JPS59141472A - Porous ceramic member surface minutening method - Google Patents

Porous ceramic member surface minutening method

Info

Publication number
JPS59141472A
JPS59141472A JP1437283A JP1437283A JPS59141472A JP S59141472 A JPS59141472 A JP S59141472A JP 1437283 A JP1437283 A JP 1437283A JP 1437283 A JP1437283 A JP 1437283A JP S59141472 A JPS59141472 A JP S59141472A
Authority
JP
Japan
Prior art keywords
ceramic member
ceramic
powder
porous ceramic
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1437283A
Other languages
Japanese (ja)
Inventor
出川 通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP1437283A priority Critical patent/JPS59141472A/en
Publication of JPS59141472A publication Critical patent/JPS59141472A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は多孔質セラミック部材の表面緻密化方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for surface densification of porous ceramic members.

近年炭化珪素、窒化珪素、サイアロン、酸化アルミニウ
ム、酸化ジルコニウムなどのセラミック部材は、高温に
おける機械的強度が優れていることや、耐熱性あるいは
耐熱衝撃性に優れているところから大きな注目を集め、
ガスタービンのロータ、ディーゼルエンジンのシリング
、その他高温用機械部品として数多くの研究開発が進め
られている。
In recent years, ceramic materials such as silicon carbide, silicon nitride, sialon, aluminum oxide, and zirconium oxide have attracted a lot of attention because of their excellent mechanical strength at high temperatures, as well as their excellent heat resistance and thermal shock resistance.
Numerous research and developments are underway for use in gas turbine rotors, diesel engine sills, and other high-temperature mechanical parts.

しかしてセラミックスの中でも多孔質のセラミック部材
は断熱性、吸音性などの点において優れた特性を有する
ところから広い範囲の応用が期待されている。ところで
通常多孔質セラミック部材は、セラミック粉体の加圧成
形密度を低くして焼成を行うか、又は成形時に揮発性あ
るいは可燃性物質を添加して焼成を行う。あるいはシラ
スのように焼成過程で発泡するような材料を用いる、な
どの方法によって製造されている。しかしてこれらの方
法によって製造された従来の多孔質セラミックスにおい
ては、その表面も多孔質である。、そのために耐摩耗性
が低い、あるいは強度が低いなどの問題がある。
Among ceramics, porous ceramic members have excellent properties in terms of heat insulation, sound absorption, etc., and are expected to be used in a wide range of applications. By the way, porous ceramic members are usually fired by reducing the density of pressure molding of ceramic powder, or by adding a volatile or combustible substance during molding. Alternatively, it is manufactured by using a material that foams during the firing process, such as whitebait. However, the surface of conventional porous ceramics produced by these methods is also porous. Therefore, there are problems such as low wear resistance or low strength.

こ・のような問題点を解消するためにセラミック表面を
緻密化することが考えられる。しかしてセラミック表面
を被覆する手段としてはCVD。
In order to solve these problems, it is possible to make the ceramic surface denser. However, CVD is a method for coating ceramic surfaces.

PVD、溶剤などが提案されている。しかるに、CVD
あるいはPvDによって形成される膜は薄く、設備及び
操作に多大の費用と時間がかかるものであり多孔質セラ
ミック部材を被覆するには不十分である。また溶射は部
制の表面に溶融状態の粉末物質を吹き付けるようにした
ものであるが、多孔質セラミック部材の表面及びその近
傍に分布する孔(゛ポア)の内部までは十分には埋めき
れないという問題がある。
PVD, solvents, etc. have been proposed. However, CVD
Alternatively, the film formed by PvD is thin and requires a large amount of equipment and operation cost and time, and is insufficient to coat porous ceramic members. In addition, thermal spraying is a method in which a molten powder substance is sprayed onto the surface of a part, but it cannot fully fill the inside of the pores distributed on and near the surface of a porous ceramic member. There is a problem.

本発明の目的は上記従来技術の問題点を解消し、多孔質
セラミンク部材の表面を十分に緻密化することができる
セラミック部材の表面緻密化方法を提供することにある
。・ この目的を達成するため、本発明は多孔質セラミック部
材の表面に、セラミック粉末を付着した後加熱してこの
セラミック粉末をセラミック部材の表面に焼き付ける処
理を少なくとも1回施すことを特徴とする多孔質セラミ
ック部材の表面緻密化方法を要旨とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for densifying the surface of a ceramic member, which solves the problems of the prior art described above and can sufficiently densify the surface of a porous ceramic member. - In order to achieve this object, the present invention provides a porous ceramic member characterized in that a process is performed at least once on the surface of the porous ceramic member, in which ceramic powder is attached and then heated to bake the ceramic powder onto the surface of the ceramic member. The main purpose of this paper is a method for densifying the surface of high-quality ceramic members.

また本発明は更に、所望により、このようにセラミック
粉末が焼き付けられたセラミック部材の表面を更に平滑
化仕上することを特徴とするものである。
Further, the present invention is further characterized in that, if desired, the surface of the ceramic member onto which the ceramic powder has been baked is further smoothed.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において表面処理されるセラミック部材は多孔質
のものである。これは、気孔率が小さくなると、通常、
孔の径も小さくなると共にその数モ少なくなり、従来法
によってもセラミック部材の表面を緻密化することがで
きるからである。本発明の方法は気孔率が15%以上の
セラミックスに適用するに好適であり、とりわけ気孔率
が25%以上の多孔質セラミック部材の表面を緻密化す
るに好適である。
The ceramic member to be surface-treated in the present invention is porous. This is because as the porosity decreases, typically
This is because as the diameter of the pores becomes smaller, the number of pores decreases, and the surface of the ceramic member can be made denser even by conventional methods. The method of the present invention is suitable for application to ceramics having a porosity of 15% or more, and is particularly suitable for densifying the surface of a porous ceramic member having a porosity of 25% or more.

セラミック部材の種類は特に限定されるものではなく、
酸化物、窒化物、炭化物、ホウ化物あるいはこれらを複
合したものなどにも適用可能であり、ごく−例としても
酸化アルミニウム、酸化ジルコニウム、窒化珪素、炭化
珪素、ホウ化ランタン、ホウ化ジルコニウム、あるいは
サイアロンなどがあげられる。
The type of ceramic member is not particularly limited,
It can also be applied to oxides, nitrides, carbides, borides, or composites of these, such as aluminum oxide, zirconium oxide, silicon nitride, silicon carbide, lanthanum boride, zirconium boride, or Examples include Sialon.

本発明においてセラミック粉末としては、セラミック部
材との馴染みの良いものであれば採用可能であるが、特
にセラミック部材と同じ組成のものが好適である。
In the present invention, any ceramic powder can be used as long as it is compatible with the ceramic member, but it is particularly preferable to use a powder having the same composition as the ceramic member.

またセラミック粉末の粒度はセラミック部材のボアの径
にも影響されるが、通常1 μm以下のものが用いられ
る。特に巨0乃至5ooXの超微分を用いれば反応性が
高いところから焼き付けが容易であり、更に微細なボア
をも埋めることが、可り旨となる。また本発明において
はこの粉末に焼結助材を加えるようにし℃もはい。
The particle size of the ceramic powder is also influenced by the diameter of the bore of the ceramic member, but is usually 1 μm or less. In particular, if a superdifferential of 0 to 5ooX is used, it will be easy to print from a place with high reactivity, and it will be possible to fill even the smallest bores. Further, in the present invention, a sintering aid is added to the powder at a temperature higher than 0°C.

セラミック粉末をセラミック部材の表面に付着させる手
段としては、粉末を溶剤に懸濁させこの懸濁液をセラミ
ック部材の表面に塗布した後溶剤を蒸発させるようにし
てもよく、あるいはセラミック粉末を表面にふりかけた
り、吹き付けたりするようにしても良い。
The ceramic powder can be attached to the surface of the ceramic member by suspending the powder in a solvent, applying this suspension to the surface of the ceramic member, and then evaporating the solvent. Alternatively, the ceramic powder can be applied to the surface of the ceramic member. It may also be sprinkled or sprayed.

本発明において加熱手段としては各種の手段が採用可能
であり、例えば加熱炉を用いるようにしても良いが、レ
ーザを照射す′るようにすると迅速且つ手軽に望みの位
置の加熱が行えると共に、表面及びその近傍部分のみを
加熱することができるので好ましい。またこのレニザ照
射を行うに際して、焼き付は温度よりも低い温度で予め
粉末が塗布された表面をイL焼するようにしておけば一
層焼き付けが容易となる。
In the present invention, various means can be employed as the heating means, for example, a heating furnace may be used, but by irradiating a laser, the desired position can be heated quickly and easily, and This is preferable because only the surface and its vicinity can be heated. Furthermore, when performing this laser irradiation, baking will be made easier if the surface to which the powder has been previously applied is baked at a temperature lower than the temperature.

このようにセラミック部材の表面にセラミック粉末を付
着させこの粉末をセラミック部材に焼き付ける処理は1
回でも良いが、2回以上繰り返して行うようにすれば一
層緻密で均質な表面とすることがでざる。
The process of attaching ceramic powder to the surface of a ceramic member and baking this powder onto the ceramic member is carried out in 1
Although it may be repeated twice or more, a more dense and homogeneous surface can be obtained by repeating the process two or more times.

また本づl)明に16いては、粉末を怖き付けたセラミ
ック部材の表面を更に平滑化仕上し、その岩1nJを?
jtかにするようにしても良い。この平滑化仕上の手段
としてはダイヤモンド研削あるいはクイヤモンド研摩1
.cどの手段が採用可能である。
In addition, in the book 16, the surface of the ceramic member that has been coated with powder is further smoothed and the rock 1nJ?
It is also possible to set it to jt. Diamond grinding or diamond polishing 1 is a method for achieving this smooth finish.
.. c Which means can be adopted?

以F実施fFl−1について説明するが、本発す」はそ
の要旨を越えない限り下記の実施例に限定されるもので
はない。
Hereinafter, the F implementation fFl-1 will be explained, but the present disclosure is not limited to the following embodiment unless it exceeds the gist thereof.

実施例1 気孔率30%の安定化酸化ジルコニウム板の表面を本発
明方法に従って処J’!I!した。まず平均粒+i0.
81zmの安定化酸化ジルコニウムの粉末なメーノ′−
ルアルコー・しに溶いて懸濁液を作成し、この懸濁液を
酸化ジルコニウム板の表面に塗布した。鷺埠量比し二1
1−当−リーS−#チ墳4千)7σ濁液を塗布した後メ
チルアルコールを蒸発させ、次いで200“Cで銑焼し
た後アルゴン雰囲気中で17−ザを照射し1700°C
にこの粉末を塗布しまた面を加熱し、酸化ジルコニウム
板の表面に酸化ジルコニウム粉末を焼き付けた。この粉
末を焼き伺けろ処理を21′!−!′I繰り返した。こ
のようにして表面が緻密化されブ;J化ジルコニウム板
((ついて気孔率、緻密層の厚さ、曲げ強展云≠及び耐
摩耗性について測定した。
Example 1 The surface of a stabilized zirconium oxide plate with a porosity of 30% was treated according to the method of the present invention. I! did. First, average grain + i0.
81zm stabilized zirconium oxide powder
A suspension was prepared by dissolving it in alcohol, and this suspension was applied to the surface of a zirconium oxide plate. Sagibu volume ratio 21
After applying the 7σ suspension, evaporate the methyl alcohol, and then heat it at 200"C, then irradiate it with 17-ther in an argon atmosphere and heat it at 1700°C.
The zirconium oxide powder was baked onto the surface of the zirconium oxide plate by applying this powder and heating the surface. Burn this powder and process it! -! 'I repeated. In this way, the surface was densified and the porosity, thickness of the densified layer, bending strength and wear resistance were measured.

結果を表1に示す。The results are shown in Table 1.

実力てaeンリ 2 実施fil lと同様に17で酸化ジルコニウム板の表
面を緻密化処理1−だ。そして更に、この処理された酸
化ジルコニウム板の表面を、ダイヤモンド砥粒を用いて
研摩して平滑化処理した。この平滑化処Jl サれた酸
化ジルコニウム板について特性を測定した結果を表1に
示す。
As in 17, the surface of the zirconium oxide plate was subjected to densification treatment 1-. Further, the surface of the treated zirconium oxide plate was polished and smoothed using diamond abrasive grains. Table 1 shows the results of measuring the characteristics of this smoothed zirconium oxide plate.

表   1 (※)面子摩耗性は、板ヤ=’: uii =鋼の粉粒
1を吹きつけ、これによる損耗′7:]を411]定す
るこ1とにより1′4Jン〆した。
Table 1 (*) Surface abrasion resistance was determined by spraying steel powder particles 1 on the plate and determining the wear and tear caused by this 1'411.

表1より、実施列に係る酸化ジルコニウム板は、処」1
11前のものよりも曲り一強度及びlft摩れ性におい
て優れていることが認められる。なお気孔率は全体とし
てほぼ同様の数値となっている。
From Table 1, the zirconium oxide plate according to the practical row is
It is recognized that the bending strength and lft abrasion resistance are superior to those before No. 11. It should be noted that the porosity values are approximately the same overall.

以上の通り本発明方法によれば多孔質セラミック部側の
表面を十分に緻密化することが可能とされる。またこれ
により多孔質セラミック部側の強度、耐摩耗性が向上さ
れる。
As described above, according to the method of the present invention, it is possible to sufficiently densify the surface on the porous ceramic part side. This also improves the strength and wear resistance of the porous ceramic portion.

3−3-

Claims (1)

【特許請求の範囲】 (11多孔質セラミック部材の表面に、セラミック粉末
を付着した後加熱してこのセラミック粉末をセラミック
部材の表面に焼き付ける処理を少なくとも1回施すこと
を特徴とする多孔質セラミック部材の表面緻密化方法。 (2)  セラミック粉末をセラミック部材の表面に焼
き付ける処理を複数回施すことを特徴とする特許請求の
範囲第1項に記載の多孔質セラミック部材の表面緻密化
方法。 (3)  セラミック粉末を付着した後に4に焼し次い
でレーザを照射して加熱することを特徴とする特許請求
の範囲第1項又は第2項に記載の多孔質セラミック部材
の表面緻密化方法。 (4)  多孔質セラミック部材の表面に、セラミック
粉末を刺着した後加熱してこのセラミック粉末をセラミ
ック部材の表面に焼き付ける処理を少なくと61回施し
、次いでこの表面を平滑化仕上することを特徴とする多
孔質セラミック部材の表面緻密化方法。
[Claims] (11) A porous ceramic member characterized by applying a process of adhering ceramic powder to the surface of the porous ceramic member and then heating the ceramic powder to bake the ceramic powder onto the surface of the ceramic member at least once. (2) A method for surface densification of a porous ceramic member according to claim 1, characterized in that a process of baking ceramic powder onto the surface of the ceramic member is performed multiple times. ) A method for surface densification of a porous ceramic member according to claim 1 or 2, characterized in that after adhering the ceramic powder, the ceramic powder is baked to a temperature of 4 and heated by irradiating with a laser. ) The ceramic powder is stuck onto the surface of the porous ceramic member and then heated to bake the ceramic powder onto the surface of the ceramic member at least 61 times, and then the surface is smoothed and finished. A method for surface densification of porous ceramic members.
JP1437283A 1983-01-31 1983-01-31 Porous ceramic member surface minutening method Pending JPS59141472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1437283A JPS59141472A (en) 1983-01-31 1983-01-31 Porous ceramic member surface minutening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1437283A JPS59141472A (en) 1983-01-31 1983-01-31 Porous ceramic member surface minutening method

Publications (1)

Publication Number Publication Date
JPS59141472A true JPS59141472A (en) 1984-08-14

Family

ID=11859215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1437283A Pending JPS59141472A (en) 1983-01-31 1983-01-31 Porous ceramic member surface minutening method

Country Status (1)

Country Link
JP (1) JPS59141472A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232285A (en) * 1985-04-04 1986-10-16 エヌオーケー株式会社 High strength lightweight ceramic material
JPH0316983A (en) * 1989-06-14 1991-01-24 Isuzu Ceramics Kenkyusho:Kk Ceramic thermal insulating member and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232285A (en) * 1985-04-04 1986-10-16 エヌオーケー株式会社 High strength lightweight ceramic material
JPH0316983A (en) * 1989-06-14 1991-01-24 Isuzu Ceramics Kenkyusho:Kk Ceramic thermal insulating member and production thereof

Similar Documents

Publication Publication Date Title
JP4805539B2 (en) Protecting composite parts from oxidation
US5900277A (en) Method of controlling infiltration of complex-shaped ceramic-metal composite articles and the products produced thereby
US6159553A (en) Thermal barrier coating for silicon nitride
JP5404032B2 (en) Thermal spray raw material composition
US9085991B2 (en) Protective coatings for ceramic matrix composite substrates and methods for improving the wear resistance thereof and coated articles produced therefrom
EP0396240B1 (en) Ceramic meterial and method for producing the same
CN101528407B (en) Improved method of bonding aluminum-boron-carbon composites
US11198651B2 (en) Surface layer on a ceramic matrix composite
CN101815690A (en) Ceramic layer composite and method for the production thereof
RU2461534C2 (en) Protection against wear of thermo structural part from ceramic material with ceramic matrix, coat and part thus protected
US6074699A (en) Surface hardness of articles by reactive phosphate treatment
CN108975953A (en) A kind of C/SiC composite material surface laser melting coating combines by force the preparation method of glass film layers
JPS59141472A (en) Porous ceramic member surface minutening method
JP2008137860A (en) Ceramics burning tool material for electronic components
JP2006183972A (en) Baking fixture for electronic component
CN115286390A (en) ZrC-SiC anti-ablation coating on surface of C/C composite material and brushing method combined gas phase reaction composite preparation method
Defriend et al. Surface repair of porous and damaged alumina bodies using carboxylate-alumoxane nanoparticles
JPH07206556A (en) Coating material for refractory and method for application
JPH01224286A (en) Dual layered ceramic material
JPH05186285A (en) Substrate for heat treatment and its production
JP3060590B2 (en) High temperature heat resistant material
JP2009263147A (en) Method for producing boron nitride formed article
JPS62184073A (en) Heat-resistant adhesive or coating agent
JPS59164682A (en) Porous ceramic reinforcement
JPH11116360A (en) Metal-ceramic composite material and its production