JPS59142374A - Continuous melting electric furnace for cinder with continuous slag discharger - Google Patents

Continuous melting electric furnace for cinder with continuous slag discharger

Info

Publication number
JPS59142374A
JPS59142374A JP1587183A JP1587183A JPS59142374A JP S59142374 A JPS59142374 A JP S59142374A JP 1587183 A JP1587183 A JP 1587183A JP 1587183 A JP1587183 A JP 1587183A JP S59142374 A JPS59142374 A JP S59142374A
Authority
JP
Japan
Prior art keywords
furnace
melting
slag
electrode
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1587183A
Other languages
Japanese (ja)
Other versions
JPH039393B2 (en
Inventor
邦彦 宇野
中里 有宏
正秀 西垣
広富 元
木村 成男
貞夫 栗原
秀男 田中
三原 次郎
高井 清明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Research and Development Co Ltd
Japan Metals and Chemical Co Ltd
Original Assignee
Takuma Research and Development Co Ltd
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Research and Development Co Ltd, Japan Metals and Chemical Co Ltd filed Critical Takuma Research and Development Co Ltd
Priority to JP1587183A priority Critical patent/JPS59142374A/en
Publication of JPS59142374A publication Critical patent/JPS59142374A/en
Publication of JPH039393B2 publication Critical patent/JPH039393B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は都市とみ、下水汚泥、産業廃棄物等の焼却残滓
や集塵器の捕集灰等のもえがらの溶融処理装置に関、す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for melting and processing urban sewage sludge, incineration residue of industrial waste, and chaff such as ash collected in a dust collector.

一般に、都市ごみの焼却灰や集塵器の捕集灰等はその多
くが埋立処理されている。しかし、埋立地の確保が年々
困難になりつつあり、もえがらの減容化が広く要望され
ている。
In general, much of the incinerated ash from municipal waste and the ash collected by dust collectors are disposed of in landfills. However, it is becoming increasingly difficult to secure landfill sites year by year, and there is a widespread demand for reducing the volume of rice husks.

一方、都市ごみ焼却灰の減容化を図るものとして、所謂
どみ焼却灰溶融炉が開発されている。しかし、現存する
ごみ焼却灰溶融炉には様々な技術的問題が残されており
、未だ安定した運転を達成するには至っていない。例え
ば、溶融灰の取出し   口に於いてクリンカーが発生
し、連続的な溶融灰の取出しが置方になったり、或いは
焼却灰を連続且つ完全に溶融させることが著しく困難で
十分に減容が図れないという問題がある。
On the other hand, in an effort to reduce the volume of municipal waste incineration ash, a so-called sump incineration ash melting furnace has been developed. However, various technical problems remain in existing waste incineration ash melting furnaces, and stable operation has not yet been achieved. For example, clinker may be generated at the molten ash removal port, making it impossible to take out the molten ash continuously, or it may be extremely difficult to continuously and completely melt the incinerated ash, making it impossible to reduce the volume sufficiently. The problem is that there is no.

本願発明は従前のこみ溶融炉に於ける上述の如き問題を
基本的に解決するものであり、サブマージドアーク炉を
もえがらの溶融処理に使用せんとするものである。
The present invention basically solves the above-mentioned problems in the conventional waste-melting furnace, and aims to use a submerged arc furnace for melting chaff.

而して、溶融電気炉は一般に製鋼等の技術分野で広く使
用、されており且つ技術的にも安定した設備である。然
し乍ら、炉の運転操作には熟練した高度な運転技術が必
要であり、もえがらを溶融処理するごり処理プラント等
へその侭取り入れた場合には、多くの問題を生ずる虞れ
がある。
Therefore, electric melting furnaces are generally widely used in technical fields such as steel manufacturing, and are technically stable equipment. However, operating the furnace requires highly skilled and sophisticated operating techniques, and if it is incorporated into a garbage processing plant that melts and processes rice husks, many problems may occur.

先ず第1に、従前の溶融電気炉に於ける溶融物の出滓は
、予かしめ炉側壁に設けられたタップ孔を破孔して出滓
する間欠タップ方式か若しくは電気炉全体を傾動させて
炉上部の流し樋から出滓する傾動方式が採用されている
First of all, in conventional electric melting furnaces, molten slag was extracted using an intermittent tap method, in which tap holes provided in the side walls of the pre-swaged furnace were opened to extract the slag, or by tilting the entire electric furnace. A tilting system is used in which the slag is discharged from a drain at the top of the furnace.

しかし、前者の間欠タップ方式に於いては、定期的にタ
ップ孔を破孔すると共に出滓後にプラグをする必要があ
り、作業に熟練を要すると共に危険を伴ない、然かも作
業環境が極めて悪いという問題がある。
However, in the former intermittent tap method, it is necessary to periodically puncture the tap hole and plug it after tapping the slag, which requires skill and is dangerous, and the work environment is extremely poor. There is a problem.

又、後者の傾動方式に於いても、傾動時には電極を捲き
上げて負荷を中断すると共に、原料の投入も中断する必
要があり、処理効率が極めて悪い。
Furthermore, even in the latter tilting method, when tilting, it is necessary to roll up the electrode to interrupt the load and also to interrupt the input of raw materials, resulting in extremely low processing efficiency.

第2の問題は、金属類を多く含んだもえがら、例えばこ
み焼却灰を溶融する場合の炉床部−2の溶融金属の沈降
である。即ち、金属は比重がスラグに較べて重いため、
炉底に沈降する。ところが、溶融物の深さは一般に一定
であるため、長期間の運転に於いては金属溶融層が徐々
に深くなり、逆にスラグ溶融層の方は浅くなって行く。
The second problem is the sedimentation of molten metal in the hearth part 2 when husks containing a large amount of metals, such as incineration ash, are melted. In other words, since the specific gravity of metal is heavier than that of slag,
It settles to the bottom of the furnace. However, since the depth of the molten material is generally constant, during long-term operation, the molten metal layer gradually becomes deeper, and conversely, the molten slag layer becomes shallower.

一方、電極はスラグ溶融層へ浸漬させているため、金属
溶融層が深くなるに従がって電極の浸漬深さが浅くなり
、その結果電力負荷が低下して溶融能力が漸減すること
になる。
On the other hand, since the electrode is immersed in the molten slag layer, as the molten metal layer becomes deeper, the immersion depth of the electrode becomes shallower, resulting in a decrease in power load and a gradual decrease in melting capacity. .

溶融能力の漸減を避は常に高効率の溶融状態を維持する
ためには、定期的に金属を排出し、スラ・グ溶融層の深
さを一定に値以上に保って電極の浸漬深さを最も効率の
よい状態に保持する必要がある。ところで、金属溶融物
を排出する方法としては、炉底に設けたタップ孔を開孔
する方法が先ず考えられる。しかしこの方法は前述の如
く開孔作業が特殊な熟練を要するうえ、作業に危険性が
伴ない、然かも作業環境が著しく悪いという難点がある
In order to avoid a gradual decrease in melting capacity and always maintain a highly efficient melting state, it is necessary to periodically discharge the metal, keep the depth of the slag melting layer above a constant value, and adjust the immersion depth of the electrode. It is necessary to maintain it in the most efficient condition. By the way, the first possible method for discharging the molten metal is to open a tap hole provided at the bottom of the furnace. However, as mentioned above, this method has the drawbacks that the drilling operation requires special skill, the operation is dangerous, and the working environment is extremely poor.

一方、タップ開孔作業を必要としない傾動方式に於いて
も1、従来の傾動形溶融電気炉セは電極を炉外まで引上
げて炉体を傾動させるか、又は炉体と電極装置を一体化
して装置全体を傾動させるようにしている。しかし、前
者にあっては電極を引き上げている間は負荷を中断する
必要があるうえ、炉蓋を具備する場合には炉蓋上部まで
電極を完全に引き上げる必要があり、電極引き上げ距離
が大きくなって電極設備自体が大形化するという難点が
ある。また後者の場合にも、電極装置を含めた設備全体
を傾動させるため、傾動装置が著しく大損りになるとい
う欠点がある。
On the other hand, even in the case of the tilting method, which does not require tap drilling, the conventional tilting type melting electric furnace sets either raise the electrode to the outside of the furnace and tilt the furnace body, or integrate the furnace body and the electrode device. The entire device is tilted. However, in the former case, it is necessary to interrupt the load while the electrode is being pulled up, and if a furnace lid is provided, the electrode must be completely pulled up to the top of the furnace lid, resulting in a long electrode lifting distance. However, the disadvantage is that the electrode equipment itself becomes larger. In the latter case as well, there is a drawback that the entire equipment including the electrode device is tilted, resulting in significant damage to the tilting device.

第3の問題は、もえがら等の原料の投入の問題である。The third problem is the problem of inputting raw materials such as rice hulls.

従前の溶融電気炉に於いては、所謂バッチ方式による溶
融が多く採用されている。然し乍ら、バッチ方式による
溶融処理には溶融効率に一定の限界があり、もえがら等
の溶融処理には不適である。即ち、安定した連続溶融と
連続出滓を可能として処理効率の向上を達成するために
は、原料(もえがら)の投入を効率よく且つ連続的に行
なう必要があり、原料を炉内へ投入するに際しては、溶
融効率が最も良くなる様に電極間へ均一に、然かも溶融
速度に適応せしめて夫々の投入シュートから投入する必
要がある。
In conventional electric melting furnaces, a so-called batch method is often used for melting. However, batch-based melting processing has a certain limit in melting efficiency, making it unsuitable for melting rice husks and the like. In other words, in order to achieve stable continuous melting and continuous slag extraction and to improve processing efficiency, it is necessary to efficiently and continuously feed the raw material (rice husks) into the furnace. In order to maximize the melting efficiency, it is necessary to charge the material uniformly between the electrodes from the respective charging chutes in a way that adapts to the melting speed.

本発明は、都市とみ等のもえがらを溶融電気炉に依り処
理する場合に於ける上述の如き問題の解決を課題とする
ものであり、■操作が簡単且つ安全で特殊な技能を有す
る熟練者を必要とせず、■連続溶融及び連続出滓が可能
で溶融効率も極めて高く、■然かも装置がコンパクトで
設備費や運転費の大幅な低減を可能とした、連続出滓装
置を有するもえがらの連続溶融電気炉の提供を目的とす
るものである。
The present invention aims to solve the above-mentioned problems when treating rice husks from urban areas, etc. using an electric melting furnace.・Continuous melting and continuous slag extraction are possible, the melting efficiency is extremely high, and ・Moreover, the device is compact and has a continuous slag extraction device that enables a significant reduction in equipment and operating costs. The purpose is to provide a continuous melting electric furnace.

即ち、本願第1発明は、極めて高い熟練度を必要とする
危険な出湯作業を省略し、然かも連続溶融と連続出滓と
を可能とすることにより、炉の溶融効率の大幅な改善を
可能としだもえがらの連続溶融電気炉を提供するもので
ある。
In other words, the first invention of the present application makes it possible to significantly improve the melting efficiency of the furnace by omitting the dangerous tapping work that requires extremely high skill level, and by enabling continuous melting and continuous slag tapping. The present invention provides an electric furnace for continuous melting of Toshidamoe husk.

又、本願第2発明は、設備の大形複雑化を招くことなく
、然かも電極を炉外へ引上げることなく炉体のみを傾動
可能とすることにより、金属溶融物のみを確害に排出し
て高効率な溶融状態を保持できるようにしたもえがらの
連続溶融電気炉を提供するものである。
Further, the second invention of the present application makes it possible to discharge only the molten metal without causing any damage by making it possible to tilt only the furnace body without increasing the size and complexity of the equipment and without pulling the electrodes out of the furnace. To provide an electric furnace for continuously melting chaff, which can maintain a highly efficient molten state.

更に、本願第3発明は、もみがらを炉内−へ極めて均一
に、然かも炉内溶融速度に合わせて供給することにより
、高い溶融効率の達成と安定した連続溶融並びに連続出
滓を可能としたもえがらの連続溶融電気炉を提供するも
のである。
Furthermore, the third invention of the present application makes it possible to achieve high melting efficiency, stable continuous melting, and continuous slag production by supplying rice husks into the furnace extremely uniformly and in accordance with the melting rate in the furnace. The present invention provides an electric furnace for continuous melting of roasted rice hulls.

前述の如き課題の達成を図るため、本願第1発明では、
都市とみ等のもえがら(A)を溶融処理する電気炉に於
いて、炉本体(1)の側壁に、適宜の高さの溢流堰(8
)とその炉内側に上方より垂れ壁状に配設した未溶融物
障害板(9)とから成る出滓口(7)を形成し、前記出
滓口(7)を炉本体(1)内のいずれかの電極0埠と炉
心(0)を結ぶ線上若しくはその近傍に位置〔但し、P
−電炉負荷(W)、K−16〜25の定数〕とすること
を基本構成とするものである。
In order to achieve the above-mentioned problems, in the first invention of the present application,
In an electric furnace for melting rice husks (A) of Tomi Tomi, etc., an overflow weir (8
) and an unmelted matter obstruction plate (9) arranged in the form of a hanging wall from above inside the furnace. Located on or near the line connecting any electrode 0 pier and core (0) [However, P
- electric furnace load (W), constant of K-16 to 25].

又、本願第2発明は、都市とみ等のもえがら(A)を溶
融処理する電気炉に於いて、炉本体(1)の側壁に、適
宜の高さの溢流堰(8)とその炉内側に上方より垂れ壁
状に配設した未溶融物障害板(9)とから成る出滓口(
7)を形成し、該出滓口(7)を炉本体(1)内の何れ
かの電極o功と炉心(0)を結ぶ線上若しくはその(C
m)(但し、P−電炉負荷(W)、K=16〜25の間
の定数〕とし、且つ前記炉本体(1)を傾動装置(21
)により出滓口(7)側へ傾動自在に支持すると共に、
炉本体(1)の上方には筒状の耐熱可撓板(3)を介設
して炉蓋(2)を取付けたことを基本構成とするもので
ある○ 更に、本願第3発明は、都市とみ等のもえがら(A)を
溶融処理する電気炉に於いて、炉本体(1)の側壁に、
適宜の高さの溢流堰(8)とその炉内側に上方より垂れ
壁状に配設した未溶融物障害板(9)とから成る出滓口
(7)を形成し、該出滓口(7)を炉本体(1)内の何
れかの電極(6)と炉心(0)を結ぶ線上若しくはそ(
cm)(但し、P−電炉負荷(W)、K = 16−2
5の定数〕とし、且つ炉内上方には炉内ガス(27)の
温度検出器(2〔を、また流出する溶融物(5)の流路
途中には溶融物(5)の光量検出器(26)を夫々配設
し、前記温度検出器(20と光量検出器(26)の各検
出値を夫々の投入条件設定値と比較し、両条件の充足時
に投入制御装置(25a)により原料投入ゲートα0を
開放して所定量のもえがら(A)を炉内へ投入すること
を基本構成とするものである。
Further, the second invention of the present application is an electric furnace for melting rice husks (A) of urban tomi, etc., which includes an overflow weir (8) of an appropriate height on the side wall of the furnace body (1) and the furnace. A slag outlet (
7), and connect the slag outlet (7) to the line connecting any electrode o in the reactor body (1) to the reactor core (0) or its (C
m) (where P - electric furnace load (W), K = constant between 16 and 25), and the furnace body (1) is set to a tilting device (21
) is supported so as to be tiltable toward the slag outlet (7) side,
The basic configuration is that a cylindrical heat-resistant flexible plate (3) is interposed above the furnace body (1) and a furnace lid (2) is attached.Furthermore, the third invention of the present application includes: In an electric furnace for melting rice husks (A) of urban Tomi etc., on the side wall of the furnace body (1),
A slag opening (7) consisting of an overflow weir (8) of an appropriate height and an unmelted matter obstruction plate (9) arranged in the form of a wall hanging from above on the inside of the furnace is formed, and the slag opening (7) on or along the line connecting any electrode (6) in the reactor body (1) and the reactor core (0).
cm) (However, P - electric furnace load (W), K = 16-2
5], and a temperature detector (2) for the in-furnace gas (27) above the furnace, and a light intensity detector for the melt (5) in the middle of the flow path of the outflowing melt (5). (26) are respectively arranged, and the detected values of the temperature detector (20) and the light amount detector (26) are compared with the respective input condition setting values, and when both conditions are satisfied, the input control device (25a) controls the raw material The basic configuration is to open the charging gate α0 and charge a predetermined amount of rice husks (A) into the furnace.

以下、図面に示す本願発明の一実施例に基づいてその詳
細を説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the details will be explained based on one embodiment of the present invention shown in the drawings.

第1図は本願発明に係るもえがらの連続溶融電気炉の縦
断面概要図であり、第2図は第1図のa−a挽断面図で
ある。また第3図は炉本体を傾動せしめた状態を示す一
部縦断概要図である。第1図乃至第3図に於いて、1は
炉本体、2は炉蓋、3は炉本体1と炉蓋2間を気密に連
結する筒状の耐熱可撓板、4は炉底に溜った金属溶融物
、5は溶融物(溶融スラグ)、6は未溶融物、7は炉本
体1の側壁に設けた出滓口である。当該出滓ロアは、炉
本体1の側壁下方に形成した溢流堰8と、溢流堰8の前
方に炉本体1の上方より垂れ壁状に形成した未溶融物障
害板9とから構成されており、溢流堰8の下方には流し
樋10が設けられている。
FIG. 1 is a schematic vertical cross-sectional view of an electric furnace for continuously melting rice husks according to the present invention, and FIG. 2 is a cross-sectional view cut along the line a-a of FIG. 1. Further, FIG. 3 is a partially vertical schematic diagram showing a state in which the furnace body is tilted. In Figs. 1 to 3, 1 is the furnace body, 2 is the furnace lid, 3 is a cylindrical heat-resistant flexible plate that airtightly connects the furnace body 1 and the furnace lid 2, and 4 is the furnace bottom. 5 is a molten material (molten slag), 6 is an unmelted material, and 7 is a slag outlet provided on the side wall of the furnace body 1. The slag discharge lower is composed of an overflow weir 8 formed below the side wall of the furnace body 1, and an unmelted matter obstruction plate 9 formed in the shape of a wall hanging from above the furnace body 1 in front of the overflow weir 8. A drain 10 is provided below the overflow weir 8.

また、前記各図に於いて11は保温材より成る流し樋カ
バー、12は電極、13は集塵ダクト、14は電極昇降
装置、15は原料投入シュート、16は原料投入ケ−1
−517は原料ホッパー、18はレベル検出器、19は
ホッパー人ロゲート、20はもえがら分配コンベアー、
21は炉本体1の傾動装置、22は集塵装置、23は誘
引通風機、24はスラグ搬出コンベアー、25は温度検
出器、26は光量検出器、27は炉内ガス、28は支持
架台、29はスラグピット、30は流し樋10とピット
29間を気密に連結する耐熱可撓筒体である。
In each of the above figures, 11 is a drain cover made of heat insulating material, 12 is an electrode, 13 is a dust collection duct, 14 is an electrode lifting device, 15 is a raw material input chute, and 16 is a raw material input case 1.
-517 is a raw material hopper, 18 is a level detector, 19 is a hopper operator, 20 is a chaff distribution conveyor,
21 is a tilting device for the furnace body 1, 22 is a dust collector, 23 is an induced draft fan, 24 is a slag conveyor, 25 is a temperature detector, 26 is a light amount detector, 27 is a furnace gas, 28 is a support frame, 29 is a slag pit, and 30 is a heat-resistant flexible cylinder that connects the drain 10 and the pit 29 in an airtight manner.

前記出滓ロアは、三本の電極12.12.12の何れか
一本と炉中心(0)とを結ぶ線上若しくはその近傍に配
設されており、且つ溢流堰8の高さは、最も効率のよい
湯溜り深さが得られるように溶融電気炉の処理量に応じ
て適宜に選定される。また、未溶融物障害板9は、前記
側れか一本の電極12と炉中心Oを結ぶ直線と略直角若
しくはその近傍に、然かもその下端位置を溶湯の溢流堰
8よりも若干低くして溶湯溜り中に若干浸漬させた状態
で設けられており、未溶融物6の流出を堰き止めると共
に、溶滓のみを通過せしめて溢流堰8より流し樋10ヘ
オーバフローさせるものである。
The slag discharge lower is disposed on or near a line connecting any one of the three electrodes 12, 12, 12 and the furnace center (0), and the height of the overflow weir 8 is as follows: It is appropriately selected depending on the throughput of the electric melting furnace so as to obtain the most efficient pool depth. Further, the unmelted material obstruction plate 9 is placed approximately perpendicular to or in the vicinity of a straight line connecting one of the side electrodes 12 and the furnace center O, and its lower end position is slightly lower than the molten metal overflow weir 8. It is provided in a state where it is slightly immersed in the molten metal pool, and it dams up the outflow of unmelted material 6 and allows only the molten slag to pass through and overflow from the overflow weir 8 to the sink trough 10.

前記溢流堰8は、溶滓が容易に溢流し得る温度を常に保
持し得る位置に設ける必要があり、もえがらの溶融物の
流動特性や各種の実験結果を基にして、電極面と溢流堰
8間の距離(L)が決定されている。即ち、従前の溶融
電気炉にあっては、電極径、電極間距離、火床面積等の
炉寸法や電流、電圧、電力密度等の負荷条件は、溶融物
の性状に応じて種々の数置を採用している。しかし、も
えがら(例えばごみ焼却灰)の溶融の場合には、塩基度
(C且0)が0.3〜04と低いため流動性が著しく 
tO2 悪く、その結果良好な流動性を確保するためには溶湯温
度を常に1500°C〜1700℃とする必要がある。
The overflow weir 8 needs to be installed at a position where it can always maintain a temperature at which the molten slag can easily overflow, and based on the flow characteristics of the molten chaff and various experimental results, The distance (L) between the flow weirs 8 has been determined. In other words, in conventional electric melting furnaces, furnace dimensions such as electrode diameter, distance between electrodes, and grate area, as well as load conditions such as current, voltage, and power density, vary depending on the properties of the melt. is adopted. However, in the case of melting rice husks (e.g. garbage incineration ash), the basicity (C and 0) is as low as 0.3-04, so the fluidity is extremely low.
tO2 is poor, and as a result, it is necessary to keep the molten metal temperature at 1500°C to 1700°C at all times in order to ensure good fluidity.

上述の如き溶湯温度で、然かも10 t /日〜60t
/日の処理能力で連続的に溶滓を溢流させる場合には、
溢流部に於ける流動性を常時良好な状態に確保するため
、電極から供給したエネルギーで形成される溶融ゾーン
内に溢流部を配設する必要がある。
At the above-mentioned molten metal temperature, it may be 10 t/day to 60 t/day.
When continuously overflowing slag with a processing capacity of /day,
In order to ensure good fluidity at all times in the overflow part, it is necessary to arrange the overflow part within the melting zone formed by the energy supplied from the electrodes.

その為には、溢流堰8に最も近い電極12の外表面があ
り、当該距離りとすることにより、前記溶融ゾーン内に
溢流部が常に位置し、良好な流動性を確保できることが
実証されている。但し、前式に於いてPは電気炉負荷(
w)、Kは16〜25の間の定数であり、且つ前式は多
数の溶融試験結果を基にして導出されたものである。
For this purpose, the outer surface of the electrode 12 is closest to the overflow weir 8, and by setting this distance, it has been demonstrated that the overflow part is always located within the melting zone and good fluidity can be ensured. has been done. However, in the previous equation, P is the electric furnace load (
w), K is a constant between 16 and 25, and the above equation was derived based on the results of a large number of melting tests.

前記炉本体1は支持架台28と傾動装置21とにより、
出滓ロア側が上下方向へ移動自在に支持されており、シ
リンダー21 aの作動により出滓ロアが支軸28 a
を支点として上・下動する。尚、集塵ダクト13 aに
は可撓管13 bが介設されており、更に流し樋10の
下端部とスラグピット29の上端との間は、筒状の、耐
熱可撓板30によって気密に連結されているため、炉本
体1の傾動は円滑に行える。
The furnace main body 1 is supported by a support frame 28 and a tilting device 21.
The slag output lower side is supported so as to be movable in the vertical direction, and the slag output lower side is supported by the support shaft 28a by the operation of the cylinder 21a.
Moves up and down using the fulcrum as a fulcrum. A flexible pipe 13b is interposed in the dust collection duct 13a, and a cylindrical heat-resistant flexible plate 30 is provided to provide an airtight connection between the lower end of the drain 10 and the upper end of the slag pit 29. The furnace body 1 can be tilted smoothly.

一方、前記炉蓋2及びこれに昇降自在に配設した電極1
2、原料投入シュート15、集塵ダクト13等は溶融電
気炉の所謂固定部を形成しており、該固定部、と可動部
である炉本体1間を筒状の耐熱可撓板3により気密状に
接続している。
On the other hand, the furnace cover 2 and the electrode 1 disposed thereon so as to be able to rise and fall freely.
2. The raw material input chute 15, the dust collection duct 13, etc. form the so-called fixed part of the electric melting furnace, and the space between the fixed part and the movable part of the furnace body 1 is kept airtight by a cylindrical heat-resistant flexible plate 3. connected in the same way.

前記炉M2には、溶融電気炉内のガス温度を検出する温
度検出器25が取付けられており、又スラグピット29
の上方には光量検出器26が設けられている。前記温度
検出器25及び光量検出器26は、夫々炉内へのもえが
らAの投入を制御するものであり、両検出器25.26
とこれ等の信号により作動する投入制御装置25 aと
温度設定器25 b等により、原料投入制御装置が構成
されている。
A temperature detector 25 for detecting the gas temperature in the melting electric furnace is attached to the furnace M2, and a slag pit 29 is attached to the furnace M2.
A light amount detector 26 is provided above. The temperature detector 25 and the light amount detector 26 respectively control the charging of the rice husks A into the furnace.
A material charging control device is constituted by a charging control device 25a, a temperature setting device 25b, etc., which are operated by these signals.

即ち、溶融電気炉内にもえがらAが投入されると、炉内
ガス27の温度は一時的に低下する。その後溶融が進行
し未溶融物6が減少すると、その減少に応じて前記炉内
ガス温度が上昇する。
That is, when the chill A is also put into the melting electric furnace, the temperature of the furnace gas 27 is temporarily lowered. Thereafter, as melting progresses and the amount of unmelted material 6 decreases, the temperature of the gas in the furnace rises in accordance with the decrease.

而して、前記ガス温度の上昇と炉内の未溶融物量との間
には極めて強い相間々係があり、その結果炉内ガス27
の温度を温度検出器25で検出し、炉内の未溶融物6の
減少をガス温度の上昇として捕促すれば、炉内に於ける
溶融の進行度を知ることができ、ここからもえがらの投
入時期を感知することができる。
Therefore, there is a very strong correlation between the rise in gas temperature and the amount of unmelted material in the furnace, and as a result, the gas in the furnace 27
If the temperature of the unmelted material 6 in the furnace is detected by the temperature detector 25 and the decrease in the unmelted material 6 in the furnace is detected as an increase in the gas temperature, it is possible to know the progress of melting in the furnace. It is possible to detect the timing of input.

又、出滓ロアからの溶融物5の出滓量は、もえがらAを
炉内へ投入することにより増加する。何故なら、溶融物
5が未溶融物6の重量圧によって押し下げられ、溢流堰
8からの溢流部が増加するからである。そして、未溶融
物6が減少するにつれて出滓量は徐々に減少して行く。
Moreover, the amount of slag of the melt 5 from the slag removal lower is increased by charging the rice husks A into the furnace. This is because the molten material 5 is pushed down by the weight pressure of the unmelted material 6, and the overflow area from the overflow weir 8 increases. Then, as the amount of unmelted material 6 decreases, the amount of slag gradually decreases.

この様に、未溶融物6の量と出滓量との間には極めて強
い相関々係があり、出滓量の変化を検出することにより
炉内の未溶融物6の変化を知ることができる。即ち、流
出してくる溶融物5が発する光量の変化を、光電変換素
子又は工業用<Tvを利用した光量検出器26で検出す
れば、炉内の未溶融物の減少を出湯量の減少即ち光量の
減少として促えることができ、これによって原料投入時
期を感知することができる。
In this way, there is an extremely strong correlation between the amount of unmelted material 6 and the amount of slag, and it is possible to know changes in the amount of unmelted material 6 in the furnace by detecting changes in the amount of slag. can. That is, if a change in the amount of light emitted by the flowing molten material 5 is detected by a photoelectric conversion element or a light amount detector 26 using industrial <Tv, a decrease in the unmelted material in the furnace can be detected as a decrease in the amount of hot water coming out. This can be prompted by a decrease in the amount of light, and from this it is possible to sense when it is time to add raw materials.

第1図の実施例に於いては、もえがらAの炉内への投入
時期を炉内ガス温度と出滓物が発する光量の両方から制
御しており、両者が予かじ設定した原料投入条件1直に
合致したときに、もえがらAを投入する構成としている
In the embodiment shown in Fig. 1, the timing of charging rice husks A into the furnace is controlled based on both the gas temperature in the furnace and the amount of light emitted by the slag, and both of them are based on the preset raw material charging conditions. The configuration is such that when the number 1 matches, the rice husks A are thrown in.

即ち、炉内のガス温度の上昇限界値に相当する温度を温
度設定器25 bに設定し、該温度設定器からの信号と
温度検出器25からの出力信号とを没入制御装置25 
aで比較し、温度検出器25の出力が温度設定器25 
bの出力を越えるか否かを判定する。
That is, a temperature corresponding to the limit value of increase in gas temperature in the furnace is set in the temperature setting device 25b, and a signal from the temperature setting device and an output signal from the temperature detector 25 are sent to the immersion control device 25.
a, the output of the temperature detector 25 is the temperature setter 25.
It is determined whether the output exceeds the output of b.

同様に、光量検出器26の出力信号を投入制御装置25
 aへ入力し、この入力信号と予かしめ最低出滓量を基
準にして設定した設定値を比較して投入条件を判定する
。そして、補記温度検出器25側の投入条件と光量検出
器26側の投入条件が両方充足されたときに、投入制御
装置25 aより原料投入ゲート16へ一定時間゛開″
の指令が出され、所定量の新たなもえがらAが炉内へ自
動疫へ人へ、される。
Similarly, the output signal of the light amount detector 26 is input to the control device 25.
a, and compares this input signal with a setting value set based on the minimum amount of slag output in advance to determine the charging condition. Then, when both the input conditions on the temperature detector 25 side and the input conditions on the light amount detector 26 side are satisfied, the input control device 25a causes the raw material input gate 16 to be opened for a certain period of time.
A command is issued, and a predetermined amount of new rice husk A is sent to the furnace for automatic transmission to humans.

次に本発明の作用効果について説明する。第1図を参照
して、もえがら(A)は分配コンベア20により原料ホ
ッパ17に溜められ、炉蓋2に取付けた複数の原料投入
シュー) 15を介して溶融電気炉内へ投入される。前
記原料ホッパ17にはレベル検出器18、ホッパ入口ゲ
ート19、原料投入ゲート16が夫々設けられており、
当該原料投入ゲート16が炉内の原料投入時に投入制御
装置25 aからの信号によって全開となり、原料ホッ
パ17内のもえがら(A)を全量炉内へ投入する。尚、
原料投入ゲート16の開閉時期は、前述した如く温度検
出器25側の投入条件と光量検出器26側の投入条件の
両方が満足されたときである。
Next, the effects of the present invention will be explained. Referring to FIG. 1, rice husks (A) are collected in a raw material hopper 17 by a distribution conveyor 20, and are fed into a melting electric furnace via a plurality of raw material input shoes (15) attached to a furnace lid 2. The raw material hopper 17 is provided with a level detector 18, a hopper entrance gate 19, and a raw material input gate 16, respectively.
The raw material input gate 16 is fully opened by a signal from the input control device 25a when raw materials are input into the furnace, and the entire amount of rice husks (A) in the raw material hopper 17 is input into the furnace. still,
The opening/closing timing of the raw material input gate 16 is when both the input conditions on the temperature detector 25 side and the input conditions on the light amount detector 26 side are satisfied, as described above.

而して、投入シュート15より各電極間へ均一に投入さ
れたもえがら(A)は、炉内で順次溶融され、定常運転
時の炉内には第1図の如く、炉床面上に金属溶融物4が
、その上部に溶融物5と未溶融物6が夫々積層形成され
る。
The rice husks (A) uniformly charged between each electrode from the charging chute 15 are sequentially melted in the furnace, and as shown in Fig. 1, the rice husks (A) are melted in the furnace during steady operation. A molten metal 4 is formed on top of which a molten metal 5 and an unmelted metal 6 are layered.

溶融物5の深さが一定値以上になると、未溶融物6の重
量圧が作用するため、溶融溜りに若干浸漬させた未溶融
物障害板9の下部を通過して溢流堰8より1鳴次オーバ
フローし、流し樋10を流下する。尚、溶融物5が前述
の如く未溶融物6の重量圧により溢流部5aを通して上
方へ押し上げられるため、現実にはもえがら(A)の投
入量に比例して溢流することになる。
When the depth of the molten material 5 exceeds a certain value, the weight pressure of the unmelted material 6 acts, so that it passes through the lower part of the unmelted material obstruction plate 9 slightly immersed in the molten pool and flows from the overflow weir 8 to 1. Naritsugu overflows and flows down the drain 10. Incidentally, since the melted material 5 is pushed upward through the overflow portion 5a by the weight pressure of the unmelted material 6 as described above, in reality, it overflows in proportion to the input amount of the rice husks (A).

一方、もえがらの投入を停止すると、漸時溶融物5の溢
流は減少し、最後には溢流が停止する。
On the other hand, when the charging of rice husks is stopped, the overflow of the melt 5 gradually decreases, and finally the overflow stops.

しかし、溢流部5aが前述の如く最も近い電極12の溶
解ゾーン内に位置しているため、溢流部近傍の溶場はそ
の侭の状態に保持される。従って、再度もえがら(A)
を投入すると、直ちに溶融物5の溢流が再開されること
になる。
However, since the overflow portion 5a is located within the melting zone of the nearest electrode 12 as described above, the melt field near the overflow portion is maintained in its original state. Therefore, the rice husk again (A)
As soon as the melt 5 is added, the overflow of the melt 5 will be resumed.

溶融物5の溢流に伴なって、未溶融物6の一部が出滓ロ
ア側へ移動する可能性もある。しかし、溢流部5aの前
方に障害板9が設けられているため・、未溶融物6が一
緒に溢流することはない。
As the melted material 5 overflows, there is a possibility that a portion of the unmelted material 6 moves toward the slag discharge lower side. However, since the obstruction plate 9 is provided in front of the overflow part 5a, the unmelted material 6 will not overflow together.

また、溢流堰8の上方及び流し樋10の上方は、保温用
の炉材カバー11で覆われているため、流下する溶滓が
途中で冷却固化することはない。
Further, the upper part of the overflow weir 8 and the upper part of the drain trough 10 are covered with a heat-retaining furnace material cover 11, so that the flowing slag is not cooled and solidified on the way.

尚、炉内の発生カス27や溢流部5a、スラグビット2
9内の発生ガスは、夫々集塵ダクト13及び分岐ダク)
 13 aを通して吸引され、集塵装置22へ導出され
る。容量500 K V Aの電気溶融炉を使用してご
み焼却灰(乾式灰)の溶融試験を行った6試験条件は夫
々電炉負荷300000 W、電極径20.3cm。
In addition, the generated scum 27 in the furnace, the overflow part 5a, and the slag bit 2
The generated gas in the dust collection duct 13 and the branch duct 9)
13 a and is drawn out to the dust collector 22 . Six test conditions were used to conduct a melting test of waste incineration ash (dry ash) using an electric melting furnace with a capacity of 500 KVA.The electric furnace load was 300,000 W, and the electrode diameter was 20.3 cm.

電極面と溢流堰面間の距離28.0 amである。当該
試験の結果によれば、焼却灰1ton当りの消費量は5
60〜850KWHであった。また、溶融能力10t/
日に7於いて、極めて安定した連続溶融並びに連続出滓
運転を行なうことができた。
The distance between the electrode surface and the overflow weir surface is 28.0 am. According to the results of this test, the consumption amount per 1 ton of incinerated ash is 5.
It was 60-850KWH. In addition, the melting capacity is 10t/
Extremely stable continuous melting and continuous slag tapping operations were possible on 7 days a week.

もえがらA内に金属類が多く含まれている場合には、炉
運転時間の経過と共に金属溶融物4が溜まるため、これ
を外部に排出する必要がある。排出に際しては、先ず電
極12を金属溶融物層4に当らない程度に上方へ引き上
げておき、傾動装置21を作動して炉本体1を支持架台
28の支軸28 aを支点として第3図の如く傾斜させ
、金属溶融物4を溢流部5aを通して炉外へ排出する。
If the rice husk A contains a large amount of metals, molten metal 4 accumulates as the furnace operating time passes, and it is necessary to discharge this to the outside. When discharging, the electrode 12 is first pulled up to the extent that it does not hit the molten metal layer 4, and the tilting device 21 is activated to move the furnace body 1 around the support shaft 28a of the support frame 28 as shown in FIG. The molten metal 4 is discharged out of the furnace through the overflow part 5a.

炉本体1の傾動初期には、未溶融物障害板9の下部を溶
融物5と金属溶融物40両方が一緒に通過するが、傾動
中期からは溶融物5が障害板9で遮断されるため、金属
溶融物4のみが通過して外部へ排出されることになる。
At the beginning of the tilting of the furnace body 1, both the molten material 5 and the molten metal 40 pass together under the unmelted material obstruction plate 9, but from the middle stage of the tilting, the molten material 5 is blocked by the obstruction plate 9. , only the molten metal 4 passes through and is discharged to the outside.

金属溶融物4が略排出された時点で炉本体1を元の位置
へ戻せば、溶融物5の深さがあまり変らないため、金属
溶融物4の排出前と殆んど同じ負荷状態で溶融を継続す
ることができる。
If the furnace body 1 is returned to its original position when the molten metal 4 is almost discharged, the depth of the molten material 5 will not change much, so the melting will occur under almost the same load conditions as before the molten metal 4 was discharged. can be continued.

尚、傾動中に於いても、炉本体1と炉M2の間隙が耐熱
可撓板3で接続されており、且つ炉内ガスを集塵ダクl
−13を通して吸引しているため、炉外ヘガスやダスト
が飛散したり、放熱が増大することもない。
Even during tilting, the gap between the furnace body 1 and the furnace M2 is connected by the heat-resistant flexible plate 3, and the gas inside the furnace is drained through the dust collection duct l.
Since the suction is carried out through -13, there is no possibility that gas or dust will be scattered outside the furnace or that heat radiation will increase.

もえがら(A)の投入制御は前述した通りであり、温度
設定器25 bには炉内ガス温度の上昇限界(直に相当
する温度が設定され、また出滓量の限界値に相当する光
量信号値が投入制御装置25 aに夫々設定される。そ
して、温度検出器25の出力信号と光量検出器26の出
力信号が夫々の設定値と比較され、両方の投入条件が夫
々充足されたときに、投入制御装置25 aより原料投
入ゲー) 16へ一定時間゛開″の指令が発せられ、所
定量のもえがら(A)が供給される。もえがら(A)が
供給されるとその重量圧により溢流溶融物が増加する。
The input control for rice husks (A) is as described above, and the temperature setting device 25b is set to the temperature that corresponds directly to the rise limit of the gas temperature in the furnace, and the light intensity that corresponds to the limit value of the amount of slag produced is set in the temperature setting device 25b. The signal values are respectively set in the input control device 25a.Then, the output signal of the temperature detector 25 and the output signal of the light amount detector 26 are compared with the respective set values, and when both input conditions are respectively satisfied. Then, the input control device 25a issues a command to the raw material input game 16 to open for a certain period of time, and a predetermined amount of rice husks (A) is supplied.When the rice husks (A) are supplied, the weight of the rice husks (A) is Pressure increases melt overflow.

このようにして、もえがら(A)の連続的な溶融と出滓
が行なわれて行(0また、本実施例では、温度検出器2
5側と光量検出器26側の投入条件が両方満足されたと
きにもえがら(A)を投入するようにしているが、何れ
か一部の条件により投入を開始する制御方式とすること
も可能である。本願第1発明は上述の通り、炉本体1の
側壁に溢流堰8と未溶融物障害板9より成る出滓ロアを
形成すると共に、出滓ロアの形成位置及び電極12と溢
流堰8間の距離(L)を夫々規制したため、溶融物5の
出滓を連続且つ円滑に行なうことができる。その結果、
もえがら(A)の投入も連続的に行なうことができ、極
めて高い溶融効率を達成し得る。
In this way, the rice husks (A) are continuously melted and dregs are produced.
Although the capillaries (A) are added when both the input conditions on the 5 side and the light amount detector 26 side are satisfied, it is also possible to use a control method that starts inputting according to some of the conditions. It is. As described above, the first invention of the present application forms a slag lower which is composed of an overflow weir 8 and an unmelted matter obstruction plate 9 on the side wall of the furnace main body 1, and also determines the formation position of the slag lower and the electrode 12 and the overflow weir 8. Since the distance (L) between them is regulated, the slag of the melt 5 can be continuously and smoothly discharged. the result,
The rice husks (A) can also be added continuously, and extremely high melting efficiency can be achieved.

又、従前の如きタップ開孔作業が不要となり、安全で然
かも特殊な技能を有する熟練した技術者も不要となる。
In addition, the conventional tap hole drilling work is no longer necessary, and it is safe and does not require a skilled engineer with special skills.

更に、出滓物の冷却固化方式として除冷式又は水砕式の
何8れを採用するとしても、出滓量が一定であるため冷
却固化設備容量も小さくてよく、製造コストの低減を図
れる等の効用がある。
Furthermore, regardless of whether slow cooling or water pulverization is adopted as the method for cooling and solidifying the slag, the amount of slag remains constant, so the capacity of the cooling and solidifying equipment can be small, reducing manufacturing costs. There are other benefits.

次に本願第2発明は、前述の如く出滓ロアの形成位置及
び電極12と溢流堰8間の距離(L)を規制すると共に
、炉本体1ξ炉蓋2とを筒状の耐熱可撓板3によって接
続し、傾動装置21により炉本体1のみを傾動し得る構
成としているため、溶融電気炉の付属設備を固定した侭
で炉本体1のみを傾動させることにより、未溶融障害板
9で溶融物5を堰き止めつつ金属溶融物4のみを極めて
容易に排出することができる。
Next, the second invention of the present application regulates the formation position of the slag lower and the distance (L) between the electrode 12 and the overflow weir 8 as described above, and also connects the furnace body 1ξ and the furnace lid 2 to a cylindrical heat-resistant flexible They are connected by the plate 3, and only the furnace body 1 can be tilted by the tilting device 21. Therefore, by tilting only the furnace body 1 while the attached equipment of the melting electric furnace is fixed, the unmelted obstruction plate 9 can be tilted. Only the metal molten material 4 can be discharged extremely easily while the molten material 5 is dammed up.

又、装置自体の構成も簡単で安価に製造できると共に、
傾動後水平状態に戻した場合にも、溶融物5の深さに殆
んど変化がないため傾動前と略同−の負荷状態で運転で
き、高い溶融効率を上げることができる。そのうえ、傾
動操作は遠隔自動で簡単に行うことができ、そのうえ安
全で且つ熟練技術者も必要でないという利点がある。
In addition, the configuration of the device itself is simple and can be manufactured at low cost.
Even when it is returned to the horizontal state after tilting, there is almost no change in the depth of the melt 5, so it can be operated under substantially the same load condition as before tilting, and high melting efficiency can be achieved. Moreover, the tilting operation can be easily performed remotely and automatically, and has the advantage that it is safe and does not require a skilled technician.

更に本願第3発明は、炉本体1の側壁に前記出滓ロアを
形成し、炉内ガス温度を検出することによって未溶融物
6の状態を検知すると共に、出滓物の光量を測定するこ
とによって未溶融物6と出滓量を検知し、ガス温度と光
量の両検知信号が夫々設定1直外となったときに所定量
の新たなもえがら(A)を投入する構成としている。そ
の結果、もえがら(A)を炉内の溶融状態と出滓状態に
合わせて効率よく且つ連続的に投入することができ、安
定した溶融並びに出滓と、総合的な処理能率の大幅な向
上が可能となる。
Furthermore, the third invention of the present application is to form the slag lower on the side wall of the furnace main body 1, and to detect the state of the unmelted material 6 by detecting the gas temperature in the furnace, and to measure the amount of light of the slag. The unmelted material 6 and the amount of slag produced are detected, and a predetermined amount of new rice husks (A) is introduced when both the detection signals of the gas temperature and light amount are respectively just outside the setting 1. As a result, it is possible to efficiently and continuously feed rice husk (A) according to the melting state and slag state in the furnace, resulting in stable melting and slag production, and a significant improvement in overall processing efficiency. becomes possible.

本願発明は上述の通り、秀れた実用的効用を有するもの
である。
As mentioned above, the present invention has excellent practical utility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願発明に係るもえがらの連続溶融電気炉の縦
断面概要図であり、第2図は第1図のa−a視断面概要
図である。 第3図は炉本体を傾動せしめた状態を示す一部縦断概要
図である。 1 炉本体      17  原料ホンパー2 炉蓋
       18  レベル検出器3 筒状・耐熱可
撓板  19  ホッパ入口ゲート4 金属溶融物  
  20  分配コンベアー5 溶融物      2
1  傾動装置6 未溶融物     22  集塵装
置7 出滓口      23  誘引通風機8 溢流
堰    24  スラグ搬出コンベアー9 未溶融物
障害板  25  温度検出器10  流し樋    
 25a 役人制御装置11  流し樋カバー   2
6  光量検出器12  電極       27  
炉内ガス13  集塵タクト    28  支持架台
14  電極昇降装置   29  スラグピット15
  原料投入シュート30  耐熱可撓筒体16  原
料投入ゲー1−   A  もえがら特許出願人 株式会社 タクマ総合研究所 第1頁の続き 0発 明 者 三原状部 高岡市伏木古府元町9−3 0発 明 者 高井清明 高岡市伏木矢田上町1−22 0出 願 人 日本重化学工業株式会社東京都中央区日
本橋小網町8番 4号
FIG. 1 is a schematic vertical cross-sectional view of an electric furnace for continuously melting rice husks according to the present invention, and FIG. 2 is a schematic cross-sectional view taken along the line aa in FIG. 1. FIG. 3 is a partially vertical schematic diagram showing a state in which the furnace body is tilted. 1 Furnace main body 17 Raw material pumper 2 Furnace lid 18 Level detector 3 Cylindrical heat-resistant flexible plate 19 Hopper entrance gate 4 Melt metal
20 Distribution conveyor 5 Melt 2
1 Tilt device 6 Unmelted material 22 Dust collector 7 Slag outlet 23 Induced draft fan 8 Overflow weir 24 Slag discharge conveyor 9 Unmelted material obstruction plate 25 Temperature detector 10 Sink gutter
25a Official control device 11 Sink gutter cover 2
6 Light amount detector 12 Electrode 27
Furnace gas 13 Dust collection tact 28 Support frame 14 Electrode lifting device 29 Slag pit 15
Raw material input chute 30 Heat-resistant flexible cylindrical body 16 Raw material input game 1-A Moehara Patent Applicant Takuma Research Institute Co., Ltd. Continued from page 1 0 Inventor Mihara Jobu 9-3 Motomachi Fushiki, Takaoka City 0 Invention Person: Kiyoaki Takai 1-22, Fushikiyata Kamimachi, Takaoka City 0 Applicant: Japan Heavy Chemical Industries, Ltd. 8-4, Nihonbashi Koamicho, Chuo-ku, Tokyo

Claims (1)

【特許請求の範囲】 1 都市ごみ等のもえがら(A)を溶融処理する電気炉
に於いて、炉本体(1)の側壁に、適宜の高さの溢流堰
(8)とその炉内側に上・方より垂れ壁状に配設した未
溶融物障害板(9)とから成る出滓口(7)を形成し、
該出滓口(7)を炉本体(1)内の何れかの電極C12
と炉心(0)を結ぶ線上若しくはその近傍に位置せしめ
ると共に、前記電極0功に−16〜25の間の定数〕と
したことを特徴とする連続出滓装置を有するもえがらの
連続溶融電気炉。 2 都市とみ等のもえがら(A)を溶融処理する電気炉
に於いて、炉本体(1)の側壁に、適宜の高さの溢流堰
(8)とその炉内側に上方より垂れ壁状に配設した未溶
融物障害板(9)とから成る出滓口(7)を形成し、該
出滓10(7)を炉本体(1)内の何れかの電極@と炉
心(0)を結ぶ線上若しくはその近傍に位置せしめると
共に、前記電極α功に−16〜25の定数〕とし、且つ
前記炉本体(1)を傾動装置(21)により出滓口(7
)側へ傾動自在に支持すると共に、炉本体(1)の上方
には筒状の耐熱可撓板(3)を介設して炉蓋(2)を取
付けたことを特徴とする連続出滓装置を有するもえがら
の連続溶融電気炉。 3 都市とみ等のもえがら(A)を溶融処理する電気炉
に於いて、炉本体(1)の側壁に、適宜の高さの溢流堰
(8)とその炉内側に上方より垂れ壁状に配設した未溶
融物障害板(9)とから成る出滓口(7)を形成し、該
出滓口(7ンを炉本体(1)内の何れかの電極(2)と
炉心(0)を結ぶ線上若しくはその近傍に位置せしめる
と共に、前記電極(2)外面と溢流堰(8)外面間の距
離(L)をL = 1.6 Xに−16〜25の定数〕
とし、且つ炉内上方には炉内ガス(27)の温度検出器
(251を、また流出する溶融物(5)の流路途中には
光量検出器(26)を夫々配設し、前記温度検出器(2
5)と光量検出器(26)の各検出値が夫々設定値外と
なったとき投入制御装置(25a)により原料投入ゲー
トαのを開放し、所定量のもえがら(A)を炉内へ投入
することを特徴とする連続出滓装置を有するもえがらの
連続溶融電気炉。
[Scope of Claims] 1. In an electric furnace for melting rice husks (A) such as municipal waste, an overflow weir (8) of an appropriate height and an overflow weir (8) of an appropriate height are provided on the side wall of the furnace body (1) and the inside of the furnace. forming a slag outlet (7) consisting of an unmelted matter obstruction plate (9) arranged in the form of a hanging wall from above;
Connect the slag outlet (7) to any electrode C12 in the furnace body (1).
An electric furnace for continuous melting of rice husk, characterized in that the continuous slag extraction device is located on or near a line connecting the reactor core (0) and the electrode 0 is set to a constant between -16 and 25. . 2. In an electric furnace for melting rice husks (A) of urban trees, etc., an overflow weir (8) of an appropriate height is installed on the side wall of the furnace body (1), and a wall-shaped wall hanging from above is installed on the inside of the furnace. A slag outlet (7) is formed with an unmelted material obstruction plate (9) arranged at The furnace body (1) is positioned on or near the line connecting the electrodes, and the electrode α is set to a constant of -16 to 25], and the furnace body (1) is moved to the slag outlet (7) by a tilting device (21).
) side, and a furnace lid (2) is attached to the furnace body (1) with a cylindrical heat-resistant flexible plate (3) interposed above the furnace body (1). Electric furnace for continuous melting of rice husk with equipment. 3. In an electric furnace for melting rice husks (A) of urban trees, etc., an overflow weir (8) of an appropriate height is installed on the side wall of the furnace body (1), and a wall-shaped wall hanging from above is installed on the inside of the furnace. A slag outlet (7) is formed with an unmelted material obstruction plate (9) disposed in the reactor body (1) and the reactor core ( 0), and the distance (L) between the outer surface of the electrode (2) and the outer surface of the overflow weir (8) is L = 1.6 x a constant of -16 to 25]
A temperature detector (251) for the furnace gas (27) is installed in the upper part of the furnace, and a light intensity detector (26) is installed in the middle of the flow path of the outflowing melt (5). Detector (2
5) When each detection value of the light amount detector (26) is outside the set value, the material input gate α is opened by the input control device (25a), and a predetermined amount of rice husks (A) is introduced into the furnace. An electric furnace for continuously melting rice husks, which has a continuous slag device.
JP1587183A 1983-02-01 1983-02-01 Continuous melting electric furnace for cinder with continuous slag discharger Granted JPS59142374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1587183A JPS59142374A (en) 1983-02-01 1983-02-01 Continuous melting electric furnace for cinder with continuous slag discharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1587183A JPS59142374A (en) 1983-02-01 1983-02-01 Continuous melting electric furnace for cinder with continuous slag discharger

Publications (2)

Publication Number Publication Date
JPS59142374A true JPS59142374A (en) 1984-08-15
JPH039393B2 JPH039393B2 (en) 1991-02-08

Family

ID=11900858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1587183A Granted JPS59142374A (en) 1983-02-01 1983-02-01 Continuous melting electric furnace for cinder with continuous slag discharger

Country Status (1)

Country Link
JP (1) JPS59142374A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273908A (en) * 1988-04-26 1989-11-01 Kawasaki Steel Corp Method and device for disposing incinerated refuse ash
JPH0311221A (en) * 1989-06-07 1991-01-18 Kawasaki Steel Corp Slag discharge port of incineration ash melting furnace
JPH0355412A (en) * 1989-07-25 1991-03-11 Ebara Infilco Co Ltd Plasma incinerated ash melting device
JPH0355411A (en) * 1989-07-25 1991-03-11 Ebara Infilco Co Ltd Melting disposing device for incinerated ash
JPH0539915A (en) * 1991-08-02 1993-02-19 Hitachi Zosen Corp Temperature controller at slag discharging port of melting furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273908A (en) * 1988-04-26 1989-11-01 Kawasaki Steel Corp Method and device for disposing incinerated refuse ash
JPH0311221A (en) * 1989-06-07 1991-01-18 Kawasaki Steel Corp Slag discharge port of incineration ash melting furnace
JPH0355412A (en) * 1989-07-25 1991-03-11 Ebara Infilco Co Ltd Plasma incinerated ash melting device
JPH0355411A (en) * 1989-07-25 1991-03-11 Ebara Infilco Co Ltd Melting disposing device for incinerated ash
JPH0539915A (en) * 1991-08-02 1993-02-19 Hitachi Zosen Corp Temperature controller at slag discharging port of melting furnace

Also Published As

Publication number Publication date
JPH039393B2 (en) 1991-02-08

Similar Documents

Publication Publication Date Title
US4639927A (en) Continuous melt electric furnace with continuous discharge
JPS59142374A (en) Continuous melting electric furnace for cinder with continuous slag discharger
CN108302941B (en) A kind of full-automatic continuous feed is slagged tap and topples over metal recovery electricity melting plant
CN104561594A (en) Tin smelting liquation furnace
US4697532A (en) Operating method for a refuse processing furnace
CN101665850A (en) Device for heating and smelting sponge iron, separating iron slag and refining molten steel
CA2114486A1 (en) Method of recovering glass and metal from solid residues produced in refuse incineration plants
US2890951A (en) Continuous tapping of metallurgical furnace
CN210765454U (en) Regenerative lead multi-chamber smelting heat accumulating type energy-saving furnace device
US2966350A (en) Reverberatory furnace and method for reclaiming lead from storage batteries
US2465544A (en) Metal melting
CN111944939A (en) Process for controlling slag content of main channel residual iron and discharging main channel residual iron
CN204474737U (en) Tin smelts liquating furnace
NL8203262A (en) METHOD AND APPARATUS FOR DETERMINING THE COMPLETION OF A MOLDING MOLD IN A MELTING CAST CONTAMINATION POLLUTION SYSTEM.
CN201512549U (en) Device for melting sponge iron by heating, separating iron slag and refining molten steel
CN218842221U (en) Water quenching device for slag treatment
JPS6224694B2 (en)
US2809028A (en) Iron retention and slag regulating pit
CN204535395U (en) Combined type protection smelting furnace
CN100412213C (en) Non-ferrous metal smelting device
CN201053026Y (en) Non-ferrous metal smelting device
JPH024093Y2 (en)
JPS5848550Y2 (en) Fine metal scrap melting equipment
JP2599145Y2 (en) Waste melting furnace
RU2087817C1 (en) Plant for reworking materials