JPS59141415A - Aqueous slurry of amorphous silica - Google Patents

Aqueous slurry of amorphous silica

Info

Publication number
JPS59141415A
JPS59141415A JP971384A JP971384A JPS59141415A JP S59141415 A JPS59141415 A JP S59141415A JP 971384 A JP971384 A JP 971384A JP 971384 A JP971384 A JP 971384A JP S59141415 A JPS59141415 A JP S59141415A
Authority
JP
Japan
Prior art keywords
amorphous silica
calcium
crystal
water
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP971384A
Other languages
Japanese (ja)
Other versions
JPS6341850B2 (en
Inventor
Teru Takahashi
輝 高橋
Toru Takigawa
徹 滝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Osaka Packing Seizosho KK
Original Assignee
Ohara Inc
Osaka Packing Seizosho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc, Osaka Packing Seizosho KK filed Critical Ohara Inc
Priority to JP971384A priority Critical patent/JPS59141415A/en
Publication of JPS59141415A publication Critical patent/JPS59141415A/en
Publication of JPS6341850B2 publication Critical patent/JPS6341850B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:An aqueous slurry of amorphous silica that is obtained by dispersing amorphous silica primary particles which have crystal-like appearance and a specific form and size in water, thus giving a formed product with high strength only by forming and drying without any binder. CONSTITUTION:Carbon dioxide is made to act on a calcium silicate such as wollastonite to effect conversion into amorphous silica and fine particles of calcium carbonate and the product is treated with an acid to separate the amorphous silica from the calcium carbonate which is decomposed into carbon dioxide and a calcium salt. Thus, apparently crystal-like amorphous silica is obtained in the form of primary particles which have the crystalline habit of the calcium silicate, about 1-500mum length and 50Angstrom -1mum thickness where the length is more than 10 times the thickness. The resultant amorphous silica primary particles are dispersed in water to give the objective aqueous slurry of amorphous silica which is formable.

Description

【発明の詳細な説明】 小先明は、非晶質シリカの水性スラリー、訂ミしくは成
形能\即ち単に成形乾燥するだけで侮辱結合剤等を用い
ずとも機械的強度を有する成形体を与え得る性質を有す
る新しい非晶質シリカの水性スラリーに関する。
[Detailed Description of the Invention] Akira Kosaki has developed an aqueous slurry of amorphous silica that can be molded into a molded product that has mechanical strength without using a binder or the like by simply molding and drying it. The present invention relates to a new aqueous slurry of amorphous silica with properties that can be imparted.

従来非晶質シリカとしては代表的なものとじてシリカゲ
ルが知られている。これは主に珪eHナトリウム水溶液
を虫酸、硫酸等の酸で中和し、沈殿を析出させ、水洗乾
燥して製造され、更に必要があれば減圧下に加熱して活
性化される。該シリカゲルは製造法により不定形又は球
状で収得されるが、それ自体成形能を有さす、従ってこ
れを成形するに当っては結合剤等の利用を必須とする。
Silica gel is conventionally known as a typical amorphous silica. This is mainly produced by neutralizing an aqueous solution of sodium silica with an acid such as insectic acid or sulfuric acid, precipitating a precipitate, washing with water and drying, and if necessary, activating it by heating under reduced pressure. The silica gel can be obtained in an amorphous or spherical shape depending on the manufacturing method, but it itself has moldability, so it is essential to use a binder or the like when molding it.

しかるにかかる方法により得られるシリカゲル成形体は
、重質でありしかも強度が弱く、保温材、wr熱材等の
用途tては側底実用できない。
However, the silica gel molded product obtained by this method is heavy and has low strength, and cannot be used for practical use as a heat insulating material, WR heating material, etc. for side soles.

発明の目的 +:発明は、上記従来公知のシリカゲルとは異なる特定
の形状(外形)及び大きさを有する非晶質シリカ−次粒
子を水中に分散させてなり、該水性スラリーからは、こ
れを単に成形(脱水成−形)し、乾燥するのみで、軽量
にして且つ実用的機械的強度を備えた成形体を与え得る
特性を有する新しい非晶質シリカの水性スラリーを提供
するものであ発明の構成 即ち小発明は、珪酸カルシウム結晶の晶癖を有し、約1
〜500μmの長さおよび約50A〜約1μmの厚さを
有し、長さが厚さの少なくとも10倍である外観結晶様
非晶質シリカ−次粒子を水に分散させてなる成形能を有
する非晶質シリカ水性スラリーに係る。
Purpose of the invention +: The invention consists of dispersing amorphous silica primary particles having a specific shape (outer shape) and size different from the conventionally known silica gel in water, and dispersing them from the aqueous slurry. An invention to provide a new aqueous slurry of amorphous silica that has the characteristics of being able to give a lightweight molded product with practical mechanical strength by simply molding (dehydration molding) and drying. The composition, ie, the small invention, has a crystal habit of calcium silicate crystals, and has a crystal habit of about 1
Formable by dispersing in water crystal-like appearance amorphous silica primary particles having a length of ~500 μm and a thickness of about 50 A to about 1 μm, the length being at least 10 times the thickness. Pertains to amorphous silica aqueous slurry.

本発明水性スラリーの最大の特徴とするIg「は、何ら
バインダー等を用いることなく成形可能でめり、qi¥
:mlcして且つ強度を有する成形体を容易に製造でき
る特異な性質を有する所にある。しかしてこの特徴は該
スラリーを構成する一次粒子が上記特定の外形堤び大き
さを有することに起因しており、該−次粒子の外形及び
大きさは、これが珪酸塩結晶から導かれ、該結晶の形骸
を残したままで珪酸塩結晶が非晶質シリカに変換される
ことによってもたらされる。即ち該−次粒子は、xH回
折の解析の結果全く回折じ−クを詔め得ず、非晶質であ
ることが確認され、強熱脱水後の化学分析結果によれば
5102 合歓が98重量%を越える高純度であり、更
に電子顕微艶観察の結果非晶質であるにもかかわらず起
源結晶の晶癖を保持した結晶様外1戸を呈することが確
認される。この結晶様外観及び大きさは、その起源結晶
である珪酸塩結晶の外観及び大きさと実質的に一致する
。例えばワラストナイト、シーノトライト、フオシャジ
セイト等の短−器状珪酸カルシウム系結晶から導かれる
非晶質シリカ−次粒子は短冊状外形を有する。
The biggest feature of the aqueous slurry of the present invention is that it can be molded without using any binder,
: It has a unique property that allows easy production of molded products with MLC and strength. However, the lever feature is due to the fact that the primary particles constituting the slurry have the above-mentioned specific external shape and size, and the external shape and size of the secondary particles are derived from silicate crystals and It is produced by converting silicate crystals into amorphous silica while leaving behind the crystalline remains. That is, as a result of xH diffraction analysis, it was confirmed that the secondary particles were amorphous, with no diffraction observed at all, and according to the chemical analysis results after ignited dehydration, the weight of the particles was 5102 and 98. Furthermore, as a result of electron microscopy observation, it is confirmed that although it is amorphous, it exhibits a crystal-like appearance that retains the crystal habit of the original crystal. This crystal-like appearance and size substantially corresponds to the appearance and size of the silicate crystal from which it originates. For example, amorphous silica primary particles derived from rectangular calcium silicate crystals such as wollastonite, seanotrite, and phoshadiseite have a rectangular outer shape.

トベル七ライト1ジセイ0ライト、α−025H等の板
状珪酸カルシウム結晶から導かれるそれは板状の外形を
有する。2等短冊状、板状等を呈する非晶質シリカは、
長さ約1〜500μm1厚さ約5OA−1μm及び長さ
が厚さの少なくとも10倍である大きさを有する。シー
ノトライト結晶から導かれる短冊状の非晶質シリカは該
結晶の晶癖を保持し通常約1〜50μmの長さ、約10
0;〜0.5μmの厚さ及び約100A〜2μmの11
を有し長さ性厚さの約10〜5000倍である。トベル
七ライト結晶から導かれる板状のそれは該結晶の晶癖を
保持し約1〜50μmの投込、約100A〜O,うpm
の厚さ及び約0.2〜20pmの巾を有し長さが厚さの
約10〜5000倍である。ワラストナイト結晶から導
かれる短冊状のそれはその結晶の晶癖を保持し約1〜5
00μmの長さ、約10OA−18mの厚さ及び約10
0A〜5μmの11]を有し長さが厚さの約10〜50
oO倍である。ジャイロライト結晶から導かれる板状の
それは、その結晶の晶癖を保持し約1〜50μmの長さ
、約1oo’x〜0.5μmの厚さ及び約1〜20μm
の+lJを有し長さが厚さの10〜500p倍である。
It is derived from plate-shaped calcium silicate crystals such as Tobel Heptalite 1 Disei0lite, α-025H, etc., and has a plate-like external shape. Amorphous silica that exhibits a rectangular shape, plate shape, etc.
It has a length of about 1-500 μm and a thickness of about 5 OA-1 μm, and the length is at least 10 times the thickness. The strip-shaped amorphous silica derived from the seanotrite crystal retains the crystal habit of the crystal and is usually about 1 to 50 μm long and about 10 μm long.
0; ~0.5 μm thickness and approximately 100A ~ 2 μm 11
The length and thickness are about 10 to 5000 times longer. The plate-shaped one derived from the Tobel heptalite crystal retains the crystal habit of the crystal and has a thickness of approximately 1 to 50 μm and a thickness of approximately 100 A to O, up to 100 μm.
It has a thickness of about 0.2 to 20 pm, and a length of about 10 to 5000 times the thickness. The rectangular shape derived from wollastonite crystal retains the crystal habit of the crystal and has a crystal habit of about 1 to 5
00μm length, about 10OA-18m thickness and about 10
11] of 0 A to 5 μm, and the length is approximately 10 to 50 μm of the thickness.
It is oO times. A plate-shaped plate derived from a gyrolite crystal retains the crystal habit of the crystal and has a length of about 1 to 50 μm, a thickness of about 10'x to 0.5 μm, and a thickness of about 1 to 20 μm.
+lJ, and the length is 10 to 500p times the thickness.

α−タイカルシウムシリケートハイドL= −ト結晶か
ら導かれる板状のそれは、その結晶の晶癖を保持し約1
〜300μmの長さ、約500Δ〜1μmの厚さ及び約
1〜50μmの巾を有し長さが厚さの10〜5000倍
である。
The plate-shaped one derived from the α-tied calcium silicate hide L = -t crystal retains the crystal habit and approximately 1
The length is 10 to 5000 times the thickness, with a length of ~300 μm, a thickness of approximately 500Δ to 1 μm, and a width of approximately 1 to 50 μm.

小発明の水性スラリーは、′上記非晶質シリカ一次粒子
を水に分散させることにより調製される。
The aqueous slurry of the invention is prepared by dispersing the amorphous silica primary particles described above in water.

該スラリーは通常水対固形分比(重量比)を4〜50;
1とするのがよい。また本16明の上記水性スラリーに
は、必要に応じて石綿、ガラス繊維1岩綿、合成繊維、
天然繊維、バルブ、炭素繊維・ステンしスファイノS−
等の繊維質補強剤・アルミ士ツル、コ0イダルシリカソ
ル・クレー)セメシト、着色剤、充填剤等の各種添加剤
を添加することができる。
The slurry usually has a water to solid content ratio (weight ratio) of 4 to 50;
It is better to set it to 1. In addition, the aqueous slurry of this 16th century may contain asbestos, glass fiber, rock wool, synthetic fiber,
Natural fiber, valve, carbon fiber/stainless steel Sfaino S-
It is possible to add various additives such as fibrous reinforcing agents such as aluminum silica, silica sol, clay), colorants, fillers, etc.

本発明の水性スラリーを構成する上記非晶質シリカ−次
粒子は、例えば5i04  四面体の網状又は連1状構
造を有する各種の天然又は合成珪は塩結晶から製造でき
る。その製造方法は特に制限されず任意の方法を採用で
きるが最も有利には珪酸カルシウム結晶を原料として、
これを水分の存在下に旋酸力□スと接触させて非晶質シ
リカと極侭細屍1j!′カルシウムとに転換させ(炭酸
化)・次いで生成物を酸で処理して炭酸カルシウムな二
酸化炭素及びカルシウム塩に分解し、非晶質シリカをカ
ルシウム塩から分際する(酸処理)ことにより行なわ゛
れる。この方法のtひ大の特徴は、ト1:酸カルシウム
結晶の外形を実質的に変化させることなく該結晶を構成
する珪酸カルシウムを非晶質シリカに転換させイ4る点
にある。従ってこの様にして得られる非晶質シリカ−次
粒子は、珪酸カルシウム結晶の形骸を実質的にそのまま
有する。ここで起源結晶として使用できる珪酸カルシウ
ム結晶にはワラストナイト、ソーノドライト、フオシセ
ジセイト5゜ししプランタイト、0−ぜンハナイト等の
ワラストナイト系ヱL酸カルシウム結晶、トベルtライ
トぐ)のトベル七うイト系珪酸カルシウム結晶、ジャイ
rJライト、トラスフタイト、リエライト等のジセイロ
ライト系ffl!カルシウム結晶・カルジオコンドロ涜
イト・牛ルコアナイト、アフじイライト等のr−ダイカ
ルシウムシリゲート系ム1敏カルシウム角吉晶、α−ダ
イカルシウムシリゲートハイドし一層等が包含される。
The amorphous silica secondary particles constituting the aqueous slurry of the present invention can be produced from various natural or synthetic silicon salt crystals having, for example, a 5i04 tetrahedral network or chain structure. The manufacturing method is not particularly limited and any method can be adopted, but the most advantageous method is to use calcium silicate crystals as a raw material.
When this is brought into contact with the acid power □ in the presence of water, amorphous silica and extremely fine corpse 1j! 'Conversion to calcium (carbonation), followed by treatment of the product with acid to decompose it into calcium carbonate carbon dioxide and calcium salts, and separation of the amorphous silica from the calcium salts (acid treatment). I can do it. The major feature of this method is that the calcium silicate constituting the calcium oxide crystals is converted into amorphous silica without substantially changing the external shape of the calcium acid crystals. Therefore, the amorphous silica secondary particles obtained in this manner have substantially the skeleton of calcium silicate crystals as they are. Calcium silicate crystals that can be used as source crystals include wollastonite-based calcium silicate crystals such as wollastonite, thonodolite, phossedisate 5゜plantite, 0-zenhanite, and tobel t-lite). Uite-based calcium silicate crystals, gyrj-lite, trasphtite, lierite, and other diseirolite ffl! Included are r-dicalcium silicate-based multi-calcium silicate crystals such as calcium crystals, cardiochondrosilicate, bovine lucoanite, and aphidillite, α-dicalcium silicate hydrates, and the like.

上記各棟の珪酸カルシウム結晶は何扛も公知であり、公
知の方法によって製造出来る。たとえば本出願人が先に
開弁した特公昭45−25771号に記載される方法に
よって製造される坪数カルシウム結晶の球殻状二次粒子
及びこれから主として構成される珪酸カルシウム結晶の
成形体を適当に粉砕するか或は特公昭30−4040号
公報、7、?公明41−1953号公報、米国特許第2
699097号明細書、米国時W[第2665996号
明細書等に記載された方法により製造されるJl:l酸
カルシウム結晶の成形体を粉砕することにより製造され
る。
Any number of calcium silicate crystals for each of the above structures are known and can be produced by known methods. For example, the spherical shell-shaped secondary particles of calcium silicate crystals produced by the method described in Japanese Patent Publication No. 45-25771, which was previously published by the present applicant, and the molded bodies of calcium silicate crystals mainly composed of the secondary particles are suitably used. Should it be crushed or should it be crushed?Special Publication No. 30-4040, 7? Publication No. 41-1953, U.S. Patent No. 2
Jl: It is produced by crushing a molded body of calcium chloride crystals produced by the method described in U.S. Pat. No. 699,097, US Pat.

上記珪酸カルシウム結晶を得る為の原料として用いられ
る珪酸原料としては、天然無定形f4:【拶、ム1゛砂
、hi+M士・りし、−、スラグ、白土・フライアッシ
ュ、パーライト、ホワイトカーボン、シリコ、7ダスト
等の珪酸分を主成分とする各棟のものを使用出来、これ
らは単独でまたは2株以上混合して使用出来る。また石
灰原料としては例えば生石灰、消石灰・カーバイト残漬
、セメント等石灰分を主成分とする各種のものを夫々例
示することができ、これ等は単独でもしくは2極以上混
合して使用できる。これ等各原科は通常CaO: 5i
n2  の七ル比を0.5〜3.51程度の範囲とする
様配合するのがよい0上記原料と共に必要に応じガラス
繊維Stラミックスフアイバー、石綿、岩綿、ナイロン
、ご二0 :J %天然繊維、パルプ、ステンし・スフ
アイバー)炭素繊維等の補強剤や着色剤等の添加剤が配
合され得る。また上記に於いて使用される水量は、広い
範囲に亘って変化させ得る。一般には固形分の合札重量
に対して3.5〜30倍程度とするのがよい。
The silicic acid raw materials used as raw materials for obtaining the above-mentioned calcium silicate crystals include natural amorphous f4: [Greetings, Mu1゛ sand, hi+Mshi・Rishi, -, slag, white clay/fly ash, pearlite, white carbon, Various strains containing silicic acid as a main component, such as Silico and 7 Dust, can be used, and these can be used alone or in a mixture of two or more. Examples of lime raw materials include quicklime, slaked lime/carbide residue, cement, and other materials whose main component is lime, and these can be used alone or in a mixture of two or more. Each of these families usually contains CaO: 5i
It is best to mix so that the n2 ratio is in the range of about 0.5 to 3.51. Along with the above raw materials, if necessary, add glass fiber, St. laminated fiber, asbestos, rock wool, nylon, etc. Additives such as reinforcing agents such as carbon fiber (natural fiber, pulp, stenciled fiber) and coloring agents may be blended. Also, the amount of water used above can vary over a wide range. Generally, the amount is preferably about 3.5 to 30 times the combined weight of the solid content.

上記の如くして得られる珪酸カルシウム結晶の炭酸化は
、反応系内に炭酸カスを導入し、水分の存在下に於いて
上記結晶と炭酸ガスとを接触せしめることにより行なわ
れる。上記炭酸化は好ましくは例えば6檎4mの珪酸カ
ルシウム結晶を適当な密閉容器中に入れ高湿度下乃至湿
潤下に炭酸ガ! スを導入するか、更には各種形態の珪酸カルシウム結晶
を水中もしくは炭酸水中に浸漬俊才に炭酸ガスを導入す
る等の方法により実施できる。この炭酸化は系内に炭酸
ガスを導入する限り常温、常圧下に於いても充分運行す
るのが好ましくは加圧−FIOkti/Cd程度迄のゲ
ージ圧下に行なうのがよく、これによシ炭酸化の速度が
一層早くなり短時間で反゛応を完結することが可能とな
る。炭酸カスの使用量は化学量ii銚又はそれ以上でお
る。また珪酸カルシウム結晶を水中に浸漬して炭酸化処
理を行なう場合には、反応系を攪拌することによっても
炭版化速度を早めることができる。水対珪版カルシウム
結晶の使用割合は通常1〜50:l好ましくは1〜25
:I(重撒比)とするのがよい。
Carbonation of the calcium silicate crystals obtained as described above is carried out by introducing carbon dioxide scum into the reaction system and bringing the crystals into contact with carbon dioxide gas in the presence of moisture. The above-mentioned carbonation is preferably carried out by placing, for example, 6 to 4 m of calcium silicate crystals in a suitable airtight container and heating them with carbonic acid under high humidity or humidity. Alternatively, various forms of calcium silicate crystals may be immersed in water or carbonated water, and carbon dioxide gas may be introduced into the solution. This carbonation can be carried out satisfactorily even at room temperature and pressure as long as carbon dioxide gas is introduced into the system, but it is preferably carried out under a gauge pressure of approximately pressurized - FIOkti/Cd. The speed of reaction becomes even faster, and it becomes possible to complete the reaction in a short time. The amount of carbonate sludge used is a stoichiometric amount or more. Furthermore, when carbonating calcium silicate crystals by immersing them in water, the carbonization rate can also be increased by stirring the reaction system. The ratio of water to silica calcium crystal used is usually 1 to 50:l, preferably 1 to 25:l.
:I (weight ratio) is preferable.

この炭酸化の速度は原料と料椿鉾腕する珪酸カルシウム
の結晶化度によって若干異なるが、例えばこの炭酸化速
度が最も遅いと認められるソーノドライト結晶を炭に化
する場合には\その乾燥重量に対し水分添加量を2〜6
倍程度とすることにより4〜lO時間で反応が完結する
。また該水分の添加量を5倍とし反応系を2 kg /
 d (ゲージ圧)に加圧すれば、反応は通常1時間前
後で完結し、この加圧条件を3kq/cyA(ゲージ圧
)とすれば30分稈度という極めて短時間で反応が完結
することが認められている。
The rate of carbonation differs slightly depending on the raw material and the crystallinity of the calcium silicate in the raw material. However, the amount of water added is 2 to 6
By approximately doubling the amount, the reaction is completed in 4 to 10 hours. In addition, the amount of water added was 5 times, and the reaction system was 2 kg /
If pressurized to d (gauge pressure), the reaction will normally be completed in around 1 hour, and if this pressurization condition is 3 kq/cyA (gauge pressure), the reaction will be completed in an extremely short time of 30 minutes. is recognized.

上記炭酸化反応は、原料とする珪酸カルシウム結晶の種
類及び結晶化度によシ下記反応式で示される如く11「
行する。
The above carbonation reaction depends on the type and crystallinity of the calcium silicate crystal used as the raw material, as shown in the reaction formula below.
go

xcao 、SiO−FFJ O+CO222 → CaCO3+ 5I02 、 nH2O但し上記式
中Xは0.5〜3.5である。
xcao, SiO-FFJ O+CO222 → CaCO3+ 5I02, nH2O However, in the above formula, X is 0.5 to 3.5.

いずれの珪酸カルシウム結晶を用いた場合にも、該#酸
カルシウムは、その−次粒子の外形を実質的に変化させ
ることなく、従って形態上の変化を伴うことなく非晶質
シリカとMlカルシウムの極微結晶とに転化される。即
ち珪酸カルシウム−次結晶の骨格構造をなすSiO4四
面体の連M構造はそのまま保持され、該連鎖構造によっ
て結晶の外観を有する非晶質シリカと之に付着した極微
細炭酸カルシウムとが生成する。
No matter which type of calcium silicate crystals are used, the #calcium oxide is a combination of amorphous silica and Ml calcium without substantially changing the outer shape of its secondary particles, and therefore without any morphological change. It is converted into ultrafine crystals. That is, the linked M structure of SiO4 tetrahedra that forms the skeleton structure of the calcium silicate-secondary crystal is maintained as it is, and the linked structure produces amorphous silica having a crystalline appearance and extremely fine calcium carbonate attached thereto.

上記炭酸化により得られるシリカ−炭酸カルシウム複合
体の酸処理は、上記複合体を構成する非晶質シリカから
炭版カルシウム分を分離するために行なわれるものであ
り、好ましくはシリカとは反応性を有さないが炭酸カル
シウムを分解して炭酸ガスと水町浴性のカルシウム塩と
を生成し得る酸を用いて行なうのがよい。核酸としては
例えば、塩岐1硝酸−酢酸、過塩素酸等が例示できる。
The acid treatment of the silica-calcium carbonate complex obtained by the above carbonation is carried out to separate the charcoal calcium component from the amorphous silica constituting the above complex, and it is preferable that the silica is reactive with the silica. It is preferable to use an acid which does not contain calcium carbonate but can decompose calcium carbonate to produce carbon dioxide gas and Mizumachi bathing calcium salt. Examples of the nucleic acid include nitric acid-acetic acid and perchloric acid.

またこの酸処理は通常上記接合体を例えば上記各梗酸の
溶成中に浸漬するかまたは上記仮合体を水に浸流又は分
散させた俊速に塩化水素ガス等の酸性カスを導入するこ
とにより実施できる。上記において酸は炭咳カルシウム
と反応する化学景論量以上用いればよい。この酸処理は
好ましくは室温で行ない得るが、使用する酸のθμ点迄
の加温も可能である。反応圧力は通常常圧が採用される
が、加圧条件でも反応は進行する。反応特開は一般にき
わめて短い。上記酸処理によれば複合体を構成する非晶
質シリカに付着して存在する炭酸カルシウムは上記酸に
より分解され可溶性カルシウム塩となる。従って該カル
シウム塩を次いで例えば水洗等によって完全に除去し乾
燥することにより、非晶質シリカから成る一次粒子が得
られる。この次数カルシウム除去の工程に於ても非晶質
シリカの一次粒子の外形に変化はない。
In addition, this acid treatment is usually carried out by immersing the above-mentioned conjugate in the melting process of each of the above-mentioned infarct acids, or by rapidly introducing acidic residue such as hydrogen chloride gas into which the above-mentioned temporary coalescence is immersed or dispersed in water. It can be implemented by In the above, the acid may be used in a chemically stoichiometric amount or more to react with the anthrax calcium. This acid treatment can preferably be carried out at room temperature, but heating to the θμ point of the acid used is also possible. The reaction pressure is usually normal pressure, but the reaction proceeds even under pressurized conditions. Reaction patents are generally very short. According to the acid treatment, the calcium carbonate present adhering to the amorphous silica constituting the composite is decomposed by the acid and becomes a soluble calcium salt. Therefore, by completely removing the calcium salt by, for example, washing with water and drying, primary particles made of amorphous silica can be obtained. There is no change in the external shape of the primary particles of amorphous silica even in this step of removing calcium.

本発明水性スラリーからの成形体の製造は、常法に従い
、該スラリーを脱水成形し、次いで乾燥することにより
行なわれる。得られる成形体の嵩密度は成形時の圧力に
より任意に調節可能であり広範囲なものとできる。好ま
しくは該嵩密度は約0.19/dから約1.Of/dと
するのがよい。かくして得られる成形体は、通常次式で
表わされる空隙率が少なくとも50%、好ましくは60
〜95%であり、軽凰にして優れた機械的強度を有して
いる。
The production of a molded article from the aqueous slurry of the present invention is carried out by dehydrating and molding the slurry and then drying it in accordance with a conventional method. The bulk density of the obtained molded product can be arbitrarily adjusted by changing the pressure during molding, and can be adjusted over a wide range. Preferably the bulk density is from about 0.19/d to about 1. It is better to set it to Of/d. The molded body thus obtained usually has a porosity expressed by the following formula of at least 50%, preferably 60%.
~95%, and has excellent mechanical strength despite being a light phosphor.

殊に得られる成形体は何れも0.1〜0.4f/d程度
の低電密度で3〜30kQ/Cd程度の大きな曲げ強度
を備えている。また上記嵩密度はより太き   ・/d
〜1.Of/CrAの嵩密度の成形体では20〜100
kQ/d程度の大きな曲は強度を有している。
In particular, the obtained molded bodies all have a low electric density of about 0.1 to 0.4 f/d and a high bending strength of about 3 to 30 kQ/Cd. Also, the above bulk density is thicker ・/d
~1. For a molded product with a bulk density of Of/CrA, it is 20 to 100.
A large piece of music on the order of kQ/d has strength.

従って得られる成形体は、保温材、断熱材、耐火濾過材
、触媒担体等の用途に有用である。
Therefore, the obtained molded product is useful for uses such as heat insulating materials, heat insulating materials, fireproof filter materials, catalyst carriers, and the like.

実施例 以F本発明を更に詳細に説明するため参考例及び実施例
を挙げる。
EXAMPLES Reference examples and examples will be given to further explain the present invention in detail.

各参考例及び実施例で得られる物質のX線回折図及び電
子顕微鏡写其全図面に示す。
X-ray diffraction diagrams and electron micrographs of the substances obtained in each reference example and example are shown in all drawings.

第1図(4)〜C)は夫々出発原料であるソーノドライ
ト結晶、該結晶を炭酸化処理して得られる非晶質シリカ
ー炭酸カルシウム接合粒子及び非晶質シリカ−次粒子の
X線回折図である。これはXH回折計(X −ray 
diffrattomtttr )を利用し、Cuター
ゲットで波長が1.5418,4のX椀を発生させ、こ
れを試料に照射して、その回折角と回折強度を求めるこ
とによし記録されたものである。回折強度の最も高い3
本の回折鞠を読み試料の同定を行なった。
Figure 1 (4) to C) are the X-ray diffraction diagrams of the starting raw materials, thonodolite crystals, amorphous silica calcium carbonate bonded particles and amorphous silica secondary particles obtained by carbonating the crystals, respectively. be. This is an XH diffractometer (X-ray
diffrattomtttr) was used to generate an X-bowl with a wavelength of 1.5418.4 using a Cu target, and the sample was irradiated with this to determine the diffraction angle and diffraction intensity. 3 with the highest diffraction intensity
I read the book's diffraction guide and identified the sample.

第2図及び第3図は倍率20000倍の電子顕微鏡写真
であり、各図中囚は出発原料とする珪酸カルシウム結晶
及び(5)は非晶質シリカ−次粒子を表わす。
FIGS. 2 and 3 are electron micrographs at a magnification of 20,000 times, and in each figure, the cap represents the calcium silicate crystal used as the starting material, and (5) represents the amorphous silica secondary particles.

参考例1 石灰原料として生石灰及び珪酸原料として350メツシ
ュ全通の珪石粉を用いる。之等を石灰と珪酸との℃ル比
が0.98:lとなる割合で水に分散させ、水対固形分
比(重量)を+2: Iとして原料スラリーを調製する
。該原料スラリーをオートクレーブに装入し191°C
に加熱し+2#/−の飽和水蒸気圧下で8時間攪拌しな
がら水熱反応させてソーノドライト結晶のスラリーを得
る。
Reference Example 1 Quicklime is used as a lime raw material and 350 mesh silica powder is used as a silicic acid raw material. A raw material slurry is prepared by dispersing these in water at a ratio of lime to silicic acid of 0.98:l, and setting the water to solids ratio (weight) to +2:l. The raw material slurry was charged into an autoclave and heated to 191°C.
A slurry of thonodolite crystals is obtained by heating the mixture to a temperature of +2#/- and carrying out a hydrothermal reaction with stirring for 8 hours under a saturated steam pressure of +2#/-.

得られた結晶のX線回折図はffjI図囚の通りであり
、+2.7 .27.6°及び29.0 に9−ノi・
ライト結晶特有の回折じ−り(20)を示す。その強熱
後の組成は次の通りである。
The X-ray diffraction pattern of the obtained crystal is as shown in the ffjI diagram, and is +2.7. 9-noi at 27.6° and 29.0
It shows the diffraction shear (20) peculiar to light crystals. Its composition after ignition is as follows.

Sr 02    48.88% C’O45,60 Δ1203     00−2 6p  OO−54 3 1グ、  1oss       今、5199.79 次いで上記スラリーを150 ’Cで乾燥後粉砕して二
次粒子を一次粒子に分割し、白色微粉末を得る。その電
子顕微鏡写真は第2図囚に示さする。
Sr 02 48.88% C'O45,60 Δ1203 00-2 6p OO-54 3 1g, 1oss Now, 5199.79 Next, the above slurry is dried at 150'C and then ground to separate the secondary particles into primary particles. A fine white powder is obtained. The electron micrograph is shown in Figure 2.

読図より上記−次粒子は短冊状の外形をもち、長さ約1
〜20μm1厚さ約0.02〜1.0μm及び巾約0.
02〜1.Otimの大きさを有し、長さが厚ざの少な
くとも約10倍であることがわかる。
From the diagram, the above-mentioned secondary particle has a rectangular shape and has a length of about 1
~20μm 1 thickness approximately 0.02-1.0μm and width approximately 0.
02-1. It can be seen that the length is at least about 10 times the thickness.

該−次粒子は約50イ/fの比表面積を有する。The secondary particles have a specific surface area of about 50 i/f.

参考例2 石灰原料として消石灰及び珪酸原料として350メツシ
ュ全通の珪石粉を用いる。之等を石灰と珪酸とのtル比
が0.80:Iとなる割合で水に分散妊せ、水対固形分
比(重量)を12: Iとして原料スラリーを調製する
。該原料スラリーをオートクし−プに装入し19ビCに
加熱し12m/dの飽和水蒸気圧下で5時間撹拌しなが
ら水熱反応させてトベル七ライト結晶のスラリーf−得
る0得られた結晶はX線回折の解析の結果、7.8°、
29.0°及び30.0°にトベル℃ライト結晶特有の
回折し−り(20)を示す0その強熱後の組成は次の通
りである。
Reference Example 2 Slaked lime is used as a lime raw material and 350 mesh silica powder is used as a silicic acid raw material. A raw material slurry is prepared by dispersing these in water at a ratio of lime to silicic acid of 0.80:I and setting the water to solids ratio (weight) to 12:I. The raw material slurry was charged into an auto-cup, heated to 19 BiC, and subjected to a hydrothermal reaction under saturated steam pressure of 12 m/d while stirring for 5 hours to obtain a slurry of tobel heptalite crystals. is 7.8° as a result of X-ray diffraction analysis,
The composition after ignition is as follows.

Sr 02      4 & 38%cao38.5
5 yg22030.31 p’t2o3      0.45 1g、 1oss    11.36 99.05 次いで上記スラリーk I 50 ’Cで乾燥後粉砕し
て二次粒子を一次粒子に分割し、白色微粉末を得る。七
の電子顕微鏡写真は第3図囚に示される。
Sr 02 4 & 38%cao38.5
5 yg22030.31 p't2o3 0.45 1g, 1oss 11.36 99.05 Next, the slurry was dried with the above slurry k I 50'C and ground to separate the secondary particles into primary particles to obtain white fine powder. The electron micrograph of 7 is shown in Figure 3.

読図より上記−次粒子は板状の外形全もち、長さ約1〜
20μm1厚さ約0.02〜0.Iμm及びrlj約0
.2〜0.5μmの大きさを有し、長さが厚さの少なく
とも約10倍であることがわかる0該−次粒子は約61
nt’/9の比表面積を有する。
From the diagram, the above-mentioned secondary particles have a plate-like outer shape and a length of about 1~
20 μm 1 thickness approximately 0.02~0. Iμm and rlj approximately 0
.. The particles have a size of 2 to 0.5 μm and are found to have a length at least about 10 times the thickness.
It has a specific surface area of nt'/9.

参考例3 参考例1で得たり一ノトライト針状晶−次粒子を出発原
料とする。これを5倍重隻の水と共に密閉型圧力容器内
に装入し、室温下該谷器内に炭1設ガスを圧入し、内圧
を3kQ/dに保持して約30分間炭酸化を行ない、非
晶質シリカ−炭酸カルシウム複合−次粒子を得る。得ら
れた一次粒子のX線回折結果は第1図(5)に示す通り
であり、第1図(A) vc詔められた珪暖カルシウム
結晶特有のヒータはすべて消失しており、代りに23.
o−29,+及び36.0°に炭酸カルシウム結晶の回
折じ−ク(20)のみが現出しており、炭は化により珪
酸カルシウムが非晶質シリカと炭酸カルシウムとに転換
されたことがわかる。
Reference Example 3 The mononotrite needle-shaped particles obtained in Reference Example 1 were used as a starting material. This was charged into a closed pressure vessel along with 5 times heavier water, and 1 charcoal gas was pressurized into the vessel at room temperature, and carbonation was carried out for about 30 minutes while maintaining the internal pressure at 3 kQ/d. , obtain amorphous silica-calcium carbonate composite particles. The X-ray diffraction results of the obtained primary particles are as shown in Figure 1 (5). 23.
Only diffraction peaks (20) of calcium carbonate crystals appeared at o-29, + and 36.0°, indicating that calcium silicate was converted into amorphous silica and calcium carbonate by charcoal chemical reaction. Recognize.

次いで上記モ得た非晶質シリカー炭酸カルシウム傾合−
次粒子を6N−tiC4浴准に1分間浸漬する。炭酸カ
スの発生が認められ上記−次粒子中の炭酸カルシウムが
塩化カルシウムに転換される。
Next, the amorphous silica calcium carbonate gradient obtained above
Next, the particles are immersed in a 6N-tiC4 bath for 1 minute. Generation of carbonate scum is observed, and calcium carbonate in the secondary particles is converted to calcium chloride.

次いで上記酸処理後の一次粒子を充分に水洗し生成した
塩化カルシウムを完全に溶出させる。その後乾燥して非
晶質シリカ−次粒子を得る。
Next, the primary particles after the acid treatment are thoroughly washed with water to completely dissolve the produced calcium chloride. Thereafter, it is dried to obtain amorphous silica particles.

かくしてf得られた一次粒子の強熱脱水後の元素分析結
果は次の通りであり、これが高純度シリカからなってい
ることがわかる。
The results of elemental analysis of the primary particles thus obtained after ignited dehydration are as follows, and it can be seen that they are made of high-purity silica.

化学組成(1) SiO299,1 ”203     0−35 CaO< 0.01 (Iり、1ass    5.0) また上記−次粒子のX線回折図は第1図りに示す通りで
あり、出発原料とするり一ノトライト針状結晶に基づく
じ−ク及びこれを炭酸化後に得た複合粒子に含有される
炭酸カルシウムに基づくヒ一りはいずれも消失しており
、該−次粒子が非晶質シリカであることが確認される。
Chemical composition (1) SiO299,1''203 0-35 CaO < 0.01 (I, 1ass 5.0) The X-ray diffraction pattern of the above-mentioned -order particles is as shown in Figure 1, and the starting material and Both the calcium carbonate-based calcium carbonate contained in the composite particles obtained after carbonating the calcium carbonate, which is based on the needle-like crystals of suriichi notolite, have disappeared, and the secondary particles are composed of amorphous silica. It is confirmed that

上記非晶質シリカ−次粒子の電子顕微鏡写真は第2図の
)に示す通りである。成因よりこれは同図(2)と全く
同様に短冊状の外形をもつ結晶様外観を呈することが認
められる。その大きさは長さ約1〜20 ttms厚さ
約0.02〜O0I ttm及びriJ約0.02〜1
.0μmであり、長さが厚さの10倍以上であり、酸処
理によっても該針状晶様外観は全く損なわれないことが
わかる0 参考例今 参考例2で得たトベル七うイト板状結晶−次粒子を出発
原料とする。これを5倍重量、の水と共に密閉型圧力容
器内に装入し、室温下該容器内に炭酸ガスを圧入し、内
圧を3 kQ/Cdに保持して約30分間炭酸化を行な
い非晶質シリカ−炭酸カルシウム複合−次粒子を得る。
An electron micrograph of the above-mentioned amorphous silica primary particles is shown in Fig. 2). Due to its origin, it is recognized that it exhibits a crystal-like appearance with a rectangular outer shape, exactly the same as that shown in Figure (2). Its size is about 1 to 20 ttms in length, about 0.02 to O0I ttm and 0.02 to 1 in riJ in thickness.
.. 0 μm, the length is more than 10 times the thickness, and it can be seen that the needle-like appearance is not impaired at all even by acid treatment. The starting material is crystalline particles. This was placed in a closed pressure vessel together with 5 times its weight of water, carbon dioxide gas was pressurized into the vessel at room temperature, and the internal pressure was maintained at 3 kQ/Cd to carry out carbonation for about 30 minutes to form an amorphous material. Obtain fine silica-calcium carbonate composite particles.

そのX線回折の解析結果は第1図(B)と同様であり、
炭酸化により原料である珪酸カルシウムが非晶質シ1」
力と炭酸カルシウムとに転換されたことが確認される。
The X-ray diffraction analysis results are the same as in Figure 1 (B),
Carbonation causes the raw material calcium silicate to become amorphous.
It is confirmed that the carbon dioxide has been converted into energy and calcium carbonate.

次いで上記で得だ非晶質シリカ−炭酸カルシウム複合−
次粒子を6N−HC1溶液に1分間浸漬する。炭酸カス
の発生が認められ上記−次粒子中の炭酸カルシウムが塩
化カルシウムに転換される。
Next, the amorphous silica obtained above - calcium carbonate composite -
The next particle is immersed in 6N-HC1 solution for 1 minute. Generation of carbonate scum is observed, and calcium carbonate in the secondary particles is converted to calcium chloride.

次いで上記酸処理後の一次粒子を充分に水洗し生成した
塩化カルシウムを完全に溶出させる。その後乾燥して非
晶質シリカ−次粒子を得る。
Next, the primary particles after the acid treatment are thoroughly washed with water to completely dissolve the produced calcium chloride. Thereafter, it is dried to obtain amorphous silica particles.

か′<シて得られた一次粒子の強熱乾燥後の元素分析結
果は次の通りであり、これ力;高純度シ1ツカからなっ
ていることがわかる。
The results of elemental analysis of the primary particles obtained after ignited drying are as follows, and it can be seen that they are composed of highly pure particles.

化学組成(イ) St O299・3 1ot2030.23 Coo     <0.01 (7f、losg     4.7 )また上記−次粒
子のX線回折図は第1図0に示したと同様に出発原料と
するトベル七ライトの板状結晶に基づくし−り及びこれ
を炭酸化後に得た複合粒子に含有される巌酸カルシウム
に基づくピークはいずれも消失しており、該−次粒子が
非晶質のシリカであることが確認される。
Chemical composition (a) St O299.3 1ot2030.23 Coo <0.01 (7f, loss 4.7) Also, the X-ray diffraction diagram of the above-mentioned -order particles is the same as that shown in Figure 10, using Tobel as the starting material. The peaks based on the plate-like crystals of heptadite and the peaks based on calcium sulfate contained in the composite particles obtained after carbonation have all disappeared, indicating that the secondary particles are amorphous silica. It is confirmed that there is.

上記非晶質シリカ−次粒子の電子顕微鏡写真は第3図(
6)に示す通りである。原図よシこれは同図(4)と全
く同様に板状の外形をもつ結晶様外観を呈することが認
められる。その大きさは長さ約1〜20μm1厚さ約0
.02〜0.1μm及び巾約0゜2〜5.0μmであシ
、長さが厚さの10倍以上であシ、酸処理によっても該
結晶様外観は全く損なわれないことがわかる。
An electron micrograph of the above amorphous silica particles is shown in Figure 3 (
6). From the original drawing, it can be seen that this has a crystal-like appearance with a plate-like outer shape, just like that shown in Fig. 4 (4). Its size is approximately 1 to 20 μm in length and approximately 0 in thickness.
.. It can be seen that the crystal-like appearance is not impaired at all even by acid treatment.

実施例 参考例3で得た非晶質シリカ−次粒子を水対固形分重量
比5/1で水に分散させて本発明スラリーを得た。
EXAMPLE A slurry of the present invention was obtained by dispersing the amorphous silica secondary particles obtained in Reference Example 3 in water at a water to solid content weight ratio of 5/1.

これを型に入れ成形圧を変え脱水成形後乾燥して3種の
成形体を得た。得られた成形体の物性を下記第1表に示
す。
This was placed in a mold, the molding pressure was changed, dehydration molded, and then dried to obtain three types of molded products. The physical properties of the obtained molded product are shown in Table 1 below.

第  1  表 実施例2 参考例4で得た非晶質シリカ−次粒子を水対固形分重量
比5/1で水に分散させて本発明水性スラリーを得た。
Table 1 Example 2 The amorphous silica secondary particles obtained in Reference Example 4 were dispersed in water at a water to solid weight ratio of 5/1 to obtain an aqueous slurry of the present invention.

これを型に入れ成形圧を変え脱水成形後乾燥して2種の
成形体を得た。得られた成形体の物性を下記第2表に示
す。
This was placed in a mold, the molding pressure was changed, dehydration molded, and then dried to obtain two types of molded products. The physical properties of the obtained molded product are shown in Table 2 below.

第  2  表Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図(4)〜Ωは夫々ソーノドライト結晶、該結晶を
炭酸化処理して得られる非晶質シリカ−炭酸カルシウム
複合粒子、及び該複合粒子から得られる非晶質シリカ−
次粒子のX線回折図である。゛第2図及び第3図は倍率
20000倍の電子顕微鏡写真であシ、各図中囚は出発
原料とする珪酸カルシウム結晶、及び(6)は該結晶か
らの非晶質シリカ−次粒子を表わす。 (以 上) 第1図 →口yr角(20) 第2図  ・ 第3図   、
Figure 1 (4) to Ω are respectively a sonodorite crystal, an amorphous silica-calcium carbonate composite particle obtained by carbonating the crystal, and an amorphous silica carbonate obtained from the composite particle.
It is an X-ray diffraction diagram of the next particle.゛Figures 2 and 3 are electron micrographs at a magnification of 20,000 times. In each figure, the cap is the calcium silicate crystal used as the starting material, and (6) is the amorphous silica secondary particle from the crystal. represent (Above) Figure 1 → Mouth angle (20) Figure 2 and Figure 3,

Claims (1)

【特許請求の範囲】[Claims] rb  u酸カルシウム結晶の晶癖を有し、約1〜50
0μmの長さおよび約50A〜約1μmの厚さを有し、
長さが厚さの少なくとも10倍である外観結晶様非晶質
シリカ−次粒子を水に分散させてなる成形能を有する非
晶質シリカ水性スラリー。
It has a crystal habit of calcium urate crystals, and has a crystal habit of about 1 to 50
having a length of 0 μm and a thickness of about 50A to about 1 μm;
1. An aqueous slurry of amorphous silica having formability, comprising secondary particles of crystal-like amorphous silica having a length at least 10 times the thickness and dispersed in water.
JP971384A 1984-01-23 1984-01-23 Aqueous slurry of amorphous silica Granted JPS59141415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP971384A JPS59141415A (en) 1984-01-23 1984-01-23 Aqueous slurry of amorphous silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP971384A JPS59141415A (en) 1984-01-23 1984-01-23 Aqueous slurry of amorphous silica

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4408576A Division JPS52126695A (en) 1976-04-16 1976-04-16 Crystatallic appearance amorphus silica and method of producing same

Publications (2)

Publication Number Publication Date
JPS59141415A true JPS59141415A (en) 1984-08-14
JPS6341850B2 JPS6341850B2 (en) 1988-08-19

Family

ID=11727894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP971384A Granted JPS59141415A (en) 1984-01-23 1984-01-23 Aqueous slurry of amorphous silica

Country Status (1)

Country Link
JP (1) JPS59141415A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022883A (en) * 2005-07-20 2007-02-01 Clion Co Ltd Inorganic formed body provided with anti-bacterial/anti-fungal deodorizing function, and method of manufacturing the same
JP2007022884A (en) * 2005-07-20 2007-02-01 Clion Co Ltd Inorganic formed body provided with anti-bacterial/anti-fungal deodorizing function, and method of manufacturing the same

Also Published As

Publication number Publication date
JPS6341850B2 (en) 1988-08-19

Similar Documents

Publication Publication Date Title
Murat Hydration reaction and hardening of calcined clays and related minerals.: II. Influence of mineralogical properties of the raw-kaolinite on the reactivity of metakaolinite
US3679446A (en) Molding materials of calcium silicate hydrate and shaped products thereof
Javed et al. Microstructural investigation of lithium slag geopolymer pastes containing silica fume and fly ash as additive chemical modifiers
BR112013031341B1 (en) method of manufacturing a composite material
Handayani et al. Synthesis of sodium silicate from rice husk ash as an activator to produce epoxy-geopolymer cement
CN108584969B (en) Preparation method of hydrated calcium silicate nanosheet
JPH0881217A (en) Solidification of caco3
CN107162010B (en) The hydrated calcium silicate for synthesizing the method for hydrated calcium silicate and being synthesized by this method
Abadel et al. Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer
Fan et al. Synthesis and microstructure analysis of autoclaved aerated concrete with carbide slag addition
Smalakys et al. Peculiarities of xonotlite synthesis from the raw materials with different SiO 2 activities
FI61025C (en) SILICATE POLYMER MATERIAL VELVET FOER FARANDE FOER TILLVERKNING AV DETSAMMA
EP0236498A1 (en) Silica molding
Oyun-Erdene et al. Effect of mechanical activation of fluidized bed fly ash on geopolymer properties
JPS59141415A (en) Aqueous slurry of amorphous silica
US5370852A (en) Primary particles of amorphous silica composite material, secondary particles of amorphous silica composite material, shaped bodies thereof and processes for their preparation
CN106379926B (en) A kind of method for preparing nanometer calcium sulfate
JPS59141414A (en) Formed amorphous silica
EP0445301B1 (en) Composite primary particle of noncrystalline silica, composite secondary particle of noncrystalline silica, shaped form thereof and production thereof
JPS5964563A (en) Manufacture of lightweight formed body
JP4426752B2 (en) Method for producing calcium silicate hydrate
JPS60155561A (en) Aqueous slurry
Tang et al. Study on the microscopic characteristics and hydration mechanism of thermo-alkali activated electrolytic manganese residue geopolymers
JP2519666B2 (en) Method for producing kaolin clay
JPS6035318B2 (en) Silica-calcium carbonate composite molded body