JPS59142046A - Control method and device for tool life - Google Patents

Control method and device for tool life

Info

Publication number
JPS59142046A
JPS59142046A JP1722383A JP1722383A JPS59142046A JP S59142046 A JPS59142046 A JP S59142046A JP 1722383 A JP1722383 A JP 1722383A JP 1722383 A JP1722383 A JP 1722383A JP S59142046 A JPS59142046 A JP S59142046A
Authority
JP
Japan
Prior art keywords
tool
cutting
time
life
cutting speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1722383A
Other languages
Japanese (ja)
Inventor
Shigeru Tani
茂 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikegai Corp
Original Assignee
Ikegai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikegai Corp filed Critical Ikegai Corp
Priority to JP1722383A priority Critical patent/JPS59142046A/en
Publication of JPS59142046A publication Critical patent/JPS59142046A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4163Adaptive control of feed or cutting velocity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37252Life of tool, service life, decay, wear estimation

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To allow a tool life to approximate its target value, by automatically correcting particularly a cutting speed of the cutting conditions, previously programmed in conformity with characteristics of a machine tool, tool and a workpiece, so as to continue the cutting after the point of time when the cutting speed is corrected. CONSTITUTION:After starting a workpiece 6 to be cut by a numerically controlled lathe 1, adapting the edge point of a required tool 11 to a measuring face 18 of a detector 17 at each optionally preset time in accordance with a measuring program, if a change in the flank position of said tool generated during this time is detected as the present wearing amount DELTAW (mm.), a signal corresponding to this amount DELTAW is input to a detection control circuit 22. Next, on the basis of the tool life equation V<n>T=C(V=cutting speed, T=life time of tool, n and C are both constant.), the present cutting speed Vo programmed about said tool is corrected. In such way, continuing to cut the workpiece after the point of cutting speed correction time, a tool life cab be allowed to approximate its target value.

Description

【発明の詳細な説明】 本発明は数値制御工作機械に使用される工具の寿命を管
理するための方法及び装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method and apparatus for managing the life of tools used in numerically controlled machine tools.

工具の寿命時間の長短は機械加工の経済性に大きな影響
を及ぼし、寿命時間が長過ぎるときには選定した切削条
件、主として切削速度が遅過ぎることを意味するもので
加工能率の低下をもたらすことになり、また反対に寿命
時間が短過ぎるときには切削速度が早過ぎることを意味
し、この場合工具の消耗が激しく工具費が増大すると共
に頻繁な工具の交換操作による非切削時間の増加を来た
す結果、これまた加工能率の低下をもたらすことになる
。他方、夜間、無人運転により機械加工を続行する場合
等では、工具交換動作に制約が加わることが生じ勝ちで
あるので、寧ろ切削速度を犠牲にしても工具寿命を延長
させたい場合もある。
The length of tool life time has a major impact on the economic efficiency of machining, and if tool life time is too long, it means that the selected cutting conditions, mainly cutting speed, are too slow, resulting in a decrease in machining efficiency. On the other hand, if the life time is too short, it means that the cutting speed is too fast, and in this case, the tool wears out rapidly, increasing tool costs and increasing non-cutting time due to frequent tool replacement operations. This also results in a decrease in processing efficiency. On the other hand, when machining is continued unattended at night, restrictions are likely to be placed on tool exchange operations, so it may be desirable to extend tool life even at the expense of cutting speed.

従って、本発明は切削すべき被加工物の材質、硬度、形
状9寸法及び精度に応じて先づ使用する工作機械及び工
具を決定すると共に、次に第一義的には最も経済的と考
えられる工具寿命時間が得られるような切削条件、特に
切削速度を選定して、また、第二緩曲には制約的な使用
条件下で経済性を成る程度犠牲にしても目標とする所定
の工具寿命時間が得られるように妥当な切削速度を選定
して、切削加工開始後所定の時間毎に工具摩耗を計測す
ることにより目標とする工具寿命時間に近接するように
上記のように選定された切削速度を自動的に修正するこ
とを特徴とする新規な工具寿命の管理方法及び装置を提
供することをその目的とするものである。本発明の他の
目的は決定された加工条件においての工具寿命の管理と
併せて与えられたその色性に最も適切な切削速度を得る
ことである。
Therefore, the present invention first determines the machine tools and tools to be used according to the material, hardness, shape, dimensions, and accuracy of the workpiece to be cut, and then considers the most economical one first. The cutting conditions, especially the cutting speed, should be selected such that the desired tool life time can be obtained, and for the second gentle bending, the target predetermined tool life can be achieved even at the cost of a certain degree of economy under restrictive operating conditions. By selecting an appropriate cutting speed to obtain the desired tool life time and measuring tool wear at predetermined intervals after the start of cutting, the tool was selected as described above in order to approach the target tool life time. It is an object of the present invention to provide a novel tool life management method and device characterized by automatically correcting the cutting speed. Another object of the present invention is to obtain the most appropriate cutting speed for a given color in conjunction with the management of tool life under determined machining conditions.

従来より数値制御工作機械における省力化又は無人化に
関連して工具寿命の管理システム或いは管理方法に就い
て幾つかの提案がなされている。
Conventionally, several proposals have been made regarding tool life management systems or management methods related to labor saving or unmanned operation of numerically controlled machine tools.

本出願人も先に、切削力センサ、寸法計測センサを備え
た適応制御旋盤において、加工状況の変化をセンサによ
り常に監視して工具摩耗が制御範囲を越えて進行したと
きにはこの工具による切削制御を停止して原点位置に復
帰し予め用意された代替工具と交換後、再び切削を継続
して無人加工を可能とする自動工具管理システムを特開
昭55−58950号において提案している。
The present applicant has previously developed an adaptive control lathe equipped with a cutting force sensor and a dimension measurement sensor, in which changes in machining conditions are constantly monitored by the sensor, and when tool wear progresses beyond the control range, cutting control by the tool is implemented. Japanese Patent Laid-Open No. 55-58950 proposes an automatic tool management system that enables unmanned machining by stopping, returning to the original position, replacing the tool with a previously prepared substitute tool, and continuing cutting again.

その他に、複数の工作機械群をコンピュータを使用して
運転制御する群管理システムにおいて各工作機械に使用
される複数の工具の寿命の予報及び判定を行なう工具寿
命の管理システムが特公昭51−34995号或いは特
開昭54735485号により開示されている。後の2
件の技術は何れも予め与えられたプログラムから、各工
具毎の実切削使用時間を算出してコンピュータの記憶装
置に累積記憶し、それぞれの工具累積使用時間と経験的
に予め定められた工具限界使用時間とを比較して工具寿
命を予報し判定するものと、各工具毎の摩耗量を算出し
て累積記憶し、それぞれの工具累積摩耗量と予め定めら
れた工具限界摩耗量とを比較して工具寿命を予報し判定
するものとであってソフトウェアによる工具寿命の管理
方式をとっている。
In addition, a tool life management system that predicts and determines the life of multiple tools used in each machine tool in a group management system that controls the operation of multiple machine tools using a computer is published in Japanese Patent Publication No. 51-34995. It is disclosed in Japanese Patent Application Laid-open No. 54735485. latter 2
In both of these techniques, the actual cutting usage time for each tool is calculated from a pre-given program and accumulated in the computer storage device, and the cumulative usage time of each tool and the empirically predetermined tool limit are calculated. The tool life is predicted and determined by comparing the usage time, and the wear amount for each tool is calculated and stored cumulatively, and the cumulative wear amount of each tool is compared with a predetermined tool limit wear amount. The tool life is predicted and determined using software, and the tool life is managed using software.

一般に切削加工において被加工物の性状と使用する工作
機械及び工具を決定した場合、工具寿命に影響を与える
のは切削速度、切込み、送り及び切削液等の切削条件で
あるが、その中でも最も顕著な影響を与え、また工具寿
命の長短を調整し易いのは切削速度である。なお、切込
み及び送りに就いては被加工物の削り代或いは仕上面の
状態等の制約を受けるので、工具寿命を管理する為の制
御因子として自由に選択できない場合が多い。従来、生
産現場においては経験的な知識に基づいて作業者或いは
プログラマが所要の切込み、送り並びに切削速度を選択
し或いは指定するか、若しくは更に進んでは蓄積された
ツールファイルのデータを活用して切削条件を決定して
いるが、工具寿命は被加工物の材質、硬度、取代又は把
持手段或いは機械の特性等値かな因子の変動の影響を受
は易く、従って現実にその機械で切削しながら加工状況
に即応してその時の切削条件を修正してゆくのが最も目
標寿命に近い妥当な結果を得ることができる。
In general, when determining the properties of the workpiece and the machine tools and tools to be used in cutting, cutting conditions such as cutting speed, depth of cut, feed, and cutting fluid have an impact on tool life, but the most prominent among these are cutting conditions such as cutting speed, depth of cut, feed, and cutting fluid. Cutting speed has a significant influence on cutting speed, and it is easy to adjust the length of tool life. Note that the depth of cut and feed are subject to restrictions such as the machining allowance of the workpiece or the state of the finished surface, and therefore cannot be freely selected as control factors for managing tool life in many cases. Traditionally, in production sites, the operator or programmer selects or specifies the required depth of cut, feed, and cutting speed based on experiential knowledge, or goes even further and performs cutting by utilizing data from accumulated tool files. Although the conditions are determined, the tool life is easily affected by changes in factors such as the material of the workpiece, hardness, stock removal, gripping means, and machine characteristics, so it is difficult to actually process while cutting with the machine. Correcting the current cutting conditions in response to the situation will yield the most appropriate results that are closest to the target life.

本発明は上述のように切削速度が工具寿命に最も決定的
影響を及ぼす因子であって且つ切削速度の制御が比較的
容易であることに着目して、機械。
The present invention focuses on the fact that cutting speed is the factor that has the most decisive effect on tool life as described above, and that cutting speed can be controlled relatively easily.

工具及び被加工物の特性に則して予めプログラムされた
切削条件のうち、特に切削速度を自動的に修正すること
によりこの場合の最適切削速度を得て、その時点以降の
切削を続行し以って工具寿命を目標値に近接せしめるも
ので、以下に本発明を/ 実施例に基づいて詳細に説明する。
Among the cutting conditions programmed in advance according to the characteristics of the tool and workpiece, the optimum cutting speed in this case is obtained by automatically correcting the cutting speed, and cutting is continued from that point onwards. The present invention will be explained in detail below based on examples.

第1図は本発明の実施による数値制御旋盤1の4を回転
自在に軸支した主軸台3が固着され、主軸4の先端部に
嵌着された油圧チャック5は被加工物6を図示せざる搬
送ロボット等の自動装着装置により着脱自在に把持して
、直流電動機等の可変速駆動原動機7により適宜の伝導
機構を介して主軸4と共に任意の所望回転数で回転駆動
される。
FIG. 1 shows a headstock 3 which rotatably supports a numerically controlled lathe 1 according to the present invention, and a hydraulic chuck 5 fitted to the tip of the main spindle 4, which shows a workpiece 6. It is removably gripped by an automatic mounting device such as a colander transfer robot, and is rotated together with the main shaft 4 at an arbitrary desired rotational speed by a variable speed drive prime mover 7 such as a DC motor via an appropriate transmission mechanism.

ベッド2の案内面に摺動可能に載置される往復台8はそ
の上部案内面に摺動可能に横送り台9を載置し、横送り
台9は更に複数の工具11を着脱自在に担持して回転割
出しを行なうタレット刃物台10を装架して、それぞれ
送り用サーボモータ12及び13によりボールネジ等の
適宜の伝導機構を介して主軸4の軸線と平行なZ方向及
びこの軸線と直角なX方向に数値制御装置20の指令に
従って送り及び位置決め制御が行なわれる。
A carriage 8 which is slidably placed on the guide surface of the bed 2 has a cross feed table 9 slidably placed on its upper guide surface, and the cross feed table 9 further allows a plurality of tools 11 to be detachably attached. A turret tool post 10 that carries and performs rotational indexing is mounted, and is moved in the Z direction parallel to the axis of the main shaft 4 and this axis through a suitable transmission mechanism such as a ball screw by feeding servo motors 12 and 13, respectively. Feeding and positioning control is performed in the perpendicular X direction according to commands from the numerical control device 20.

ベッド2の案内面右側には主軸台3と対向してZ方向の
任意の位置に摺動して緊締される心弁台14が載置され
、心弁軸15の先端に嵌着されるセンタ16は主軸4の
チャック5と協働して長尺物の被加工物6をその両端部
で整列支持して切削加工するセンタ作業に供される。
A heart valve stand 14 is mounted on the right side of the guide surface of the bed 2, facing the headstock 3, and is slid and tightened at any position in the Z direction. The numeral 16 cooperates with the chuck 5 of the main spindle 4 and is used for center work in which a long workpiece 6 is aligned and supported at both ends thereof for cutting.

主軸軸線を含むZ−X平面にあって、タレット刃物台1
0と対向する心弁台14の側面には工具11の刃先位置
を検出する検出する検出器17が固着され、工具11の
切刃が右勝手か左勝手かの形状に応じて切削加工の場合
と同様に数値制御装置20からのプログラム指令により
タレット刃物台10を所定の移動量実移動せしめてその
刃先が検出器17の測定面18.1−9の何れかに当接
した時、工具刃先位置に偏差があればミクロン単位で計
測してその偏差に対応した電気信号を出力する。検出器
17は例えば差動トランスを利用したアナログ形の変位
検出器或いはマグネスケールを利用したディジタル形若
しくは光学式のもの等が使用できる。なお検出器17の
設置位置は心弁台側面に限らず、タレット刃物台10の
原点位置近傍でベッド2に固設された適宜の支持具に設
け、原点に復帰したとき工具11の刃先に当接するよう
に検出器117を移動位置決めしてもよい。
Located on the Z-X plane including the spindle axis, the turret tool rest 1
A detector 17 for detecting the position of the cutting edge of the tool 11 is fixed to the side surface of the heart valve stand 14 facing 0, and the position of the cutting edge of the tool 11 is determined depending on whether the cutting edge is right-handed or left-handed. Similarly, when the turret tool rest 10 is actually moved by a predetermined amount of movement according to a program command from the numerical control device 20 and its cutting edge comes into contact with any of the measuring surfaces 18.1-9 of the detector 17, the tool cutting edge If there is a deviation in position, it is measured in microns and an electrical signal corresponding to the deviation is output. The detector 17 can be, for example, an analog displacement detector using a differential transformer, or a digital or optical type using Magnescale. Note that the installation position of the detector 17 is not limited to the side surface of the heart valve stand, but may be installed on an appropriate support fixed to the bed 2 near the origin position of the turret tool rest 10 so that it hits the cutting edge of the tool 11 when it returns to the origin. The detector 117 may be moved and positioned so that the detector 117 is in contact with the detector 117.

次に、本発明の主構成要素である計数制御装置30につ
いて説明すると、22は検出器17からの信号を受けて
記憶、演算処理し得る形に変換する検出制御回路であり
、設定器23は使用する工具11の目標寿命時間及び限
界摩耗量と後述の工具の寿命方程式におけるテーラ−指
数nとを設定入力するためのゲイジスイッチであり、検
出器17により検出された工具11の現在摩耗量及び数
値制御装置20に格納された加ニブログラムにより算出
しうる工具の正味切削時間と共に記憶装置25の指定さ
れた場所にそれぞれ記憶され、これらのデータは随時、
表示器24に表示される。26は記憶された工具の目標
寿命時間及び正味切削時間並びに限界摩耗量及び現在摩
耗量から当該工具11の摩耗速度、予想寿命時間及び修
正切削速度等を算出するための演算装置であり、27は
比較器、28は数値制御装置20と協働して計測、演算
Next, the counting control device 30, which is the main component of the present invention, will be described. 22 is a detection control circuit that receives the signal from the detector 17 and converts it into a form that can be stored and processed, and the setting device 23 is This is a gauge switch for setting and inputting the target life time and limit wear amount of the tool 11 to be used and the Taylor index n in the tool life equation described later. The net cutting time of the tool, which can be calculated by the cutting program stored in the numerical control device 20, is stored in a designated location of the storage device 25, and these data are stored at any time.
It is displayed on the display 24. 26 is an arithmetic unit for calculating the wear rate, expected life time, corrected cutting speed, etc. of the tool 11 from the stored target tool life time, net cutting time, limit wear amount, and current wear amount; A comparator 28 cooperates with the numerical control device 20 to perform measurements and calculations.

記憶処理を制御するためのマイクロCPUよりなる中央
制御装置、29は数値制御装置20並びに直流電動機7
の制御回路を含む数値制御旋盤1の機械制御盤31と計
数制御装置30との間で信号の授受を行なうインターフ
ェースである。
A central control unit consisting of a micro CPU for controlling storage processing, 29 a numerical control unit 20 and a DC motor 7
This is an interface for transmitting and receiving signals between the mechanical control panel 31 of the numerically controlled lathe 1 and the counting control device 30, which includes a control circuit.

次に上述のような構成の本発明の作用について説明する
。一般に切削工具の寿命判定法としては被加工物の仕上
面の状態、切屑の色又は生成状態、切削中の切削音又は
びびりの状態、切刃の形状変化、或いは経験に頼る等積
々の方法があるが、工具寿命判定基準の重要な要素とし
て第2図に示すフランク摩耗VBがある。切削加工の進
行に伴って工具のフランク摩耗が増大すると共に、切削
抵抗の増加、変動、温度上昇、被加工物切削面の劣化並
びに寸法精度の悪化等の悪影響が強まることは良く知ら
れている。更に、工具寿命の決定要素として重要なフラ
ンク摩耗は切削速度により最も大きな影響を受けること
は、前述の通りであるが、切削速度V(m/m1n)と
工具の寿命時間(min)との間には多くの実験に基づ
いて定められた関係式:V’T=O(但しn及びCは何
れも被加工物及び工具の材料並びに他の切削条件によっ
て決まる常数)の如き指数関数として表わされる工具の
寿命方程式が成り立つ。nはテーラ−指数で概して高速
度鋼工具程、又難削材程、更に不安定切削条件程小さな
値となる。一般にセラミックス工具の場合にはn=2で
あり、また超硬工具の連続切削の場合にはn=25乃至
4の範囲となり、高速度鋼工具ではn=6乃至8の値と
なる。本発明によればこの指数nの正確な値を事前に知
っていない場合でも、上述の寿命方程式に基づく演算の
繰返しにより工具の目標寿命時間になるような適正切削
速度に近似せしめることができる。また、更に前述の計
測と演算により工具の予想寿命時間と修正切削速度が得
られると、上述の寿命方程式V ’ T =VonTo
=C!から逆にテーラ−指数nの適正値を算出すること
ができる。
Next, the operation of the present invention configured as described above will be explained. In general, there are many methods for determining the life of a cutting tool, such as the condition of the finished surface of the workpiece, the color or formation of chips, the state of cutting noise or chatter during cutting, changes in the shape of the cutting edge, or relying on experience. However, flank wear VB shown in FIG. 2 is an important element in the tool life criterion. It is well known that tool flank wear increases as cutting progresses, and negative effects such as increased cutting resistance, fluctuations, temperature rise, deterioration of the cut surface of the workpiece, and deterioration of dimensional accuracy become stronger. . Furthermore, as mentioned above, flank wear, which is important as a determining factor of tool life, is most affected by cutting speed, but the difference between cutting speed V (m/m1n) and tool life time (min) is expressed as an exponential function, such as the relational expression V'T=O (where n and C are both constants determined by the material of the workpiece and tool and other cutting conditions), which has been determined based on many experiments. The tool life equation holds true. n is a Taylor index, and generally the value becomes smaller as the tool is made of high-speed steel, the material is more difficult to cut, and the cutting conditions become more unstable. Generally, n=2 for ceramic tools, n=25 to 4 for continuous cutting of carbide tools, and n=6 to 8 for high speed steel tools. According to the present invention, even if the exact value of this index n is not known in advance, by repeating the calculation based on the above-mentioned life equation, it is possible to approximate the appropriate cutting speed to achieve the target tool life time. Furthermore, if the expected tool life time and corrected cutting speed are obtained through the above-mentioned measurements and calculations, the above-mentioned life equation V'T = VonTo
=C! The appropriate value of the Taylor index n can be calculated conversely from .

第3図は切削速度V (m/m i口)をパラメータと
して硬鋼545C!を超硬工具切削した場合に、工具の
摩耗量と正味切削時間とが近似的に比例関係にあること
を示す工具摩耗特性線図であり、実線は荒削りの場合を
、また点線は仕上削りの場合を示しており、この線図の
縦軸には工具のフランク摩耗■8の代りに第2図に示す
退園摩耗量W (mW)を、横軸には工具の正味切削時
間(min)を採ったものである。第2図に示すように
、工具の退園摩耗量Wとフランク摩耗量VBとはW=V
B t a nβの関係にあり、一般には前逃角β=6
° としているので、Wl=V B x O,105と
なる。また、第4図は第3図に示す工具摩耗特性線図の
うち、、仕上切削加工における工具寿命の判定基準とな
る退園摩耗量WB=0.02朋を示すB線と、荒切削加
工における工具寿命の判定基準となる退園摩耗量WB 
=0.061+1mを示す点線とをパラメータとして画
いたV−T線図で、切削速度V(m/m1n)と工具寿
命時間T(min)とをそれぞれ縦横の座標軸として表
わしたものである。
Figure 3 shows hard steel 545C using cutting speed V (m/m i mouth) as a parameter. This is a tool wear characteristic diagram showing that the amount of tool wear and net cutting time are approximately proportional when cutting with a carbide tool.The solid line is for rough cutting, and the dotted line is for finish cutting. The vertical axis of this diagram shows the exit wear amount W (mW) shown in Figure 2 instead of the tool flank wear ■8, and the horizontal axis shows the net cutting time (min) of the tool. It was taken from As shown in Fig. 2, the withdrawal wear amount W and flank wear amount VB of the tool are W=V
The relationship is B t a n β, and generally the front relief angle β = 6
°, so Wl=V B x O, 105. In addition, Fig. 4 shows the tool wear characteristic diagram shown in Fig. 3, line B showing the exit wear amount WB = 0.02, which is the criterion for tool life in finish cutting, and line B in rough cutting. Leaving wear amount WB is the criterion for tool life in
This is a V-T diagram drawn with the dotted line indicating =0.061+1 m as parameters, and the cutting speed V (m/m1n) and tool life time T (min) are expressed as vertical and horizontal coordinate axes, respectively.

なお、この場合、工具の退園摩耗量Wを選んだのは、前
述の検出器17により検出すべき工具刃先位置がX−Z
平面内にあって退園摩耗量Wが設定刃先位置からの偏差
として検出されるためである。
In this case, the tool exit wear amount W was selected because the tool edge position to be detected by the aforementioned detector 17 is X-Z.
This is because the withdrawal wear amount W is detected as a deviation from the set blade edge position within the plane.

さて、所望の被加工物6の加ニブログラム作成に際して
は、管理すべき各工具11につl/)で次工程での使用
の為にタレット刃物台10の原点位置にあって加工位置
に割出された時、工具刃先を検出器17の所定測定面例
えば18に当接せしめて、検出器17が工具刃先位置の
偏差を退園摩耗量W   ′として検知し出力しうるよ
うに計測プログラムを作成して、加ニブログラムと共に
一体として、又はサブプログラムとして別個に呼び出せ
るよう番こして、予め数値制御装置20の記憶装置に記
憶させる。次に計測プログラムされた各工具11の目標
寿命時間To(min)及び限界退園摩耗量Wo (口
11n)並dに前述のテーラ−指数nをそれぞれ設定器
23のディジスイッチにより順次設定入力して君子数告
制御装置30の記憶装置254こ記憶させておく。一方
、加ニブログラムに基づいた送り速度、送り量等の送り
情報を数値制御装置20より入力して、各工具11毎に
、予め設定した時間毎の君子I11の間の切削における
被加工物6の正味切削時間ΔT(min)並びにその集
積正味切削時間Ta二Σ△Tを演算装置26において算
出し、それぞれ言己憶装置25に記憶しておく。なお、
この正味切削時間ΔT及びその累積値Taは予めプログ
ラムの1¥Hこ算出して設定器23から入力してもより
’LL、、或1.NGj数イ直制御旋盤lに切削力セン
サを設けこのセンサ力)らの切削力検出信号lこ基づい
て各工具毎の実際の正味切削時間をクロック発信器によ
り計数記憶するようにしてもよい。
Now, when creating a machine program for the desired workpiece 6, each tool 11 to be managed is indexed to the machining position at the origin position of the turret tool rest 10 for use in the next process. A measurement program is created so that the tool cutting edge is brought into contact with a predetermined measurement surface of the detector 17, for example 18, so that the detector 17 can detect and output the deviation of the tool cutting edge position as the withdrawal wear amount W'. Then, it is stored in advance in the storage device of the numerical control device 20 so that it can be called together with the program or separately as a subprogram. Next, the above-mentioned Taylor index n is sequentially set and inputted to the target life time To (min) and critical exit wear amount Wo (portion 11n) and d of each tool 11 programmed for measurement using the digital switch of the setting device 23, respectively. It is stored in the storage device 254 of the gentleman's number notification control device 30. On the other hand, feed information such as the feed speed and feed amount based on the machine program is inputted from the numerical control device 20, and the workpiece 6 is cut during the cutting period I11 for each preset time for each tool 11. The net cutting time ΔT (min) and the accumulated net cutting time Ta2ΣΔT are calculated in the arithmetic unit 26 and stored in the memory unit 25, respectively. In addition,
Even if the net cutting time ΔT and its cumulative value Ta are calculated in advance by the program and inputted from the setting device 23, the net cutting time ΔT and its cumulative value Ta can be calculated as 'LL', or 1. A cutting force sensor may be provided in the directly controlled lathe l, and the actual net cutting time for each tool may be counted and stored by a clock generator based on the cutting force detection signal from the sensor force.

数値制御旋盤1による被加工物6の切削を開始後前述の
任意に予め設定した時間毎に計測プログラムにより所要
工具11の刃先を検出器17の測定面18に当接せしめ
てこの間に生じた当該工具の逃げ面位置の変化量を現在
摩耗量ΔW (mm )として検出すると、この摩耗量
△Wに相当する信号が検出制御回路22に入力され、そ
の計測時点における当該工具11の現在摩耗量△Wとし
て記憶装置25に記憶され、同時にその累積現在摩耗量
Wa=ΣΔWも算出記憶される。
After the numerically controlled lathe 1 starts cutting the workpiece 6, the cutting edge of the required tool 11 is brought into contact with the measurement surface 18 of the detector 17 according to the measurement program at each arbitrarily preset time as described above, and the problem that occurs during this period is measured. When the amount of change in the flank face position of the tool is detected as the current wear amount ΔW (mm ), a signal corresponding to this wear amount ΔW is input to the detection control circuit 22, and the current wear amount ΔW of the tool 11 at the time of measurement is inputted to the detection control circuit 22. The current cumulative wear amount Wa=ΣΔW is stored in the storage device 25 as W, and at the same time, the cumulative current wear amount Wa=ΣΔW is also calculated and stored.

次にこの現在摩耗量△Wと、先に算出記憶された当該工
具11の計測時点間の正味切削時間ΔTとから演算装置
26において当該工具11の摩耗速度Ga−ΔW/ΔT
 (mm/m i n )を演算し、続いて予め設定入
力された当該工具の限界退園摩耗量Wo と計測された
累積現在摩耗量Waと算出された摩耗速度Gaとにより
現計測時点における当該工具の予想寿命時間Te=(W
o −Wa )/()a=WB/Ga (m i n 
) (但しWRは計測時点での残存限界退園摩耗量)を
演算装置26において算出する。ここで算出された予想
寿命時間Teは先に設定器23より予め設定入力され記
憶装置25に記憶された目標寿命時間To と累積正味
切削時間Taとから算出される現計測時点における残存
目標寿命時間T B = To −T a(min)と
比較器26において比較され、両寿命時間の間に時間偏
差ct=TR−Teがあるときには中央制御装置28の
指令により演算装置26において、この時間偏差(tを
零に近接するように前述の工具の寿命方程式VnT=C
に基づいて当該工具に関してプログラムされている現在
切削速度Vo (m/m i n)を修正すべく、先に
設定入力した指数nを用いて修正切削速度V a =V
o°JフTR(m/m i n ) を演算により求め
るのである。記憶装置に記憶されたそれぞれの工具に関
する上述の諸データ並びに演算結果は表示器24により
任意に表示される。
Next, from this current wear amount ΔW and the previously calculated and stored net cutting time ΔT between measurement points of the tool 11, the arithmetic unit 26 calculates the wear rate Ga-ΔW/ΔT of the tool 11.
(mm/min), and then calculate the current measurement value using the limit exit wear amount Wo of the tool that has been set and input in advance, the measured cumulative current wear amount Wa, and the calculated wear rate Ga. Expected tool life time Te=(W
o −Wa )/()a=WB/Ga (min
) (where WR is the remaining limit wear amount at the time of measurement) is calculated by the calculation device 26. The expected life time Te calculated here is the remaining target life time at the current measurement point, which is calculated from the target life time To which was previously set and inputted from the setting device 23 and stored in the storage device 25 and the cumulative net cutting time Ta. T B = To - Ta (min) is compared in the comparator 26, and when there is a time deviation ct = TR - Te between both life times, the calculation unit 26 calculates this time deviation ( The above tool life equation VnT=C is applied so that t approaches zero.
In order to correct the current cutting speed Vo (m/min) programmed for the tool based on, the index n set and inputted earlier is used to correct the cutting speed V a =V
o°JFTR(m/min) is calculated. The above-mentioned data and calculation results regarding each tool stored in the storage device are displayed on the display 24 as desired.

このように算出された修正切削速度Vaは記憶装置25
に記憶されると共にインターフェース29より数値制御
装置2oに戻されて、以降の当該工具による工程が加ニ
ブログラムにより実行される毎にこの修正切削速度Va
を得るように例えば主軸速度のオーバーライド機能を利
用して機械制御盤31を介して直流電動機7の回転数を
制御する。
The corrected cutting speed Va calculated in this way is stored in the storage device 25.
This corrected cutting speed Va is stored in the computer and sent back to the numerical control device 2o from the interface 29, and the modified cutting speed Va is then returned to the numerical control device 2o from the interface 29.
For example, the rotation speed of the DC motor 7 is controlled via the machine control panel 31 using a spindle speed override function so as to obtain the following.

なお工具刃先位置のX座標と関連して切削速度一定制#
機能を有する数値制御旋盤であれば、プログラムに切削
速f V(m/mi n )を直接指定できるので都合
がよい。上述の工具の摩耗速度Gaの算出に当っては、
新工具の場合、初期摩耗の影響があるので、例えばこの
初期摩耗後の工具刃先位置をその後の定常摩耗計測の基
準とする等適宜の対策をとることができる。このように
して、各工具は被加工物をΔT(min)切削する毎に
計測プログラムによりその刃先の現在摩耗量ΔWを検出
して累積し、それに伴って切削速IJjVaを求める演
算を繰返して修正を重ねてゆき、工具寿命を目標値To
に近接すると共に、累積摩耗量Wa=Σ△Wが限界摩耗
l W o と等しくなった時にはタレット刃物台に準
備した代替工具と交換するか、又は工具交換の警報を発
して停止するようにされている。なお寿命管理とは別に
、仕上切削工具であれば、検出器17により計測された
工具の現在摩耗量の累積値Waを検出制御回路22から
インターフェース29を経て数値制御装置20の工具位
置補正装置21に入力しておき、加ニブログラムでの仕
上切削工程で当該工具が呼出される毎に切削開始に先だ
ってその刃先位置をこの摩耗量Waに対応する量だけ補
正し、加工終了によりこの補正をキャンセルすれば、被
加工物の仕上寸法精度維持に関する自動計測補正機能を
併せて備えることになる。
In addition, the cutting speed is constant in relation to the X coordinate of the tool cutting edge position.
A numerically controlled lathe with this function is convenient because the cutting speed fV (m/min) can be directly specified in the program. In calculating the wear rate Ga of the tool mentioned above,
In the case of a new tool, since there is an influence of initial wear, appropriate measures can be taken, such as using the tool cutting edge position after this initial wear as a reference for subsequent steady wear measurement. In this way, each tool detects and accumulates the current wear amount ΔW of the cutting edge using the measurement program every time it cuts the workpiece by ΔT (min), and accordingly repeats the calculation to obtain the cutting speed IJjVa and corrects it. The tool life is set to the target value To.
When the cumulative wear amount Wa = Σ△W becomes equal to the limit wear l W o , the tool is replaced with an alternative tool prepared in the turret tool rest, or a tool replacement alarm is issued and the tool is stopped. ing. In addition to life management, in the case of finishing cutting tools, the cumulative value Wa of the current wear amount of the tool measured by the detector 17 is sent from the detection control circuit 22 to the tool position correction device 21 of the numerical control device 20 via the interface 29. , and each time the tool is called in the finishing cutting process in the machine program, the position of the cutting edge should be corrected by an amount corresponding to this wear amount Wa before cutting starts, and this correction should be canceled when processing is completed. For example, it is also equipped with an automatic measurement correction function for maintaining finished dimensional accuracy of the workpiece.

なお、上述の実施例では数値制御旋盤について説明した
が、回転工具を使用するマシングセンタ等の数値制御工
作機械lこも同様に本発明を適用することができる。
In the above embodiment, a numerically controlled lathe has been described, but the present invention can be similarly applied to numerically controlled machine tools such as machining centers that use rotary tools.

以上述べたように、本発明は工具摩耗が切削速度に最も
敏感に影響を受け、且つまた切削速度は制御調整が容易
である点に着目して、切削加工中定期的に工具摩耗を自
動計測してプログラムされた切削速度を環境条件に対応
して自動修正しながら切削加工を遂行するようにしたの
で、従来生産現場で作業者の経験や勘に頼って行なって
いた工具寿命の判定或いは手動による切削速度の修正が
、従来の数値制御工作機械に簡単な構成の検出器及び計
数制御装置を付加することにより、使用する数値制御工
作機械の特性と使用する工具及び対象となる被加工物の
材質、硬度等の特性に対して、加工途中で定期的に工具
の摩耗進行状況を検査して、その場で直ちに以降の切削
加工における切削速度を自動的に修正ができ、従って工
具を最も続演的と考えられる目標とする工具寿命に近づ
けて維持するという最も妥当な結果を得ることができる
。また、予備の代替工具数の少ない数値制御工作機械を
用いた夜間の無人運転等に際しては、僅かに切削速度を
下げる等の処理を行なわせることにより、目標とする工
具寿命を達成し従って計画通りの生産を遂行することが
できる。更に、このような実際の切削を通して蓄積され
た適正な切削速度及びこの切削速度と工具寿命時間とか
ら算出しつる適正なテーラ−指数nを含む多数の切削技
術データは以後の加ニブログラム作成において直ちに利
用できるのみならず、生産工場におけるツールファイル
として充実活用され、更には将来のより大規模なデータ
バンクとして活用し得るなどの優れた効果を奏するもの
である0
As described above, the present invention focuses on the fact that tool wear is most sensitively affected by cutting speed and that cutting speed can be easily controlled and adjusted, and the present invention automatically measures tool wear periodically during cutting. As a result, cutting is performed while automatically correcting the programmed cutting speed in response to environmental conditions, which eliminates the need to manually judge tool life, which previously relied on the experience and intuition of workers at production sites. By adding a simple detector and counting control device to a conventional numerically controlled machine tool, the cutting speed can be adjusted based on the characteristics of the numerically controlled machine tool, the tool used, and the target workpiece. It is possible to periodically inspect the progress of tool wear during machining based on characteristics such as material and hardness, and automatically adjust the cutting speed for subsequent machining on the spot. The most reasonable result can be obtained to maintain the tool life close to the target tool life that can be considered realistic. In addition, when unmanned operation at night using a numerically controlled machine tool with a small number of spare alternative tools, it is possible to achieve the target tool life by slightly lowering the cutting speed, etc. production. Furthermore, a large amount of cutting technology data, including the appropriate cutting speed accumulated through actual cutting and the appropriate Taylor index n calculated from this cutting speed and tool life time, can be used immediately in the subsequent creation of a cutting program. Not only can it be used, it can be fully utilized as a tool file in production factories, and it can also be used as a larger data bank in the future.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を数値制御旋盤に実施した例を示すブロ
ック線図、第2図は切削工具の刃先の摩耗状態説明図、
第3図は硬鋼材料を超硬工具により切削した場合の退園
摩耗特性線図、第4図は第3図におけるV−T線図であ
る。 ■・・数値制御旋盤、6・・被加工物、7 主軸駆動用
直流電動機、10 ・タレット刃物台、11工具、17
 検出器、20・・数値制御装置、23設定器、30・
・計数制御装置、31・機械制御盤0 特許出願人  池貝鉄工株式会社 第2図 第4区
Fig. 1 is a block diagram showing an example in which the present invention is implemented in a numerically controlled lathe, Fig. 2 is an explanatory diagram of the wear state of the cutting tool edge,
FIG. 3 is a withdrawal wear characteristic diagram when hard steel material is cut with a cemented carbide tool, and FIG. 4 is a V-T diagram in FIG. 3. ■...Numerical control lathe, 6...Workpiece, 7 DC motor for driving spindle, 10 - Turret tool post, 11 Tool, 17
Detector, 20... Numerical control device, 23 Setting device, 30...
・Counting control device, 31 ・Machine control panel 0 Patent applicant: Ikegai Iron Works Co., Ltd., Figure 2, Section 4

Claims (1)

【特許請求の範囲】 1)数値制御工作機械により被加工物を所要形状に切削
する工具の寿命を管理する方法において、予め工具の目
標寿命時間と限界摩耗量と後記関係式の指数nとを設定
して記憶し、プログラムされた指令切削条件での切削に
より進行する工具の現在摩耗量を設定した時間毎に計測
して記憶し、計測された前記現在摩耗量と前記設定時間
内の工具の正味切削時間並びに前記設定された限界摩耗
量とにより計測時点における工具の摩耗速度と予想寿命
時間とを算出し、工具の目標寿命時間と予想寿命時間と
を比較して偏差があるとき、切削速度■と工具寿命時間
Tとの関係式V’T=Oより切削速度を算出し、以後の
切削には前記プログラムによる指令切削速度を前記算出
切削速度に修正して〒具の目標寿命時間からの前記偏差
を零に近接するように切削速度を自動的に制御すること
を特徴とする工具寿命の管理方法。 2)数値制御工作機械により被加工物を所要形状に切削
する工具の寿命を管理する装置において、プログラムさ
れた指令切削条件により 被加工物と工具との間で切削
速度を生じる可変速駆動装置と、数値制御工作機械の工
具保持装置に装着された工具との相対移動により工具の
現在摩耗量を計測して出力する検出器と、工具の目標寿
命時間と限界摩耗量と後記関係式の指数nとを設定して
入力する設定器、設定された工具の目標寿命時間、限界
摩耗量、指数n並びに計測された現在摩耗量及び計測時
点間の工具の一正味切削時間をそれぞれ記憶する記憶装
置、記憶された現在摩耗量、正味切削時間及び限界摩耗
量から工具の摩耗速度と予想寿命時間とを算出する演算
装置、並びに記憶された工具の目標寿命時間と算出され
た予想寿命時間とを比較する比較器を含み、比較された
前記両寿命時間に偏差があるとき、切削速度■と工具寿
命時間Tとの関係式vnT−〇より切削速度を前記演算
装置において算出し、以後の切削には前記プログラムに
よる指令切削速度に係わる前記可変速駆動装置の原動機
回転数を前記算出切削速度により修正して工具の目標寿
命時間からの前記偏差を零に近接するように切削速度を
自動的に制御する計数制御装置とを備えた工具寿命の管
理装置。
[Claims] 1) In a method for managing the life of a tool for cutting a workpiece into a desired shape using a numerically controlled machine tool, the target life time, the limit wear amount, and the index n of the relational expression described below are determined in advance. The current wear amount of the tool that progresses through cutting under the programmed command cutting conditions is measured and memorized at set time intervals, and the measured current wear amount and the tool wear amount within the set time are measured and memorized. The wear rate and expected life time of the tool at the time of measurement are calculated from the net cutting time and the limit wear amount set above, and the target life time and expected life time of the tool are compared. If there is a deviation, the cutting speed is determined. The cutting speed is calculated from the relational expression V'T=O between A tool life management method comprising automatically controlling cutting speed so that the deviation approaches zero. 2) In a device that manages the life of a tool that cuts a workpiece into a desired shape using a numerically controlled machine tool, a variable speed drive device that generates a cutting speed between the workpiece and the tool according to programmed command cutting conditions. , a detector that measures and outputs the current wear amount of the tool by relative movement with the tool attached to the tool holding device of the numerically controlled machine tool, the target life time of the tool, the limit wear amount, and the index n of the relational expression described below. a setting device for setting and inputting the information, a storage device for storing the set target tool life time, limit wear amount, index n, and the measured current wear amount and one net cutting time of the tool between measurement points, respectively; A calculation device that calculates the tool wear rate and expected life time from the stored current wear amount, net cutting time, and limit wear amount, and compares the stored target tool life time with the calculated expected life time. Including a comparator, when there is a deviation between the two compared tool life times, the cutting speed is calculated in the arithmetic unit from the relational expression vnT-〇 between the cutting speed ■ and the tool life time T, and the above-mentioned method is used for subsequent cutting. A count that automatically controls the cutting speed so that the deviation from the target tool life time approaches zero by correcting the prime mover rotation speed of the variable speed drive device, which is related to the commanded cutting speed by the program, based on the calculated cutting speed. A tool life management device equipped with a control device.
JP1722383A 1983-02-04 1983-02-04 Control method and device for tool life Pending JPS59142046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1722383A JPS59142046A (en) 1983-02-04 1983-02-04 Control method and device for tool life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1722383A JPS59142046A (en) 1983-02-04 1983-02-04 Control method and device for tool life

Publications (1)

Publication Number Publication Date
JPS59142046A true JPS59142046A (en) 1984-08-15

Family

ID=11937945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1722383A Pending JPS59142046A (en) 1983-02-04 1983-02-04 Control method and device for tool life

Country Status (1)

Country Link
JP (1) JPS59142046A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049656A (en) * 2015-08-31 2017-03-09 ファナック株式会社 Machining system with machining accuracy maintaining function
JP2017227947A (en) * 2016-06-20 2017-12-28 Dmg森精機株式会社 Machining management device
JP2020074207A (en) * 2020-01-28 2020-05-14 Dmg森精機株式会社 Processing management apparatus
CN113226587A (en) * 2018-12-27 2021-08-06 株式会社天田集团 Mold management device and mold management method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134995A (en) * 1974-07-24 1976-03-25 Gen Electric

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134995A (en) * 1974-07-24 1976-03-25 Gen Electric

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049656A (en) * 2015-08-31 2017-03-09 ファナック株式会社 Machining system with machining accuracy maintaining function
US10105808B2 (en) 2015-08-31 2018-10-23 Fanuc Corporation Processing system having function for maintaining processing accuracy
US10442051B2 (en) 2015-08-31 2019-10-15 Fanuc Corporation Processing system having function for maintaining processing accuracy
JP2017227947A (en) * 2016-06-20 2017-12-28 Dmg森精機株式会社 Machining management device
CN113226587A (en) * 2018-12-27 2021-08-06 株式会社天田集团 Mold management device and mold management method
JP2020074207A (en) * 2020-01-28 2020-05-14 Dmg森精機株式会社 Processing management apparatus

Similar Documents

Publication Publication Date Title
EP0905593B1 (en) Numerical controlling device and tooling apparatus with a numerical controlling device
EP2871547B1 (en) Real-time numerical control tool path adaptation using force feedback
Koren Adaptive control systems for machining
US20080161959A1 (en) Method to measure tool wear from process model parameters
EP1243992B1 (en) Tool presetter and tool offset amount calculation method
CN103240471A (en) Wire electric discharge machine, turning tool machining method with wire electric discharge machine
KR20120064321A (en) Tool damage detection apparatus for machine tool and detection method thereby
Takeuchi et al. Improvement in the working accuracy of an NC lathe by compensating for thermal expansion
JPH07186006A (en) Tool edge position correction method and device in nc machine tool
EP0098309B1 (en) Numerical control machining system
JPH03166055A (en) Grinding method by grinding force control
JPH07195256A (en) Control unit and machine tool therewith as well as torque measuring instrument and tool breakage detector
JP6168396B2 (en) Machine Tools
CN107283219B (en) Cutting method and device
JP3446518B2 (en) Rotary tool abnormality detection method and device
JPS59142046A (en) Control method and device for tool life
JP6590711B2 (en) Manufacturing system and manufacturing method
JP2021109289A (en) Machine tool, machine tool control method and machine tool control program
Rowe et al. Intelligent CNC for grinding
Zhou et al. Tool status recording and its use in probabilistic optimization
Tseng A systematic approach to the adaptive control of the electro-discharge machining process
CN111222083A (en) Workpiece surface roughness calculation method during turning based on tool wear
JPH0740172A (en) Tool on which cutting-edge is formed and useage thereof
JPH10128661A (en) Grinding control method and device for grinding machine
JP6103737B2 (en) Disk knife feed control method and apparatus