JPS59141491A - Spodumene mineral - Google Patents

Spodumene mineral

Info

Publication number
JPS59141491A
JPS59141491A JP58013336A JP1333683A JPS59141491A JP S59141491 A JPS59141491 A JP S59141491A JP 58013336 A JP58013336 A JP 58013336A JP 1333683 A JP1333683 A JP 1333683A JP S59141491 A JPS59141491 A JP S59141491A
Authority
JP
Japan
Prior art keywords
crystal
flux
composition
raw material
pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58013336A
Other languages
Japanese (ja)
Inventor
Katsuhiro Teraishi
寺石 克弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP58013336A priority Critical patent/JPS59141491A/en
Publication of JPS59141491A publication Critical patent/JPS59141491A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/34Silicates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:The titled inexpensive mineral free from inclusion, using a flux comprising a proper amount of mixed powder having a composition of Li2O.V2O5, equal to that of spodumene crystal, synthesizing a crystal from it by an F.Z furnace. CONSTITUTION:LiOH, Al2O3, SiO2, and Cr2O3 are weighed to prepare mixed powder having a composition of Li2O.Al2O3.4SiO2.0.005Cr2O3, blendd, and sintered to give a raw material rod. LiOH and V2O5 are weighed to prepare a composition of Li2O.V2O5, which is blended with about 20wt% of the mixed powder to give blended powder, which is molded and sintered to give a sintered pellet of flux. A beryl crystal synthesized by flux process as a seed crystal is cut in such a way that it is longer in the direction of C-axis, and it is processed to given size. The pellet of flux is placed on the seed crystal 2, the tip of the raw material rod 1 is brought into contact with the top of the pellet, the flux is melted under heating by the halogen lamp 5 in the rotary elliptic mirror 4 of F.Z furnace, to grow a spodumene crystal.

Description

【発明の詳細な説明】 スボジウメン結晶は、組成がLi20w ”2”314
E3i02であシ、単斜晶系で、分解溶融型の材質であ
シ、融解温度が、1500〜2000℃とされている。
Detailed Description of the Invention Subodiumene crystal has a composition of Li20w “2”314
E3i02 is made of a monoclinic system, decomposition-melting type material, and has a melting temperature of 1500 to 2000°C.

従来、人工的な合成方法として、フラックス合成法が主
要な方式と考えられている。然しながら、フラックス法
は、以下の理由 ■ 白金ルツボを必要とする。
Conventionally, the flux synthesis method is considered to be the main method for artificial synthesis. However, the flux method requires a platinum crucible for the following reasons.

■ 合成温度の制御が厳密である。■ Strict control of synthesis temperature.

■ 溶融塩(7ヲ・クー)の使用量が多量である。■ A large amount of molten salt (7 wo/ku) is used.

■ 結晶欠陥(フエジーインクルージョン)の発生防止
が困難である。
■ It is difficult to prevent the occurrence of crystal defects (feezy inclusions).

■ 結晶成長速度が小さい。■ Crystal growth rate is low.

によシ、極めて、製造コストの高いものである。Moreover, it is extremely expensive to manufacture.

本願発明は、前記手法に代る安価な合成方式を提供する
ものである。基本的発想は、周知のF・2方式を改良変
形させた手法にある。即わち、周知の、赤外線集中加熱
単結晶製造装置(F、Z炉と略称)を使用して、合成条
件を新規に考案したものである。本手法は、 ■ 白金ルツボは不要 ■ フラックスの使用量は、極小量で′ある。
The present invention provides an inexpensive synthesis method as an alternative to the above methods. The basic idea is an improved modification of the well-known F.2 method. That is, the synthesis conditions were newly devised using a well-known infrared concentrated heating single crystal manufacturing apparatus (abbreviated as F, Z furnace). This method: ■ Does not require a platinum crucible ■ The amount of flux used is extremely small.

■ 従前ρ7ヲツクス法には無込制御パヲメータにより
、結晶欠陥が制御できる。
■ In the conventional ρ7-works method, crystal defects can be controlled using a non-inclusive control parameter.

■ 結晶成長速度が、フラックス法に比較して、大きく
とれる。
■ The crystal growth rate can be increased compared to the flux method.

■ 結晶成長方向が、任意に制御できる。■ Crystal growth direction can be controlled arbitrarily.

の特徴があシ、結果として、スループットが上シ、従前
のフラックス法よりも安価なプロセスである。
As a result, the process has higher throughput and is cheaper than the previous flux method.

以下に、実施例を説明する。Examples will be described below.

実施例1 まず、原料粉末の調合を行なう。試薬特級の水酸化リチ
ウム(L70I()、酸化アルミニウム(AjhO3)
、rL 化’y イi (”zO2)、酸化クロム(C
r203〕より、秤量してL4.o、 hp2o3.4
szo2゜0.005Cr203の組成の混合粉末を作
製する。次に、該混合粉末を、ボールミルに依り、混合
粉砕を50時間以上行なう。この際、ポット及びポール
の拐質は高純度テルミナの焼結材である。次に、該混合
粉末を、周知のF、Z法原料棒製造法により、焼結体棒
を作製する。これがF、Z炉の原料棒となる。この際、
LioHは分解反応して、Lj2o組成となる。
Example 1 First, raw material powder is prepared. Reagent grade lithium hydroxide (L70I(), aluminum oxide (AjhO3)
, rL cation'y ii ("zO2), chromium oxide (C
r203], weigh L4. o, hp2o3.4
A mixed powder having a composition of szo2°0.005Cr203 is prepared. Next, the mixed powder is mixed and pulverized for 50 hours or more using a ball mill. At this time, the material of the pot and pole is a high-purity sintered material of TERMINA. Next, a sintered rod is produced from the mixed powder by the well-known F, Z method for producing raw material rods. This becomes the raw material rod for the F and Z furnaces. On this occasion,
LioH undergoes a decomposition reaction and becomes an Lj2o composition.

次に、フラックスとして、Li2O# V2O3の組成
となる如くに、試薬特級の水酸化リチウム(LjOH)
及び五酸化バナジウム(vzOs)を秤量する。
Next, as a flux, reagent grade lithium hydroxide (LjOH) was used as a flux, so that the composition was Li2O#V2O3.
and vanadium pentoxide (vzOs).

該粉末に、前記Li2 o、h、g2o3゜4si○2
.帆005Cr203の組成の粉末を重量割合で、20
%相当分を加える。
The above Li2 o, h, g2 o3°4si○2 is added to the powder.
.. Powder with the composition of Sail 005Cr203 in a weight ratio of 20
Add the equivalent of %.

然る後の混合粉末を、成形、焼結を行なって、ディスク
状の焼結ペレットを作る。次に、種子結晶として、フラ
ックス法により合成されたベリル結晶をC軸方向に長く
切断し、所定寸法に加工する。
The mixed powder is then molded and sintered to produce disk-shaped sintered pellets. Next, as a seed crystal, a beryl crystal synthesized by a flux method is cut long in the C-axis direction and processed into a predetermined size.

次に、以上のプロセスにて予め、用意されたものf、F
、ZfVrセットして、結晶合成を行なう。
Next, the items f and F prepared in advance through the above process
, ZfVr are set, and crystal synthesis is performed.

F、Z炉は、大略、第1図に示される構造であフ、例え
ば、ニチデン機械株式会社製の5C−2型でよい。即わ
ち、■は、原料素材棒であシ、■は、種子結晶、■は、
回転楕円面鏡用の2つの焦点であシ、一方は、ノ・ロゲ
ンヲンプ■で熱源であシ、他の一方は、溶融したフラッ
クスである。■は透明石英チューブであ、す、■はレン
ズ、■はスクリーンであ、す、合成状況のモニタリング
を行なう。
The F and Z furnaces generally have the structure shown in FIG. 1, and may be, for example, the 5C-2 type manufactured by Nichiden Kikai Co., Ltd. That is, ■ is the raw material rod, ■ is the seed crystal, and ■ is the raw material rod.
There are two focal points for the spheroidal mirror; one is a heat source with a nozzle pump, and the other is a molten flux. ■ is a transparent quartz tube, ■ is a lens, and ■ is a screen to monitor the synthesis situation.

■、■は、上、下の回転軸であり、■及び■の回転及び
、上下動を制御する。
■ and ■ are upper and lower rotation axes, and control the rotation and vertical movement of ■ and ■.

最初に、セントされた種子結晶■の上に、フラックスペ
レットを載置し、該ベレット直上に原料素材棒を接触さ
せて、セットする。この状態で、ノ・ロゲンヲンブの電
力を上昇させて、75ツクスf溶融せしめ、フラックス
が、柚子結晶■と原料素材棒■の間に表面張力で保持さ
れている状態を維持する。その後、溶融フラックス部を
1100℃に保持し、上下軸を逆方向に、50r、p、
η2で回転させ10時間保持する。然る後に、溶融ゾー
ンの上下距離を維持する状態で、電及びOを下方に移動
させる。この場合、移動速度は即結晶成長速、度に対応
する。結晶成長速度は、大きすぎるとインクルージヨン
が発生するため、制御されなければならず、最大用、、
、/DAYである。これ以下の成長速度で、インクルー
ジヨンの無い結晶が作製でき、また、低速はど他の成長
条件の制御余裕幅が犬きくとれ、容易に成長させること
ができる。
First, a flux pellet is placed on top of the seed crystal (2), and the raw material rod is brought into contact with and set directly above the pellet. In this state, the electric power of the logen one is increased to melt 75 txf, and the state in which the flux is held between the yuzu crystal (1) and the raw material rod (2) by surface tension is maintained. After that, the molten flux part was held at 1100°C, and the vertical axis was turned in the opposite direction, 50 r, p,
Rotate at η2 and hold for 10 hours. Thereafter, the electricity and oxygen are moved downward while maintaining the vertical distance of the melting zone. In this case, the movement speed immediately corresponds to the crystal growth rate, degree. The crystal growth rate must be controlled, as inclusions will occur if it is too large;
, /DAY. At a growth rate lower than this, a crystal without inclusions can be produced, and at a low rate, there is a greater margin of control over other growth conditions, and growth can be made easily.

結晶成長は、溶融体と結晶の界面で進行するため、下方
の結晶体は、合成完了時には、その上部のフラックス固
体を切断すれば、即スポジウメン結晶体のみとして利用
でき、特に後処理を必姿としない。以上の手法によシ0
.1〜l Q、、/[)AYの速度で、インクルージヨ
ンの無いスボジウ、メンが合成できた。
Crystal growth proceeds at the interface between the melt and the crystal, so when the synthesis is completed, the lower crystal can be used immediately as a spodiume crystal by cutting off the upper flux solid, and post-processing is especially necessary. I don't. With the above method, 0
.. Subojiu and men without inclusions were synthesized at a speed of 1 to 1 Q, , /[)AY.

結晶の直径は、大略5〜15π1である。The diameter of the crystal is approximately 5 to 15π1.

実施例2 実施例りと同様の前提条件で、原料素材棒■と種子結晶
■の配置を上・下逆転して、合成を行なった。さらに、
最初の段階で1100℃で保持する間に、上部種子結晶
と溶融体とを接触させずに、溶融体を下部原料素材棒の
上端に表面張力で保持させた状態で維持し、10時間後
に、種子結晶と接触させ、以後結晶成長を行なわせた。
Example 2 Synthesis was carried out under the same preconditions as in Example, with the arrangement of the raw material rod (2) and the seed crystal (2) reversed upside down. moreover,
While holding at 1100°C in the first stage, the upper seed crystal and the melt were not brought into contact with each other, and the melt was maintained at the upper end of the lower raw material rod by surface tension, and after 10 hours, It was brought into contact with seed crystals and allowed to grow crystals thereafter.

この場合は溶融体の飽和溶解度を制御することが容易で
、種子結晶接触後、直ちに、結晶成長に進めることがで
きる。結晶の品質は、実施例同様に80倍の宝石顕微鋭
の観察で、インクルージヨンは認められなかった。
In this case, it is easy to control the saturation solubility of the melt, and crystal growth can proceed immediately after contact with the seed crystal. The quality of the crystals was determined by observation using a gemstone microscope at 80x magnification, as in the examples, and no inclusions were observed.

実施例3 実施例1と同様に条件で、フラックスベレットの組成と
して、v205/Li2Oのモル比を変化させて、実験
の結果、1〜5の範囲で、インクルージヨンの観察され
々いスボジウメンが合成された。
Example 3 Under the same conditions as in Example 1, the molar ratio of v205/Li2O was changed as the composition of the flux pellet, and as a result of the experiment, subodiumene with rarely observed inclusions was synthesized in the range of 1 to 5. It was done.

実施例4 実施例1と同様の条件で、結晶成長温度、即わち溶融体
温度を変化させて実験した。温度は、ノ・ロゲンヲンプ
の電力の変動を換算している。この結果5関/ D A
 Yの成長速度では、950〜1200℃の間で、イン
クルージランの無い成長が可能である。
Example 4 An experiment was conducted under the same conditions as in Example 1 while changing the crystal growth temperature, that is, the melt temperature. The temperature is calculated by converting the fluctuation in the power of the No. This result is 5/DA
At the growth rate of Y, growth without inclusion runs is possible between 950 and 1200°C.

実施例−5 実施例1と同等の条件で、フラックスペレットとして、
Li20−MoO3系を実験した。この結果、成長速度
:Q。] 〜10+++@”DAY成長温度=750〜
950℃ 組成モル比: 2〜5(M003//IJi20)の範
囲が適切である。
Example-5 As a flux pellet under the same conditions as Example 1,
We experimented with Li20-MoO3 system. As a result, growth rate: Q. ] ~10+++@”DAY growth temperature = 750~
950°C Composition molar ratio: A range of 2 to 5 (M003//IJi20) is appropriate.

実施例6 実施例1と同等の条件で、フヲソクベレソトとして、L
i2O−WO3系を実験した。この結果成長速度: 0
.1〜J、f1m−AY成長温度二800〜1000℃ 組成モル比: 2〜’6 (W03/巨20)の範囲が
適切である。
Example 6 Under the same conditions as Example 1, L was
The i2O-WO3 system was tested. As a result, growth rate: 0
.. 1 to J, f1m-AY growth temperature 2800 to 1000° C. Composition molar ratio: Suitable range is 2 to '6 (W03/Giant 20).

実施例7 実施例1と同等の条件で、原料棒組成を変更して実験を
行なった。即わち、水酸化リチウム(LiOH)、酸化
アルミニウム(”#z03) p酸化ケイ素(5ho2
)、酸化マンガン(Mn3o4)よシ、秤量して、Li
20゜A7hO3,48j○2.0.003M?L30
4 ノ組成の混合粉末を作製する。以、下、実施例1の
焼結方法によシ、原料棒を作製する。さらに、前実施例
1の如くに、結晶を合成する。これによシ、実施例1で
は、エメヲルド、グリーンに着色された結晶ができるの
に対して、本例では、フィヲツク色に着色された結晶が
作製できる。且つ、色調の濃淡は、添加する酸化マンガ
ンの量の多少により、造波できた。
Example 7 An experiment was conducted under the same conditions as in Example 1, but with different raw material rod compositions. That is, lithium hydroxide (LiOH), aluminum oxide (#z03), p silicon oxide (5ho2
), manganese oxide (Mn3o4), weigh Li
20゜A7hO3,48j○2.0.003M? L30
4. Prepare a mixed powder having the composition. Hereinafter, a raw material rod is produced using the sintering method of Example 1. Furthermore, crystals are synthesized as in the previous Example 1. As a result, in Example 1, crystals colored emerald and green were produced, whereas in this example, crystals colored fiwok were produced. Moreover, the shading of the color tone could be created by changing the amount of manganese oxide added.

添加幇として、0.001モルから0.1モルの範囲で
目に感じ得る淡い色から、きわめて濃い色まで、増減で
きた。
As the amount of addition increases, the color can be increased or decreased from a visually perceptible pale color to a very dark color within the range of 0.001 mol to 0.1 mol.

以上、実施例にて、説明した如くに、本願発明は、F、
Z方式の新規改質により、極めて、有用供するものであ
る。
As explained above in the Examples, the present invention provides F,
The new modification of the Z method is extremely useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本願発明に係るF、Z炉の概要を示す図であ
る。■は、原料素材棒、■は種子結晶、■は回転楕円面
鏡の2つの焦点、■は回転楕円面鏡、■はハロゲンラン
プ、■は透明石英管、■はレンズ、■はスクリーンで、
■、■により、合成状況の像観察が為される。 以     上 出願人 株式会社諏訪精工舎 第1目
FIG. 1 is a diagram schematically showing an F, Z furnace according to the present invention. ■ is the raw material rod, ■ is the seed crystal, ■ is the two focal points of the spheroidal mirror, ■ is the spheroidal mirror, ■ is the halogen lamp, ■ is the transparent quartz tube, ■ is the lens, and ■ is the screen.
The image of the synthesis situation is observed by (2) and (2). Applicant: Suwa Seikosha Co., Ltd. No. 1

Claims (1)

【特許請求の範囲】[Claims] F、Z炉により結晶を合成する方法において、フラック
スを使用することを特徴とする袈7酷右π−よシー合−
成−貴スボジウメン鉱物。
A method for synthesizing crystals using an F, Z furnace, characterized by the use of flux.
Sei-kisubojiumen mineral.
JP58013336A 1983-01-28 1983-01-28 Spodumene mineral Pending JPS59141491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58013336A JPS59141491A (en) 1983-01-28 1983-01-28 Spodumene mineral

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58013336A JPS59141491A (en) 1983-01-28 1983-01-28 Spodumene mineral

Publications (1)

Publication Number Publication Date
JPS59141491A true JPS59141491A (en) 1984-08-14

Family

ID=11830281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58013336A Pending JPS59141491A (en) 1983-01-28 1983-01-28 Spodumene mineral

Country Status (1)

Country Link
JP (1) JPS59141491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2241321A1 (en) * 2008-02-08 2010-10-20 Mochigase Co., Ltd. Novel hydroxy radical generation method, and anti-viral material utilizing hydroxy radical generated by the method
US11565941B2 (en) 2020-03-17 2023-01-31 Hagen Schray Composite with lithium silicate and method with a quenching step

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2241321A1 (en) * 2008-02-08 2010-10-20 Mochigase Co., Ltd. Novel hydroxy radical generation method, and anti-viral material utilizing hydroxy radical generated by the method
EP2241321A4 (en) * 2008-02-08 2011-01-19 Mochigase Co Ltd Novel hydroxy radical generation method, and anti-viral material utilizing hydroxy radical generated by the method
US11565941B2 (en) 2020-03-17 2023-01-31 Hagen Schray Composite with lithium silicate and method with a quenching step

Similar Documents

Publication Publication Date Title
EP0004974B1 (en) Process for producing a single crystal of ktiopo4 or its analogues
JPS59141491A (en) Spodumene mineral
EP0148946B1 (en) Method of producing a chrysoberyl single crystal
JPS58115090A (en) Synthesis of beryl crystal by f-z process
JPS59137391A (en) Taaffeite mineral crystal
US2860998A (en) Metal titanate composition
JPS59137392A (en) Synthetic method of sugilite crystal by f-z method
JPS59141492A (en) Garnet mineral
JP2014069994A (en) Method for producing lithium tantalate single crystal, and lithium tantalate single crystal
KR100509345B1 (en) A process for producing single crystals of blue colored cubic zirconia
KR100509346B1 (en) A process for producing single crystals of green colored cubic zirconia
JPS59137390A (en) Zoisite mineral
JPS58115089A (en) Synthesis of beryl crystal by f-z process
JPH08295507A (en) Optical crystal and its production
JPH0253399B2 (en)
JPS59141489A (en) Synthesis of crystal of sapphire cat's eye by f-z process
JPS58120596A (en) Synthesizing method for beryl crystal by f-z method
US2736659A (en) Method for preparation of highly refractive material
JPS59116196A (en) Synthesizing method of ruby cat's-eye crystal by f-z method
JPS6210960B2 (en)
JPS59116197A (en) Synthesis method of beryl cat's-eye crystal by f-z method
JPS59174591A (en) Method for synthesizing artificial ruby crystal by f-z method
JPH0471877B2 (en)
JPS6149278B2 (en)
JPS59141481A (en) Production of artificial iolite single crystal