JPS5914233B2 - Molybdenum electrode rod for glass melting - Google Patents

Molybdenum electrode rod for glass melting

Info

Publication number
JPS5914233B2
JPS5914233B2 JP334678A JP334678A JPS5914233B2 JP S5914233 B2 JPS5914233 B2 JP S5914233B2 JP 334678 A JP334678 A JP 334678A JP 334678 A JP334678 A JP 334678A JP S5914233 B2 JPS5914233 B2 JP S5914233B2
Authority
JP
Japan
Prior art keywords
molybdenum
glass
melting
electrode rod
molybdenum electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP334678A
Other languages
Japanese (ja)
Other versions
JPS5496845A (en
Inventor
晴道 岡本
一夫 大岡
勇 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP334678A priority Critical patent/JPS5914233B2/en
Publication of JPS5496845A publication Critical patent/JPS5496845A/en
Publication of JPS5914233B2 publication Critical patent/JPS5914233B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はガラス溶融用モリブデン電極棒に関する。[Detailed description of the invention] The present invention relates to a molybdenum electrode rod for glass melting.

ガラス工業において、通電溶融法は熱効率が高くコスト
面での利点が大きいこと、N0xやS0xなどの排出が
なく大気汚染を低減しうること、溶 3を融操作や制御
が容易で品質も安定で高品質ガラスの量産に適すること
など生産性、品質、作業環境などの点で多くの利点をも
たらす。
In the glass industry, the electric melting method has high thermal efficiency and great cost advantages; it does not emit NOx or SOx and can reduce air pollution; it is easy to operate and control, and the quality is stable. It offers many advantages in terms of productivity, quality, work environment, etc., including being suitable for mass production of high-quality glass.

しかし上記通電溶融法には粉末冶金法で製造した金属モ
リブデン製棒状電極が使用されている。即ちモサブデン
3、・製電極棒は使い易さ、寿命やガラスの品質に与
える影響などの点ですぐれており、また真空アーク溶解
法で製造したモリブデン電極棒が塑性加工乃至ハンドリ
ング過程で折損し易かつたり或いはガラスの発泡不良を
起生し易いのに較べ粉末冶金法で製造したモリブデン電
極棒は折損の恐れや、ガラスの発泡不良も少ないからで
ある。しかしながら上記粉末冶金法で製造したモリブデ
ン電極棒は焼結による緻密化に限度があり空隙部を介し
て酸化し易く、また使用中(通常1200〜1600℃
程度になる)再結晶化によつて結晶粒の成長がつ 進み
易い。しかしてこれら結晶粒界を溶融ガラス成分中のイ
オン化傾向の小さい酸化物が選択的に溶浸して前記結晶
粒子の脱離を招来し、もつて電極の消耗が起生すると云
う欠点が認められる。この電極の消耗は溶融ガラスにモ
リブデン成分の混5 入をもたらすことになり、従つて
品質管理上高純度を要求される場合には適用し難たいこ
とになる。かくして上記粉末冶金法で製造されるモリブ
デン電極棒の耐消耗性の改良についても検討され、原料
モリブデン粉末粒度の選択、高緻密焼結体化、] 或い
は加工比を高め微細化、さらに酸化亜鉛を添加配合し結
晶成長を抑制して粒界粒浸を防止することなどが試みら
れている。しかしながら上記電強の耐消耗性、長寿命化
の点では尚実用上充分満足しうると云えず、この問題は
これら電極棒の大J 型化即ち生産性向上を目的とし直
径75〜100mWLのモリブデン電極棒の要求に対し
て解決を迫られていることである。本発明者らは上記諸
点に鑑み検討を重ねた結果、溶解モリブデン製電極棒に
ついて、酸素およびアノ ルカリ金属不純物の含有量を
微少に抑えた場合、すぐれた耐消耗性など発揮し、ガラ
スの通電溶融法に長期間に亘つて適用しうるガラス溶融
用モリブデン電極棒を提供しようとするものである。
However, the electric melting method described above uses a rod-shaped electrode made of metal molybdenum manufactured by a powder metallurgy method. In other words, molybdenum electrode rods are superior in terms of ease of use, longevity, and impact on glass quality, and molybdenum electrode rods manufactured by vacuum arc melting are prone to breakage during plastic processing or handling processes. This is because molybdenum electrode rods manufactured by powder metallurgy are less susceptible to breakage and less likely to cause defects in glass foaming, whereas molybdenum electrode rods manufactured by powder metallurgy are more likely to cause cracking or defective glass foaming. However, molybdenum electrode rods manufactured by the above powder metallurgy method have a limit to their densification through sintering, are easily oxidized through the voids, and are susceptible to oxidation during use (usually at temperatures of 1200 to 1600°C).
The growth of crystal grains tends to be accelerated by recrystallization. However, there is a drawback in that oxides with a low ionization tendency in the molten glass components selectively infiltrate these grain boundaries, causing detachment of the crystal grains, resulting in electrode wear. This consumption of the electrodes results in the contamination of molybdenum components into the molten glass, and therefore it is difficult to apply this method in cases where high purity is required for quality control. In this way, improvements in the wear resistance of molybdenum electrode rods manufactured by the above powder metallurgy method have been studied, including selecting the grain size of the raw molybdenum powder, making it a highly dense sintered body, increasing the processing ratio to make it finer, and adding zinc oxide to it. Attempts have been made to prevent grain boundary infiltration by adding additives to suppress crystal growth. However, it cannot be said that the abrasion resistance and long life of the above-mentioned electrode rods are sufficiently satisfactory in practical use. There is a pressing need to find a solution to the demand for electrode rods. As a result of repeated studies in view of the above points, the present inventors found that electrode rods made of molten molybdenum exhibit excellent abrasion resistance when the content of oxygen and analkali metal impurities is kept to a very small level, and that the electrode rods are made of molten molybdenum. The present invention aims to provide a molybdenum electrode rod for glass melting that can be applied to melting methods over a long period of time.

以下本発明を詳細に説明すると、本発明は溶融・ モリ
ブデン製で且つ酸素およびアルカリ金属不純物の含有量
がそれぞれ5OPF以下であることを特徴とするガラス
溶融用モリブデン電極棒である。本発明に係るガラス溶
融用モリプデン電極棒は次のようにして製造しうる。即
ち金属モリブデン粉末、金属モリブデン粉末に例えばカ
ーボンなど脱酸剤を添加して調製した粒状物もしくは成
形体を溶解し、さらに要すれば再溶解処理することに
,よつて精錬効果を高める。この溶解処理によつて原料
モリプデン地金中の空隙や気泡を消失され実質的には理
論密度化を達成するとともに酸素含有量およびカリウム
やナトリウムなどのアルカリ金属元素不純物含有量がそ
れぞれ50PF以下の低酸 1素および低アルカリ溶解
モリブデンが得られる〇このモリブデン溶解についてさ
らに説明すると、上記モリプデン溶解は電子線溶解法、
プラズマ溶解法或いは真空アーク溶解法などが適する。
即ち高真空中で高電圧電子線により衝撃加熱する電子
1線溶解法によれば精錬効果もよく、素材中(被溶解物
)に含まれるアルカリ金属元素やモリブデン酸化物など
高蒸気圧物質だけでなく、モリブデンより蒸気圧の高い
鉄やニツケルなど着色原因となる不純物をも除去精錬し
うる。上記電子線溶解に対しブラズマ溶解法によればプ
ラズマを継続するため低真空を保つ必要があり、精錬効
果も若千劣ると云う問題を有するか、所望の低酸素量、
低アルカリ量のモリブデン溶解物は得られる。さらに真
空アーク溶解法の場合には一般に精錬効果が劣る(プラ
ズマ溶解法に較外)ため、所要の低酸素量、低アルカリ
量のモリブデン溶解物を得るには真空アーク溶解処理を
繰返し精錬する必要がある。これらの各溶解法によつて
得た溶解モリプデンの一例について、不純物含有量を測
定した結果を表一1に示す。尚表中不純物量は鬼単位で
示しまた参考までに従来ガラス溶解に使用されていたモ
リブデン電極棒の場合も併せて示した〇上記の如く溶解
製であるため緻密度が高く、且つ酸素含有量およびアル
カリ金属含有量がそれぞれ50鬼以下に抑えられた本発
明に係るガラス溶融用モリブデン電極棒はガラスの通電
溶融電極として長期間に亘つて所要の機能を果す。
The present invention will be described in detail below. The present invention is a molybdenum electrode rod for glass melting, which is made of molten molybdenum and has a content of oxygen and alkali metal impurities of 5 OPF or less. The molybdenum electrode rod for glass melting according to the present invention can be manufactured as follows. That is, metal molybdenum powder, granules or molded bodies prepared by adding a deoxidizing agent such as carbon to metal molybdenum powder are melted, and if necessary, remelted.
, This increases the refining effect. This melting process eliminates the voids and bubbles in the raw molybdenum metal, essentially achieving theoretical density, and reducing the oxygen content and impurity content of alkali metal elements such as potassium and sodium to below 50PF. Oxidic acid and low alkali dissolved molybdenum can be obtained. To further explain this molybdenum dissolution, the above molybdenum dissolution can be carried out by electron beam dissolution,
A plasma melting method or a vacuum arc melting method is suitable.
In other words, electrons are bombarded and heated by a high-voltage electron beam in a high vacuum.
The one-line melting method has a good refining effect, and can be used to remove not only high vapor pressure substances such as alkali metal elements and molybdenum oxides contained in the material (material to be melted), but also substances that cause coloration, such as iron and nickel, which have a higher vapor pressure than molybdenum. It can also be refined to remove impurities. In contrast to the above-mentioned electron beam melting, the plasma melting method requires a low vacuum to be maintained in order to continue the plasma, and the refining effect is somewhat inferior.
A molybdenum melt with a low alkaline content is obtained. Furthermore, in the case of vacuum arc melting, the refining effect is generally inferior (compared to plasma melting), so it is necessary to repeat the vacuum arc melting process to obtain a molybdenum melt with the required low oxygen and alkali content. There is. Table 1 shows the results of measuring the impurity content of an example of dissolved molybdenum obtained by each of these dissolution methods. In addition, the amount of impurities in the table is shown in units, and for reference, the case of molybdenum electrode rods conventionally used for glass melting is also shown.〇 As mentioned above, since it is made by melting, it has high density and oxygen content. The molybdenum electrode rod for glass melting according to the present invention, in which the alkali metal content is suppressed to 50 or less, performs the required function as a current-carrying glass melting electrode for a long period of time.

即ち本発明に係るモリブデン電極棒は、ガラスの通電溶
融に適用した場合も溶浸などによる損傷が抑止されすぐ
れた耐消耗性を示し、常に所要の電極機能を発揮する。
しかして本発明に係るモリブデン電極棒が耐消耗性にす
ぐれ長寿命を維持するのは次のように考えられる。モリ
ブデンはガラス溶融用電極棒として用いられ1100℃
以上の高温に長時間保持されると再結晶化し、当初数μ
程度であつた結晶粒径が数n程度の大きさに成長する0
この粒子の成長に伴ない粒子表面積は粒子径にほぼ逆比
例して減少し、再結晶後の粒界全表面積は当初に較べ1
/1000程度となる。一方アルカリ金属元素や酸素は
モリプデンに対しほとんど溶解度をもたないため粒界面
に存在しており、上記粒界表面積の減少に伴ない残つた
粒界面に濃縮された形で存在するようになる。かくして
この結晶粒界に濃縮された酸素やアルカリ金属元素など
の不純物は融点が低いため、ガラス溶融時、ガラスの溶
浸を助長し選択的な侵蝕を起生し粒子の脱離、消耗損失
を招く。しかるに本発明に係るモリブデン電極棒におい
ては上記酸素やアルカリ金属元素などの含有量が極く微
少なため前記の如く溶浸、侵蝕も抑制され、もつてすぐ
れた耐消耗性を呈するものと考えられる。次に本発明の
実施例を記載する。
That is, even when the molybdenum electrode rod according to the present invention is applied to electrical melting of glass, damage due to infiltration is suppressed, exhibits excellent wear resistance, and always performs the required electrode function.
The reason why the molybdenum electrode rod according to the present invention has excellent wear resistance and maintains a long life is considered to be as follows. Molybdenum is used as an electrode rod for glass melting and is heated to 1100℃.
If it is kept at a high temperature for a long time, it will recrystallize, and the initial
The crystal grain size, which was about
As the grains grow, the grain surface area decreases in almost inverse proportion to the grain size, and the total grain boundary surface area after recrystallization is 1
/1000 or so. On the other hand, alkali metal elements and oxygen have almost no solubility in molybdenum, so they exist at grain boundaries, and as the grain boundary surface area decreases, they come to exist in a concentrated form at the remaining grain boundaries. Since the impurities such as oxygen and alkali metal elements concentrated in the grain boundaries have a low melting point, when the glass is melted, they promote infiltration of the glass and cause selective erosion, resulting in particle detachment and attrition loss. invite However, in the molybdenum electrode rod according to the present invention, since the content of the above-mentioned oxygen and alkali metal elements is extremely small, infiltration and corrosion are suppressed as described above, and it is thought that it exhibits excellent wear resistance. . Next, examples of the present invention will be described.

アルカリ金属含有量15PF、酸素含有量17鬼炭素含
有量15PF1(炭素量は100PF程度までは別に悪
影響が見られない)の電子線溶解製のモリブデン電極棒
(切削加工)を作成した。
An electron beam melted molybdenum electrode rod (cutting process) having an alkali metal content of 15 PF, an oxygen content of 17 PF, and a carbon content of 15 PF 1 (no adverse effects are observed up to a carbon content of about 100 PF) was prepared.

一方表−2に示す組成比(重量%)の3種のガラスを用
意し、泡切れ剤として砒素酸化物を重量比で0.3%そ
れぞれ添加した。
On the other hand, three types of glasses having the composition ratios (wt%) shown in Table 2 were prepared, and 0.3% by weight of arsenic oxide was added to each glass as a bubble breaker.

上記各ガラス成分の溶融に前記モリブデン電極棒を使用
し通電溶融(約1450℃)した。
The molybdenum electrode rod was used to melt each of the above-mentioned glass components, and the glass components were electrically melted (about 1450° C.).

この通電溶融を50時間行なつた後、通電溶融を止め冷
却しモリブデン電極棒の状態即ちガラス中へのモリブデ
ン溶出およびモリブデン地金中へのガラスの浸入状態を
観察した。上記において硼けい酸ガラスの通電溶融に用
いた電極棒の場合は表面に僅か黒色層を呈している部分
が認められたに過ぎず、また電極棒断面についてみると
結晶粒界へのガラス溶浸も高々0.02m1程度であつ
た。
After 50 hours of current melting, the current melting was stopped and cooled, and the state of the molybdenum electrode rod, that is, the state of molybdenum eluting into the glass and the state of glass penetrating into the molybdenum metal, was observed. In the case of the electrode rod used for electric melting of borosilicate glass in the above case, only a slight black layer was observed on the surface, and when looking at the cross section of the electrode rod, glass infiltration into the grain boundaries was observed. The area was about 0.02m1 at most.

この点従来用いられていたモリブデン電極棒の場合(同
一条件での通電溶融)5〜10m1程度の黒色層が表面
に認められ、また結晶粒界へのガラス溶浸が0.1〜0
.21tmの深さに達しているのと著しい違いである〇
さらに鉛含有ガラスの通電溶融に用いた上記モリブデン
電極棒の場合、表面に厚さ2〜3171の黒色層が認め
られたが鉛の還元によるルツボ底部への沈積も僅かに過
ぎず、また電極棒断面における結晶粒界へのガラス溶浸
も高々0.05mIの深さであつた0この点従来用いら
れていたモリブデン電極棒の場合、黒色層の形成や鉛の
還元析出も10n以上で且つ電極断面における結晶粒界
へのガラス溶浸が0.5mmの深さに及んでいるのと較
べ著しい違いである。
In this regard, in the case of conventionally used molybdenum electrode rods (current melting under the same conditions), a black layer of about 5 to 10 ml was observed on the surface, and glass infiltration into the grain boundaries was 0.1 to 0.
.. This is a remarkable difference from the fact that the depth reached 21 tm.Furthermore, in the case of the molybdenum electrode rod used for electric melting of lead-containing glass, a black layer with a thickness of 2 to 3171 mm was observed on the surface, but the reduction of lead was not observed. In the case of the molybdenum electrode used conventionally, The formation of a black layer and the reductive precipitation of lead were 10 nm or more, and the glass infiltration into the crystal grain boundaries in the electrode cross section reached a depth of 0.5 mm, which is a remarkable difference.

上記の如く本発明に係る低酸素低アルカリモリブデン電
極棒においては結晶粒子が数ml程度と大きいにもかか
わらず表面における溶浸および粒界における溶浸に対し
てすぐれた性能を備えていた。
As described above, the low-oxygen, low-alkali molybdenum electrode rod according to the present invention had excellent performance against surface infiltration and grain boundary infiltration despite the crystal grains being large, on the order of several ml.

Claims (1)

【特許請求の範囲】[Claims] 1 溶解モリブデン製で且つ酸素含有量50ppm以下
およびアルカリ金属不純物の含有量50ppm以下であ
ることを特徴とするガラス溶融用モリブデン電極棒。
1. A molybdenum electrode rod for glass melting, which is made of molten molybdenum and has an oxygen content of 50 ppm or less and an alkali metal impurity content of 50 ppm or less.
JP334678A 1978-01-18 1978-01-18 Molybdenum electrode rod for glass melting Expired JPS5914233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP334678A JPS5914233B2 (en) 1978-01-18 1978-01-18 Molybdenum electrode rod for glass melting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP334678A JPS5914233B2 (en) 1978-01-18 1978-01-18 Molybdenum electrode rod for glass melting

Publications (2)

Publication Number Publication Date
JPS5496845A JPS5496845A (en) 1979-07-31
JPS5914233B2 true JPS5914233B2 (en) 1984-04-03

Family

ID=11554788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP334678A Expired JPS5914233B2 (en) 1978-01-18 1978-01-18 Molybdenum electrode rod for glass melting

Country Status (1)

Country Link
JP (1) JPS5914233B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045924B (en) * 2012-12-27 2015-01-07 大连理工大学 Electron beam smelting method for preparing tungsten electrode material
CN103045886B (en) * 2012-12-27 2015-02-11 大连理工大学 Method for preparing rare-earth-tungsten electrode material
CN111118319B (en) * 2020-02-20 2020-11-06 江苏奇纳新材料科技有限公司 Preparation method of high-temperature alloy electrode bar for plasma rotating electrode

Also Published As

Publication number Publication date
JPS5496845A (en) 1979-07-31

Similar Documents

Publication Publication Date Title
KR101643040B1 (en) Process for producing high-purity lanthanum, high-purity lanthanum, sputtering target comprising high-purity lanthanum, and metal gate film comprising high-purity lanthanum as main component
EP2666877B1 (en) Method for producing high-purity lanthanum, high-purity lanthanum, sputtering target formed from high-purity lanthanum, and metal gate film having high-purity lanthanum as main component
JPH10158827A (en) Ito (indium tin oxide) sintered body and ito sputtering target
CN110218898B (en) Preparation method of copper-chromium-zirconium alloy wire
CN113862672B (en) Preparation method of tungsten electrode for fused salt electrolysis method
JPH11236219A (en) Zinc oxide-base sintered compact and its production
KR20140116182A (en) Oxide sintered body and sputtering target, and method for manufacturing same
KR101335208B1 (en) Method for manufacturing high-purity erbium, high-purity erbium, sputtering target composed of high-purity erbium, and metal gate film having high-purity erbium as main component
JP4874879B2 (en) Erbium sputtering target and manufacturing method thereof
JPH11256320A (en) Zno base sintered compact
KR101547051B1 (en) High-purity erbium, sputtering target comprising high-purity erbium, metal gate film having high-purity erbium as main component thereof, and production method for high-purity erbium
KR20150022994A (en) Inert alloy anode used for aluminum electrolysis and preparation method therefor
US9586847B2 (en) Tin oxide refractory and method for its production
JPS5914233B2 (en) Molybdenum electrode rod for glass melting
JP4092764B2 (en) ZnO-based sintered body
JPH11171539A (en) Zno-base sintered compact and its production
CN115287529B (en) Nickel-iron-based alloy coating and preparation method and application thereof
WO2012124840A1 (en) Method for manufacturing titanium powder for manufacturing oxide-dispersion strengthening-type titanium material
DE2757808A1 (en) SINTERED ELECTRODES
KR100266736B1 (en) Method of manufacturing zinc-titanium mother alloy and manganese dry battery
JPS63199842A (en) Electrode material
CN1450184A (en) Copper base alloy electric vacuum contact material and preparation method thereof
JPS60211717A (en) Method of producing electrode for vacuum breaker
CN110747370B (en) Production process of iron-free manganese-free cupronickel B10
JPH03140491A (en) Rare earth metal and production of rare earth alloy