JPS59142381A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS59142381A
JPS59142381A JP1649783A JP1649783A JPS59142381A JP S59142381 A JPS59142381 A JP S59142381A JP 1649783 A JP1649783 A JP 1649783A JP 1649783 A JP1649783 A JP 1649783A JP S59142381 A JPS59142381 A JP S59142381A
Authority
JP
Japan
Prior art keywords
heat transfer
cylinder
heat
fins
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1649783A
Other languages
Japanese (ja)
Inventor
Shigeru Iwanaga
茂 岩永
Satoshi Imabayashi
敏 今林
Toshimoto Kajitani
俊元 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1649783A priority Critical patent/JPS59142381A/en
Publication of JPS59142381A publication Critical patent/JPS59142381A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To miniaturize and densify the heat exchanger by a method wherein the heat exchanger is made to be of double cylinder structure comprising a heat transfer cylinder and an outer cylinder, a number of heat transfer fins having communication holes therethrough are attached to the inner and the outer surface of the heat transfer cylinder to thereby provide flow passages for two heat exchanging fluids and non-contact sections serving as communication holes are provided at the annular contact sections of the heat transfer fins and the heat transfer cylinder. CONSTITUTION:A heat transfer cylinder 1 is of double layer structure such that a first fluid side wall 1a and a second fluid side wall 1b are adhered to each other and a leakage detecting groove 2 is formed axially in the adhered wall section so that when any of the side walls 1a and 1b is pierced with a hole, a fluid flows outside to thereby make one notice abnormality. Further, a cylinder 3 is arranged within the heat transfer cylinder 1 with the formation of an annular space 4 between the cylinders and within the space 4 a number of heat transfer fins having communication holes 6 arranged closely in a number of layers at suitable intervals are adhered close to the inner surface of the heat transfer cylinde 1 at the annular contact sections 7. In addition, a part of each of the annular section 7 is cut to provide the non-contact section 7 in the form of a hole serving as a communication hole. Thus, by the provision of the non- contact sections, the fins can be bonded to the heat transfer cylinder with low melting point solder.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は伝熱管の内外面に多数の伝熱フィンを設けて伝
熱面積の拡大を図った熱交換器に関し、冷凍機、ヒート
ポンプ等の水熱源冷媒凝縮器あるいは蒸発器に応用でき
るものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a heat exchanger in which a large number of heat transfer fins are provided on the inner and outer surfaces of heat transfer tubes to increase the heat transfer area, and the present invention relates to a heat exchanger that expands the heat transfer area by providing a large number of heat transfer fins on the inner and outer surfaces of heat transfer tubes. It can be applied to refrigerant condensers or evaporators.

従来例の構成とその問題点 従来の水冷式凝縮器としては二重管式熱交換器(第5図
、第6図)、水管冷媒管並設二重壁熱交換器(第7図)
、シェルアンドチューブ式熱交換器(図示せず)等があ
る。しかし、いずれも管材を用いて水通路と冷媒通路を
構成したものであり、管材の形状構成上で伝熱面積を高
密度にしたり、熱交換器自体を小型軽量化して省資源化
したものを得る。ことは困難であった。
Configuration of conventional examples and their problems Conventional water-cooled condensers include double-tube heat exchangers (Figures 5 and 6) and double-wall heat exchangers with parallel water and refrigerant tubes (Figure 7).
, a shell-and-tube heat exchanger (not shown), etc. However, in both cases, the water passage and refrigerant passage are constructed using pipe materials, and the heat transfer area is made denser due to the shape of the pipe material, and the heat exchanger itself is made smaller and lighter to conserve resources. obtain. That was difficult.

発明の目的 本発明は以上の様な従来の欠点を除去するもので、伝熱
面を広く密に取ると共に、各流体の熱伝達を向上させて
熱交換器の小型高性能化を図ると共に、この熱交換器を
低コストで得ることを目的としている。
Purpose of the Invention The present invention eliminates the above-mentioned drawbacks of the conventional heat exchanger by making the heat transfer surface wide and dense, improving the heat transfer of each fluid, and making the heat exchanger more compact and high-performance. The aim is to obtain this heat exchanger at low cost.

発明の構成 本発明は、この目的を達成するだめに、伝熱筒と外筒の
二重筒を設け、前記伝熱筒の内外表面に流通孔を配した
多数の伝熱フィンを設けて熱交換する二流体の流路を形
成すると共に、前記伝熱フィンと伝熱筒との環状接触部
に流通孔兼用の非接触部を設ける構成とした。
Structure of the Invention In order to achieve this object, the present invention provides a double cylinder of a heat transfer cylinder and an outer cylinder, and provides a large number of heat transfer fins with circulation holes on the inner and outer surfaces of the heat transfer cylinder to transfer heat. In addition to forming a flow path for the two fluids to be exchanged, a non-contact part that also serves as a flow hole is provided in the annular contact part between the heat transfer fin and the heat transfer cylinder.

この構成により、伝熱筒の内外の熱交換流体流路におい
て伝熱面を広く密に構成できると共に流体が伝熱フィン
の流通孔および流通孔兼用の非接触部を通過する時の境
界層前縁効果と伝熱フィン間を通過する時の流れの拡大
縮小および衝突による攪拌乱流効果によって熱伝達を大
幅に向上させて小型高性能化を達成でき、さらに流通孔
兼用の非接触部により伝熱筒と伝熱フィンと環状接触部
のハンダ付時の溶融金属の流れが均一となり接触熱抵抗
のない確実な接合が容易に実施できるため、この小型高
性能の熱交換器を低コストで得ることができる。
With this configuration, the heat transfer surface can be configured widely and densely in the heat exchange fluid flow path inside and outside the heat transfer tube, and in front of the boundary layer when the fluid passes through the flow holes of the heat transfer fins and the non-contact part that also serves as the flow hole. The edge effect, the expansion and contraction of the flow as it passes between the heat transfer fins, and the agitation turbulence effect caused by collisions greatly improve heat transfer, making it possible to achieve compactness and high performance.Furthermore, the non-contact part that also serves as a flow hole improves heat transfer. When soldering the heat tube, heat transfer fins, and annular contact part, the flow of molten metal becomes uniform, making it easy to achieve reliable bonding without contact thermal resistance, making it possible to obtain this small, high-performance heat exchanger at low cost. be able to.

実施例の説明 以下本発明の一実施例を図面と共に説明する。Description of examples An embodiment of the present invention will be described below with reference to the drawings.

1は熱伝導性に優れた材料で製作された中空筒状の伝熱
筒であり、第一流体側壁1aと第二流体側壁1bを密着
させると共に密着壁部に万一第一あるいは第二流体側壁
1J1bのいずれかに穴が明いた場合に流体が外部に流
れ出て異常を知らせるための漏洩検知溝2を軸方向に設
けた二層構造となっている。
Reference numeral 1 denotes a hollow cylindrical heat transfer cylinder made of a material with excellent thermal conductivity, and the first fluid side wall 1a and the second fluid side wall 1b are brought into close contact with each other. It has a two-layer structure in which a leak detection groove 2 is provided in the axial direction to notify an abnormality by allowing fluid to flow outside if a hole is formed in any of the side walls 1J1b.

この伝熱筒1の内側には円筒3が配され環状の空間4が
形成されている。5はこの環状の空間4に適当な間隔で
密に多数積層して配置した流通孔6を有した伝熱フィン
であり、伝熱筒1の内面に環状接触部7で密着している
。8は環状接触部7の一部を切欠いて穴とし形成した流
通孔兼用の非接触部である。
A cylinder 3 is arranged inside the heat transfer cylinder 1, and an annular space 4 is formed. Reference numeral 5 denotes a heat transfer fin having a plurality of communication holes 6 disposed in this annular space 4 in a densely laminated manner at appropriate intervals, and is in close contact with the inner surface of the heat transfer tube 1 at an annular contact portion 7. Reference numeral 8 designates a non-contact portion which also serves as a communication hole and is formed by cutting out a part of the annular contact portion 7 to form a hole.

9は外筒1oと伝熱筒1により形成される環状空間11
に適当な間隔で密に多数積層して配置した流通孔12を
有した伝熱フィンであり、伝熱筒1の外面に環状接触部
13で密着している。14は環状接触部13の一部を切
欠いて穴とし形成した流通孔兼用の非接触部である。1
5は第一流体入口孔、16は第一流体出口孔、17は第
二流体入口孔、18は第二流体出口孔である。
9 is an annular space 11 formed by the outer cylinder 1o and the heat transfer cylinder 1
It is a heat transfer fin having a large number of communication holes 12 arranged in a dense stack at appropriate intervals, and is in close contact with the outer surface of the heat transfer cylinder 1 at an annular contact portion 13. Reference numeral 14 designates a non-contact portion which also serves as a communication hole and is formed by cutting out a part of the annular contact portion 13 to form a hole. 1
5 is a first fluid inlet hole, 16 is a first fluid outlet hole, 17 is a second fluid inlet hole, and 18 is a second fluid outlet hole.

以上の構成の熱交換器で性能上重要な点は伝熱筒と伝熱
フィンの接触部における接触熱抵抗を低減させることで
あり、本考案においてはハンダ付などの溶融金属で密着
部の空隙を完全に消滅させて接触熱抵抗を無くする構成
とした。この時、伝熱フィン6.9に設けた流通孔兼用
の非接触部8゜14が重要な要件となる。すりわち伝熱
筒内外に伝熱フィンを多数積層挿入後、伝熱筒の軸を垂
直方向として加熱し上端部よりハンダ等低融点の金属を
それぞれの環状接触部7,13に供給すると溶融したハ
ンダ等の金属は環状接触部の周方向に沿って回ると共に
、流通孔兼用の非接触部8.14を通って下方に流下し
、順次多数積層された伝熱フィンに伝わって各環状接触
部7.7−13.13の周方向に均等に行きわたり、環
状接触部と伝熱筒の接合が完全に行なわれ接触熱抵抗は
無くなるものである。ここで、各伝熱フィン5,9の非
接触部8・ 、14−はそれぞれ各1カ所とする方がハ
ンダ等の溶融金属が確実に回り易くなる0 というのは、もし非接触部が各フィンそれぞれ2力所以
上ある場合、順次上から流下してきた溶融ハンダ等の金
属が環状接触部の周方向全周に流れず非接触部で区切ら
れた一部分にのみしか回らないことが発生し易く、接触
熱抵抗の増大となり熱交換器の性能低下を招くことがあ
った。
An important point in terms of performance in the heat exchanger with the above configuration is to reduce the contact thermal resistance at the contact area between the heat transfer cylinder and the heat transfer fins. The structure is designed to completely eliminate contact thermal resistance. At this time, the non-contact portion 8° 14 provided on the heat transfer fin 6.9 and serving also as a communication hole becomes an important requirement. After inserting a large number of heat transfer fins into the inside and outside of the heat transfer tube, the heat transfer tube is heated with the axis in the vertical direction, and when low melting point metal such as solder is supplied from the upper end to each annular contact portion 7, 13, it melts. The solder and other metals circulate along the circumferential direction of the annular contact part, flow down through the non-contact part 8.14 which also serves as a flow hole, and are transmitted to the heat transfer fins laminated in sequence, and are transferred to each annular contact part. It spreads evenly in the circumferential direction of the portions 7.7-13.13, and the annular contact portion and the heat transfer cylinder are completely joined, eliminating contact thermal resistance. Here, it is better to have one non-contact part 8, 14- of each heat transfer fin 5, 9 so that the molten metal such as solder can circulate more easily. This is because if the non-contact part If each fin has two or more force points, it is likely that metal such as molten solder that has sequentially flowed down from above will not flow around the entire circumferential direction of the annular contact area, but will only flow to a portion separated by the non-contact area. , the contact thermal resistance may increase and the performance of the heat exchanger may deteriorate.

この様に非接触部を設けることにより低融点のハンダ等
の金属により容易に接合でき、しかも非接触部を各伝熱
フィンごとに1カ所づつ設けれはさらに確実に接合でき
て接触熱抵抗を無くせ、熱特性を、向上させることが低
コストで達成できる。
By providing a non-contact part in this way, it can be easily joined with metal such as low melting point solder, and by providing one non-contact part for each heat transfer fin, it can be joined more reliably and the contact thermal resistance can be reduced. improved thermal properties can be achieved at low cost.

また第4図に示すように、帯状の材料からリング状に屈
曲成形して例えは伝熱フィン9′を作り、両端の対向部
を伝熱フィンの径方向全体に開放したスリット状間隙を
流通孔兼用の非接触部19とすれば接触熱抵抗を無ぐす
るハンダ伺などの加工が同様に行なえるだけでなく、伝
熱フィン製作時の材料歩留りが大幅に向上して材料費の
低減による低コスト化も合わせて実現できる。
In addition, as shown in Fig. 4, a heat transfer fin 9' is made by bending a band-shaped material into a ring shape, and a slit-like gap with opposite ends of the heat transfer fin 9' is opened to the entire radial direction of the heat transfer fin. If the non-contact part 19 is used as a hole, not only can processing such as soldering which eliminates contact thermal resistance be performed in the same way, but also the material yield during the production of heat transfer fins can be greatly improved, resulting in a reduction in material costs. Cost reduction can also be achieved.

以上の構成において、第一流体として冷媒(例えばフロ
ン12あるいはフロン22等)、第二流体として水を用
い、ヒートポンプサイクルにより水を加熱する冷媒凝縮
器に利用した場合について説明する。
In the above configuration, a refrigerant (for example, Freon 12 or Freon 22, etc.) is used as the first fluid, water is used as the second fluid, and a case will be described in which the refrigerant condenser is used in a refrigerant condenser that heats water by a heat pump cycle.

圧縮機(図示せず)により圧縮されて高温ガス状となっ
た冷媒は第一流体入口孔15より流入し、環状空間4内
の伝熱フィン5の流通孔6および非接触部8を通って順
次出口側に向って流れ、水側への放熱により凝縮液化し
た冷媒は第一流体出口孔16より流出する。
The refrigerant, which has been compressed by a compressor (not shown) and becomes a high-temperature gas, flows through the first fluid inlet hole 15 and passes through the flow holes 6 of the heat transfer fins 5 in the annular space 4 and the non-contact portion 8. The refrigerant that sequentially flows toward the outlet side and is condensed and liquefied by heat radiation toward the water side flows out from the first fluid outlet hole 16 .

一方、水は第二流体入口孔17かも流入し、環状空間1
1内の伝熱フィン9の流通孔12および非接触部14を
通って順次出口側へ流れ、冷媒の凝縮熱により加熱昇温
されて第二流体出口孔18より流出する。
On the other hand, water also flows into the second fluid inlet hole 17 and the annular space 1
The fluid sequentially flows to the outlet side through the flow holes 12 and non-contact portions 14 of the heat transfer fins 9 in the refrigerant, is heated and heated by the heat of condensation of the refrigerant, and flows out from the second fluid outlet hole 18.

この様な冷媒と水との熱交換時に、冷媒および水の流路
には伝熱フィン5.9が密に取付けられているので伝熱
面積が高密度かつ広く取れ、さらにフィン部に流通孔6
,12を設けて流体をフィン面にほぼ直交方向に流動さ
せるために流通孔6゜12を通過する時に生じる薄い境
界層部分を利用する境界層前縁効果および伝熱フィン5
,9それぞれの間を通過する時の流れの拡大縮小と衝突
による攪拌乱流効果さらに非接触部8.14を通過する
時の攪拌作用により熱伝達率を大幅に向上するために熱
交換器の小型高性能化か達成できる。
During heat exchange between the refrigerant and water, the heat transfer fins 5.9 are closely attached to the flow paths of the refrigerant and water, so the heat transfer area is high density and wide, and the fins are equipped with flow holes. 6
, 12 are provided to make the fluid flow in a direction substantially perpendicular to the fin surface, and the boundary layer leading edge effect and the heat transfer fin 5 utilize the thin boundary layer portion that occurs when the fluid passes through the communication hole 6° 12.
, 9. In order to greatly improve the heat transfer coefficient due to the agitation turbulence effect due to expansion and contraction of the flow and collision when passing between the non-contact parts 8.14 and the non-contact part 8.14, Small size and high performance can be achieved.

さらに伝熱筒1の軸を水平方向にして熱交換器を設置し
、伝熱フィン5の非接触部8を下方に位置せしめ、冷媒
といっしょに循環する圧縮用の潤滑油の油戻し穴として
作用させ、圧縮機への潤滑油の戻り・を促進させて圧縮
機の信頼性の向上に寄与せしめることができる。
Furthermore, the heat exchanger is installed with the axis of the heat transfer tube 1 in the horizontal direction, and the non-contact part 8 of the heat transfer fin 5 is positioned downward to serve as an oil return hole for lubricating oil for compression that circulates together with the refrigerant. This can promote the return of lubricating oil to the compressor and contribute to improving the reliability of the compressor.

発明の効果 以上のように本発明の熱交換器は、伝熱筒と外筒の二重
筒を設け、この伝熱筒の内外表面に流通孔を配した多数
の伝熱フィンを設けて熱交換する二流体の流路を形成す
ると共に前記伝熱フィンと伝熱筒との環状接触部に流通
孔兼用の非接触部を設けて構成しているので、次の効果
を有する。
Effects of the Invention As described above, the heat exchanger of the present invention has a double cylinder of a heat transfer cylinder and an outer cylinder, and a large number of heat transfer fins with circulation holes arranged on the inner and outer surfaces of the heat transfer cylinder to transfer heat. Since a flow path for the two fluids to be exchanged is formed and a non-contact part that also serves as a flow hole is provided in the annular contact part between the heat transfer fin and the heat transfer cylinder, the following effects are achieved.

■ 伝熱フィンを多数設けることができるので伝′熱面
積の拡大が図れ、熱交換器の小型高密度化が達成できる
■ Since a large number of heat transfer fins can be provided, the heat transfer area can be expanded, and the heat exchanger can be made smaller and more dense.

■ 多数の伝熱フィン接触部をハンダなどの低融点金属
により容易に接合できるため低コストが達成できる。
■ Low costs can be achieved because multiple heat transfer fin contact areas can be easily joined using low melting point metals such as solder.

(φ 伝熱フィン接触部の接触熱抵抗をハンダ付等によ
り確実に無くすることができ、熱交換器の高性能化に効
果がある。
(φ The contact thermal resistance of the heat transfer fin contact area can be reliably eliminated by soldering etc., which is effective in improving the performance of the heat exchanger.

0 非接触部を圧縮機用潤滑油の油戻し穴とできるため
に圧縮機の信頼性向上を果せる。
0 The reliability of the compressor can be improved because the non-contact part can be used as an oil return hole for lubricating oil for the compressor.

■ 流通孔および非接触部を有する伝熱フィンによって
境界層前縁効果と攪拌乱流効果が生じて熱伝達率が大幅
に向上し、熱交換器の小型化が達成できる。
■ Heat transfer fins with flow holes and non-contact parts create a boundary layer leading edge effect and a stirring turbulent flow effect, greatly improving heat transfer coefficient and making it possible to downsize the heat exchanger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す熱交換器の断面図、第
2図は同第−流体用Ω伝熱フィンの外観斜視図、第3図
は同第二流体用の伝熱フィンの外観斜視図、第4図は第
二流体用の伝熱フィンの他の実施例の外観斜視図、第5
図は従来の二重管式熱交換器の外観斜視図、第6図は第
5図のB−B断面図、第7図は従来の水管冷媒管並設二
重壁熱交換器の一部断面斜視図である。 1  伝熱筒、5.9  伝熱フィン、6,12流通孔
、7.13− 環状接触部、8,14非接触部、1o 
 外筒。 代理人の氏名 弁理±1 中 尾 敏 男 ほか1名第
 1 図 d 第 3 図 第5図 392−
Fig. 1 is a sectional view of a heat exchanger showing an embodiment of the present invention, Fig. 2 is an external perspective view of a heat transfer fin for the second fluid, and Fig. 3 is a heat transfer fin for the second fluid. FIG. 4 is an external perspective view of another embodiment of the heat transfer fin for the second fluid, and FIG.
The figure is an external perspective view of a conventional double-tube heat exchanger, Figure 6 is a sectional view taken along line BB in Figure 5, and Figure 7 is a part of a conventional double-wall heat exchanger with parallel water tubes and refrigerant tubes. It is a cross-sectional perspective view. 1 heat transfer tube, 5.9 heat transfer fin, 6, 12 communication hole, 7.13- annular contact part, 8, 14 non-contact part, 1o
Outer cylinder. Name of agent: Attorney ±1 Toshio Nakao and 1 other person Figure 1 d Figure 3 Figure 5 392-

Claims (4)

【特許請求の範囲】[Claims] (1)伝熱筒と外筒の二重筒を設け、前記伝熱筒の内外
表面に流通孔を配した多数の伝熱フィンを設けて熱交換
する二流体の流路を形成すると共に前記伝熱フィンと伝
熱筒との環状接触部に流通孔兼用の非接触部を設けた熱
交換器。
(1) A double cylinder consisting of a heat transfer cylinder and an outer cylinder is provided, and a large number of heat transfer fins with communication holes are provided on the inner and outer surfaces of the heat transfer cylinder to form a flow path for two fluids for heat exchange. A heat exchanger that has a non-contact part that also serves as a circulation hole in the annular contact part between the heat transfer fins and the heat transfer cylinder.
(2)非接触部は各伝熱フィンにそれぞれ1カ所設けた
特許請求の範囲第1項記載の熱交換器。
(2) The heat exchanger according to claim 1, wherein each heat transfer fin is provided with one non-contact portion.
(3)非接触部は各伝熱フィンの伝熱筒側に切欠き穴に
より形成した特許請求の範囲第1項記載の熱交換器。
(3) The heat exchanger according to claim 1, wherein the non-contact portion is formed by a notch hole on the heat transfer cylinder side of each heat transfer fin.
(4)非接触部は帯状の材料を環状に屈曲成形して両端
の対向部スリット状間隙とした特許請求の範囲第1項記
載の熱交換器。
(4) The heat exchanger according to claim 1, wherein the non-contact portion is formed by bending a band-shaped material into an annular shape and forming a slit-like gap at opposite ends thereof.
JP1649783A 1983-02-03 1983-02-03 Heat exchanger Pending JPS59142381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1649783A JPS59142381A (en) 1983-02-03 1983-02-03 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1649783A JPS59142381A (en) 1983-02-03 1983-02-03 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS59142381A true JPS59142381A (en) 1984-08-15

Family

ID=11917916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1649783A Pending JPS59142381A (en) 1983-02-03 1983-02-03 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS59142381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498820A (en) * 2012-04-05 2013-07-31 R B Radley & Co Ltd Condenser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498820A (en) * 2012-04-05 2013-07-31 R B Radley & Co Ltd Condenser
WO2013150318A1 (en) 2012-04-05 2013-10-10 R.B. Radley & Company Limited Laboratory condensers with passive heat exchange
GB2498820B (en) * 2012-04-05 2014-04-16 R B Radley & Co Ltd Condensers
US10704837B2 (en) 2012-04-05 2020-07-07 R.B. Radley & Company Limited Laboratory condensers with passive heat exchange

Similar Documents

Publication Publication Date Title
US4688311A (en) Method of making a heat exchanger
US5644840A (en) Method of producing a plate-type heat exchanger
US10837720B2 (en) Heat exchanger with aluminum tubes rolled into an aluminum tube support
US20090101321A1 (en) Heat Exchanger
JP3591102B2 (en) Stacked heat exchanger
KR102077565B1 (en) Shell and tube type heat exchanger and Manufacturing method of the same
JP2011021757A (en) Heat exchanger and heat pump system
US20140166252A1 (en) Heat exchanger and method
JP2004340441A (en) Complex heat exchanger
JPS60243484A (en) Heat exchanger
JP2004340442A (en) Complex heat exchanger
JPS59142381A (en) Heat exchanger
JPH10111086A (en) Heat exchanger
JP7385038B2 (en) Plate for heat exchanger and plate heat exchanger with integrated dryer
JP2005024109A (en) Heat exchanger
JPH05215482A (en) Heat exchanger
JP2004340485A (en) Complex heat exchanger
US20210348859A1 (en) Heat exchanger with aluminum alloy clad tube and method of manufacture
JP2004183960A (en) Heat exchanger
JP2004044896A (en) Heat exchanger for hot-water supply
JPH09133491A (en) Manufacture of heat exchanger
JP2003314975A (en) Heat exchanger
JPH0221198A (en) Heat exchanger
JPH09250888A (en) Double-piped heat exchanger
JP2005024188A (en) Heat exchanger