的に電圧が
増加する傾斜信号Sgを発生して上記デプレション型F
ETQ2のゲートに供給づるちのである。
As shown in FIG. 7, the slope signal generating circuit 26 operates at a negative voltage =■ppol1~ at which the FET Q2 is in the pinch A) state until t1 immediately before the arrival of the trigger pulse Sd from the clock circuit 20. Thereafter, a predetermined period of time Ts (
Ts = 400 ns), the depletion type F
This is the supply voltage to the gate of ETQ2.

上記F E T’ Q 2に入力される受光信号3rは
、上記ドレイン・ソース間抵抗RdSとソース側に接続
された抵抗R8とで分圧され、入力インピーダンスZi
≧1にΩ、出力インピーダンスzo=50Ωのバッファ
回路25を介して出力される(この出力を減衰受光信号
Ssとする)。
The received light signal 3r input to the FET' Q 2 is voltage-divided by the drain-source resistance RdS and the resistance R8 connected to the source side, and the input impedance Zi
≧1, and is outputted via the buffer circuit 25 with output impedance zo=50Ω (this output is referred to as the attenuated light reception signal Ss).

このとき、上記FETQ2のドレイン・ソース間抵抗R
dSは、上記傾斜信号Sgの変化に対応して時間tI 
 (Rds=oo)から、時間t2 (RdS二〇)の
間で直線的に抵抗値が変化する。
At this time, the drain-source resistance R of the FETQ2
dS is the time tI corresponding to the change in the slope signal Sg.
The resistance value changes linearly from (Rds=oo) to time t2 (RdS20).

これによって、第7図に示す如く、時間可変減衰回路2
1の信号伝達率K(K−8sのパルス波高値/Srのパ
ルス波a(a)4;&、上記j+ 〜t2の間で0%か
ら100%まで略直線的に増大することとなる。
As a result, as shown in FIG. 7, the time variable attenuation circuit 2
1, the signal transmission rate K(K-8s pulse height value/Sr pulse wave a(a)4; & increases approximately linearly from 0% to 100% between j+ and t2 above.

なお、傾斜信号発生回路26の電源V1・ (−一5V
)は、トランジスタQ3によって、オン、オフ制御がで
きるように構成されている。すなわち、トランジスタQ
3のベースに印加されるON・0FF(8号spが゛H
″レベルの場合に4;ll;1t−ランジスタQ3がオ
ンとなり、傾斜信号発生回路26の電源はオフ状態(−
’−0V)となり、傾斜信号S9の電圧可変は行われず
常時OVとなるにう1〔構成されている。
Note that the power supply V1 of the slope signal generation circuit 26 (-5V
) is configured so that it can be controlled on and off by a transistor Q3. That is, transistor Q
ON/0FF applied to the base of No. 3 (No. 8 sp is ゛H
'' level, the 4;ll;1t- transistor Q3 is turned on, and the power supply of the slope signal generation circuit 26 is turned off (
'-0V), and the voltage of the slope signal S9 is not varied and is always OV.

そして、上記時間可変減衰回路21から出力された減衰
受光信号SSは、広帯域増幅器(利得50〜60dB>
で振幅制限をしつつ増幅されるとともに、波形整形され
て、所定レベルの受光信号パルスSeとなり、信号処理
回路23へ供給される。
Then, the attenuated light reception signal SS output from the time variable attenuation circuit 21 is processed by a broadband amplifier (gain of 50 to 60 dB>
The signal is amplified while limiting its amplitude, and is also waveform-shaped to become a received light signal pulse Se of a predetermined level, which is supplied to the signal processing circuit 23.

上記信号処理回路23は、上記グ白ツク回路20からト
リガパルス3dが到来した時点hXら、上記受光信号パ
ルスSeの到来時点までの遅延時間τに基づいて、目標
物体までの距離に対応づる距離データDRを形成して出
ツノするものである。
The signal processing circuit 23 calculates a distance corresponding to the distance to the target object based on the delay time τ from the time hX when the trigger pulse 3d arrives from the background check circuit 20 to the time when the light reception signal pulse Se arrives. It is generated by forming data DR.

上記の如く構成された光レーダ装置にお0て、霧のため
、第8図<b>に示づように、目標物体からの反射光信
号1rsの前に、霧で散乱された反射光信号1−rfが
受光されたとする。この霧の反射光信号1−1”fは、
遠方から反射してくる光信号稈光強度が弱り4(るため
、同図に示りように次第に振幅が減少づる波形となる。
In the optical radar device configured as described above, due to the fog, the reflected light signal scattered by the fog appears before the reflected light signal 1rs from the target object, as shown in FIG. Assume that 1-rf is received. This fog reflected light signal 1-1”f is
Since the intensity of the optical signal reflected from a distance weakens, the waveform becomes a waveform whose amplitude gradually decreases as shown in the figure.

このとき、上記受光盤目からは、同図(C)に示づよう
な受光信号3rが出力され、この受光器・号3rは、上
記時間可変減衰回路21において、同図(d )に示づ
伝達率特性によって圧縮される。
At this time, the light receiver 3r outputs a light reception signal 3r as shown in FIG. is compressed by the transmissibility characteristics.

すると、上記時間可変減衰回路21からは同図(e)に
示づ如く、鞘の反射光受光信号3rfが一様に極めて小
さな振幅となって表われ、この減衰受光信号SSを広帯
域増幅器22に通づと、同図([)に示す如く、上記霧
の反射光受光信号3rrの成分は消滅し、目標物体から
の反射光受光信号3rsの成分のみが得られる。
Then, as shown in FIG. 3(e), the time-variable attenuation circuit 21 uniformly outputs the sheath reflected light reception signal 3rf with an extremely small amplitude, and this attenuated reception signal SS is sent to the broadband amplifier 22. As the light passes through, as shown in the figure ([), the component of the fog reflected light reception signal 3rr disappears, and only the reflected light reception signal 3rs component from the target object is obtained.

これによって、信号処理回路23では、上記目標物体か
らの反射光受光信号3rsによる受光パルス信号3es
に基づいて距離データDRが形成されることとなり、霧
や降雪の中ででも正確に目標物体までの距離を検出づる
ことができる。
As a result, the signal processing circuit 23 generates a light reception pulse signal 3es based on the reflected light reception signal 3rs from the target object.
Based on this, the distance data DR is formed, making it possible to accurately detect the distance to the target object even in fog or snowfall.

なお、濃霧中に先行車が前方近距離に存在する場合、先
行車による反射パルス光の強度は、鞘の反則光レベルよ
りも充分大きいため、このノ、うな減衰制御を実施して
も実際の近距離先行車については支障なく検出できるこ
とは古うまでもない。
Note that when a preceding vehicle is present at a short distance ahead in dense fog, the intensity of the reflected pulsed light from the preceding vehicle is sufficiently greater than the level of the sheath's foul light, so even if such attenuation control is performed, the actual It goes without saying that it is possible to detect a nearby preceding vehicle without any problem.

次に第9図は、上記の光レーダ装置を車両の△SCD 
(定速走行制御装置)に適用した例を示Jブロック図で
ある。
Next, FIG. 9 shows how the above optical radar device is connected to the vehicle's ΔSCD.
(Constant speed traveling control device) is a block diagram showing an example of application.

上記ASCD27は、所定のスイッチ操作によって作動
し、車速センサの出力に基づいて、車両走行速度を一定
速度に保つように自動的にノ7クレル制御を行うもので
あり、高速道路を走行する際等長時間一定速度で走行づ
る場合に利用されるものである。
The ASCD 27 is activated by operating a predetermined switch, and automatically performs control to keep the vehicle running speed at a constant speed based on the output of the vehicle speed sensor, such as when driving on a highway. It is used when traveling at a constant speed for a long period of time.

そして、同図に示づ△5CD27は、マイクロコンピュ
ータ26から供給される速度指示信号S×に応答して走
行速度を可変するように構成されている。
The Δ5CD 27 shown in the figure is configured to vary the running speed in response to the speed instruction signal Sx supplied from the microcomputer 26.

上記マイクロコンビコータ26は、上記制御回路Fから
供給される距離データI) Rに基づいて、先行車まで
の車間距離が安全車間距#を以上であるか否かの判断を
行ない、車間距離が安全車間距離以下の場合には、IA
度を低減させるような速度指示信号SXを出力して、安
全車間距離を保つように制御を行なう。
Based on the distance data I) R supplied from the control circuit F, the micro combi coater 26 determines whether the distance to the preceding vehicle is greater than or equal to the safe distance #, and determines whether the distance between the vehicles is equal to or greater than the safe distance #. If the following distance is less than the safe distance, IA
The system outputs a speed instruction signal SX that reduces the speed and performs control to maintain a safe inter-vehicle distance.

またこのマイクロコンピュータ26からは、例えば前記
送信1〜リガ信号Stの周期Tpの10倍の周期で゛′
1″レベルのパルスを出力して、これを前記時間可変減
衰回路21内の1−ランジスタQ3へON・OFF信号
Spどして供給している。
Further, from this microcomputer 26, for example, at a period 10 times the period Tp of the transmission 1 to trigger signal St,
A 1'' level pulse is output and supplied to the 1-transistor Q3 in the time variable attenuation circuit 21 as an ON/OFF signal Sp.

これによって、上記時間可変減衰回路21は、上記送信
トリガ信号Stが10回発生ずる毎に1回の割合で、可
変減衰動作を停止することどなる。
As a result, the time variable attenuation circuit 21 stops the variable attenuation operation once every ten times the transmission trigger signal St occurs.

従って、霧の中を走行している場合には、制御回路Fか
ら出力される距離データDRには、目標物体までの距離
データDRsと霧の反!11信号による距離データDR
fが9:1の割合で現われることとなる。
Therefore, when driving in fog, the distance data DR output from the control circuit F includes the distance data DRs to the target object and the difference between the fog and the distance data DRs. Distance data DR using 11 signals
f appears at a ratio of 9:1.

そこで、」二記マイクロコンピュータ26では、人力さ
れた距離データDRの値が前回入力された距離データに
比較して大幅な変化が見られる場合には、パ用在霧中走
行中″と判定して、ASCD27へ通常の走行速度より
も羅い速111 (例えば40klll/11)の走行
指示信号S×を供給して、悪視界での状況に適した安全
走行を図るのである。
Therefore, the microcomputer 26 determines that the driver is driving in fog if the value of the manually entered distance data DR shows a significant change compared to the previously input distance data. , a driving instruction signal Sx at a speed of 111 (for example, 40 klll/11) faster than the normal driving speed is supplied to the ASCD 27 to ensure safe driving suitable for poor visibility conditions.

以上詳細に説明したようにこの発明の光レーダ装置にあ
っては、反射光信号の受信感度を、光信号の送光時に所
定レベルの低感度とし、以後経時的に増大させる感度可
変手段を設けたことによって、霧や降雪等によって目標
物体までの距離の検出が妨げられ、正確な距離検出が行
なえなくなることを防止し、距離検出性能の向上を図る
ことができる。
As explained in detail above, the optical radar device of the present invention is provided with a sensitivity variable means that sets the reception sensitivity of the reflected optical signal to a predetermined low level when transmitting the optical signal and then increases it over time. By doing so, it is possible to prevent the detection of the distance to the target object from being obstructed by fog, snowfall, etc. and from being unable to perform accurate distance detection, and it is possible to improve the distance detection performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光レーダ装置の構成を示す図、第2図は
その主要出力を示づ波形図、第3図は本発明に係る光レ
ーダ装置の一実施例の構成を示す図、第4図は第3図中
のパルス駆動回路の具体的構成を示す回路図、第5図は
第34図中の制御回路の具体的構成を示すブロック図、
第6図は第5図中の時間可変減衰回路21の具体的構成
を示Jブロック図、第7図は時間可変減衰回路の動作を
示寸波形図、第8図は第3図に示した光レーダ装置の動
作を承り波形図、第9図は同光レーダi@の適用例を示
すブロック図である。 F・・・・・・制御回路 G・・・・・・送光器 1−1・・・・・・受光器 L(・・・送光信号 L r・・・反射光信号 21・・・時間可変減衰回路 26・・・傾斜信号発生回路 Q2・・・デプレション型FET 特許出願人 日産自動車株式会社 第4図 第5図 、F 第6図 第7図
FIG. 1 is a diagram showing the configuration of a conventional optical radar device, FIG. 2 is a waveform diagram showing its main output, and FIG. 3 is a diagram showing the configuration of an embodiment of the optical radar device according to the present invention. 4 is a circuit diagram showing a specific configuration of the pulse drive circuit in FIG. 3, FIG. 5 is a block diagram showing a specific configuration of the control circuit in FIG. 34,
FIG. 6 is a block diagram showing the specific configuration of the time variable attenuation circuit 21 in FIG. 5, FIG. 7 is a dimensional waveform diagram showing the operation of the time variable attenuation circuit, and FIG. 8 is shown in FIG. FIG. 9 is a waveform diagram showing the operation of the optical radar device, and FIG. 9 is a block diagram showing an example of application of the optical radar i@. F... Control circuit G... Light transmitter 1-1... Light receiver L (... Light transmission signal L r... Reflected light signal 21... Time variable attenuation circuit 26... Slope signal generation circuit Q2... Depletion type FET Patent applicant Nissan Motor Co., Ltd. Figure 4 Figure 5, F Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1)パルス状光信号を送光するとともに、対象物体に
にる反射光信号を受光し、送受光信号の関係に基づいて
対象物体までの距離を検出(゛る光レーダ装置において
; 前記反射光信号の受信感度を、前記光信号の送光時に所
定レベルの低感度とし、以後経時的に増大させる感麿可
変手段を設け1cことを特徴とする光レーダ装置。
(1) While transmitting a pulsed optical signal, receiving a reflected optical signal from a target object, and detecting the distance to the target object based on the relationship between the transmitted and received optical signals (in an optical radar device; An optical radar device characterized in that it is provided with a variable sensitivity means (1c) for setting the reception sensitivity of an optical signal to a predetermined low level at the time of transmitting the optical signal and increasing it over time thereafter.
JP58015690A 1983-02-02 1983-02-02 Optical radar equipment Pending JPS59142488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58015690A JPS59142488A (en) 1983-02-02 1983-02-02 Optical radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58015690A JPS59142488A (en) 1983-02-02 1983-02-02 Optical radar equipment

Publications (1)

Publication Number Publication Date
JPS59142488A true JPS59142488A (en) 1984-08-15

Family

ID=11895754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58015690A Pending JPS59142488A (en) 1983-02-02 1983-02-02 Optical radar equipment

Country Status (1)

Country Link
JP (1) JPS59142488A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767293A (en) * 1986-08-22 1988-08-30 Copeland Corporation Scroll-type machine with axially compliant mounting
US4877382A (en) * 1986-08-22 1989-10-31 Copeland Corporation Scroll-type machine with axially compliant mounting
JPH0449890U (en) * 1990-09-03 1992-04-27
US5407335A (en) * 1986-08-22 1995-04-18 Copeland Corporation Non-orbiting scroll mounting arrangements for a scroll machine
US5627511A (en) * 1994-08-30 1997-05-06 Nippondenso Co., Ltd. Distance measuring apparatus for automotive vehicles that compensates for the influence of particles floating in the air
JP2003114277A (en) * 2001-10-04 2003-04-18 Nissan Motor Co Ltd Vehicle-to-vehicle distance measuring device
US7070401B2 (en) 2004-03-15 2006-07-04 Copeland Corporation Scroll machine with stepped sleeve guide
EP2287630A1 (en) 2009-08-20 2011-02-23 Sick Ag Optoelectronic recording device
JP2017032547A (en) * 2015-07-31 2017-02-09 オプテックス株式会社 Laser distance meter false detection suppression circuit
JP2017161377A (en) * 2016-03-10 2017-09-14 株式会社リコー Object detection device, sensing device, and object detection method
US10139477B2 (en) 2015-07-31 2018-11-27 Optex Co., Ltd. Erroneous detection restraining circuit for laser range finder

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877382A (en) * 1986-08-22 1989-10-31 Copeland Corporation Scroll-type machine with axially compliant mounting
US5407335A (en) * 1986-08-22 1995-04-18 Copeland Corporation Non-orbiting scroll mounting arrangements for a scroll machine
US4767293A (en) * 1986-08-22 1988-08-30 Copeland Corporation Scroll-type machine with axially compliant mounting
JPH0449890U (en) * 1990-09-03 1992-04-27
DE19531632B4 (en) * 1994-08-30 2009-08-13 DENSO CORPORATION, Kariya-shi distance measuring
US5627511A (en) * 1994-08-30 1997-05-06 Nippondenso Co., Ltd. Distance measuring apparatus for automotive vehicles that compensates for the influence of particles floating in the air
JP2003114277A (en) * 2001-10-04 2003-04-18 Nissan Motor Co Ltd Vehicle-to-vehicle distance measuring device
US7070401B2 (en) 2004-03-15 2006-07-04 Copeland Corporation Scroll machine with stepped sleeve guide
US7322807B2 (en) 2004-03-15 2008-01-29 Emerson Climate Technologies, Inc. Scroll machine with axially compliant mounting
EP2287630A1 (en) 2009-08-20 2011-02-23 Sick Ag Optoelectronic recording device
JP2017032547A (en) * 2015-07-31 2017-02-09 オプテックス株式会社 Laser distance meter false detection suppression circuit
US10139477B2 (en) 2015-07-31 2018-11-27 Optex Co., Ltd. Erroneous detection restraining circuit for laser range finder
JP2017161377A (en) * 2016-03-10 2017-09-14 株式会社リコー Object detection device, sensing device, and object detection method

Similar Documents

Publication Publication Date Title
US7079974B2 (en) System and method for detecting an object using pulsed light
JPS6140075B2 (en)
US6860350B2 (en) CMOS camera with integral laser ranging and velocity measurement
US5227784A (en) System for detecting and determining range of target vehicle
JPS59203975A (en) Light radar device for vehicle
JPS59142488A (en) Optical radar equipment
KR20220024177A (en) Adaptive multi-pulse LIDAR system
CN110441754A (en) Segment the controllable optical receiver assembly of visual field optical efficiency
KR100559421B1 (en) System for preventing rear-ending for vehicle
CN1323279C (en) Object detecting apparatus and irregularity detecting device for the same
CN109932705B (en) Ultra-wide dynamic range laser echo receiving device and control method thereof
JP6765039B2 (en) Exit device
JP2000193748A (en) Laser distance-measuring device for large measurement range
US20210096226A1 (en) Lidar system and its control method
Sekine et al. Design method for an automotive laser radar system and future prospects for laser radar
CN212749236U (en) Two-dimensional scanning remote laser radar
WO2022126429A1 (en) Ranging apparatus, ranging method, and movable platform
JPH0680436B2 (en) Airborne particle detector
US4187421A (en) Optical relay
JPH025276B2 (en)
US11774594B2 (en) Air data system with optical modulator on receive channels for stroboscopic detection
JP7462989B2 (en) Projection device
JP6949395B2 (en) Exit device
JPS587581A (en) Optical radar type passage discriminator
JPS62195579A (en) Obstacle detecting device for vehicle