JPS59141208A - Structure of core for electric apparatus - Google Patents

Structure of core for electric apparatus

Info

Publication number
JPS59141208A
JPS59141208A JP58016704A JP1670483A JPS59141208A JP S59141208 A JPS59141208 A JP S59141208A JP 58016704 A JP58016704 A JP 58016704A JP 1670483 A JP1670483 A JP 1670483A JP S59141208 A JPS59141208 A JP S59141208A
Authority
JP
Japan
Prior art keywords
magnetic
core
magnetic flux
flux density
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58016704A
Other languages
Japanese (ja)
Inventor
Takayoshi Nakada
高義 中田
Yorihiro Kawase
順洋 河瀬
Koji Fujiwara
耕二 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58016704A priority Critical patent/JPS59141208A/en
Publication of JPS59141208A publication Critical patent/JPS59141208A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE:To prevent the titled device from local generation of magnetic saturation, and moreover to improve distortion of the magnetic flux density waveform by a method wherein an inserting material having different magnetic characteristics from a magnetic substance is provided in the magnetic path of the core consisting of the magnetic substance having nonlinearly magnetic characteristics, and size of the inserting material thereof is so decided as to make magnetic flux densities at the respective parts of the core to become to nearly the sine waves respectively. CONSTITUTION:When the titled core is to be applied to a single-phase transformmer, a gap is provided in series to the magnetic path of the core consisting of a silicon steel sheet having the directional propery. The gap thereof can be easily decided according to numerical analysis of the finite element method, etc. The inserting material at this case is air. By providing the gap in such a way, the magnetic flux density waveforms of the respective parts become to the waveforms close to the sine wave as shown in the figure. It is not necessary to limit the inserting material thereof to air, and any material having the different magnetic characteristic from the core is favorable. The core thereof can be applied to a multiphase transformer, etc.

Description

【発明の詳細な説明】 本願発明は電気機器鉄心の構造に関するものである。[Detailed description of the invention] The present invention relates to the structure of an electrical equipment core.

従来のように、電気鉄板をAB縁線上、単につき合わせ
て作った第1図のような鉄心構造(〃のみを示す)では
、鉄心の窓側CADと外側EBFでは磁路長が異なるた
め2図示のa −f部の磁束密度波形は第2図のような
波高値の異なるひずみ波となる。すなわち、各部の磁束
密度波形は高調波成分を含み、しかも窓側の磁束密度が
外側のそ(1) れより大きくなる。従って、均一に正弦波磁束で磁化さ
れた場合に比べ、かなり鉄損が増加する。
In the conventional iron core structure as shown in Fig. 1 (only 〃 is shown), which is made by simply butting electric iron plates on the AB edge line, the magnetic path length is different between the window side CAD and the outer EBF of the iron core, so two figures are shown. The magnetic flux density waveform in the a-f section becomes a distorted wave with different peak values as shown in FIG. That is, the magnetic flux density waveform of each part includes harmonic components, and the magnetic flux density on the window side is larger than that on the outside (1). Therefore, compared to the case where the magnet is uniformly magnetized with a sinusoidal magnetic flux, the iron loss increases considerably.

そこで9本願発明では、鉄心を構成する磁性体とは磁気
特性の異なる物質を磁路中に挿入することにより局部的
な磁気飽和の発生を防ぎ、かつ磁束密度波形のひずみを
改善することを目的とする。
Therefore, the present invention aims to prevent the occurrence of local magnetic saturation and improve the distortion of the magnetic flux density waveform by inserting a material in the magnetic path that has different magnetic properties from the magnetic material constituting the iron core. shall be.

近年、有限要素法等の数値解析技術の発達と電子計算機
の発達により、磁気特性の非線形性を考慮した磁界の数
値解析が容易に行われ、その解析結果も信頼がおけるも
のになった。そこで、有限要素法による数値解析を応用
して、鉄心と磁気特性が異なる前記挿入物質の寸法を定
める。すなわち、従来の有限要素法では、ポテンシャル
を未知数としているが2本願発明で用いる解析では所定
の条件、たとえば磁束密度等を設定し、挿入物質の寸法
も未知数として解析してポテンシャル及び寸法を求める
In recent years, with the development of numerical analysis techniques such as the finite element method and the development of electronic computers, numerical analysis of magnetic fields that takes into account the nonlinearity of magnetic properties has become easier, and the analysis results have become reliable. Therefore, numerical analysis using the finite element method is applied to determine the dimensions of the inserted material whose magnetic properties are different from those of the iron core. That is, in the conventional finite element method, the potential is taken as an unknown quantity, but in the analysis used in the present invention, predetermined conditions, such as magnetic flux density, etc. are set, and the dimensions of the inserted material are also analyzed as an unknown quantity to determine the potential and dimensions.

ここで、好ましい実施例として単相変圧器鉄心への適用
例を示す。この場合は方向性けい素鋼板からなる鉄心の
磁路と直列に第3図に示すような(2) 空隙を設ける。この空隙は、有限要素法等の数値解析に
よって容易に求められる。この場合の挿入物質は空気で
ある。磁束最大時の磁束分布を第4図に、各部の磁束密
度波形を第5図に示す。このように、空隙を設けること
により、各部の磁束密度波形は正弦波に近い波形になる
Here, as a preferred embodiment, an example of application to a single-phase transformer core will be shown. In this case, an air gap (2) as shown in Figure 3 is provided in series with the magnetic path of the iron core made of grain-oriented silicon steel plates. This void can be easily determined by numerical analysis such as the finite element method. The intercalating material in this case is air. FIG. 4 shows the magnetic flux distribution when the magnetic flux is at its maximum, and FIG. 5 shows the magnetic flux density waveforms at various parts. By providing the air gap in this way, the magnetic flux density waveform of each part becomes a waveform close to a sine wave.

なお、この挿入物質は空気である必要はなく。Note that this inserted substance does not need to be air.

鉄心と磁気特性が異なるものであればよい。It is sufficient if the magnetic properties are different from those of the iron core.

また、単相変圧器で説明したが、もちろん多相変圧器な
どにも適用できる。
Further, although the description has been made using a single-phase transformer, it can of course be applied to multi-phase transformers, etc.

以上2本願発明は、電気機器の鉄心に、その鉄心と磁気
特性の異なるものを設けることにより。
The above two aspects of the present invention are achieved by providing an iron core of an electric device with a core having magnetic properties different from those of the iron core.

鉄心各部の磁束密度の大きさや波形のひずみを調整し、
鉄損を最少にする。
Adjust the magnitude of magnetic flux density and waveform distortion in each part of the iron core,
Minimize iron loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の鉄心構造、第2図は、第1図に示す各部
分の矢印方向の磁束密度波形、第3図は本願発明の実施
例の鉄心構造、第4図は第3図に示す構造の鉄心の各部
の磁束分布、第5図は第3図に示す各部分の矢印方向の
磁束密度波形をそれ(3) ぞれ示す。 (4) 第3図       第4図 手続補正書(方式) %式% 1、事件の表示 昭和58年特許願第16704号2、
発明の名称 電気機器鉄心構造 3、補正をする者 事件との関係  特許出願人 住所(居所)  岡山県岡山市広谷680−994、補
正命令の日付 昭和58年5月11日5、補正の対象 
図面
Fig. 1 shows the conventional iron core structure, Fig. 2 shows the magnetic flux density waveform in the direction of the arrow at each part shown in Fig. 1, Fig. 3 shows the iron core structure of the embodiment of the present invention, and Fig. 4 shows the structure shown in Fig. 3. FIG. 5 shows the magnetic flux density waveform in the direction of the arrow in each part shown in FIG. 3 (3). (4) Figure 3 Figure 4 Procedural amendment (method) % formula % 1. Indication of case Patent Application No. 16704 of 1988 2.
Title of the invention Electrical equipment core structure 3, Relationship to the case of the person making the amendment Patent applicant address (residence) 680-994 Hiroya, Okayama City, Okayama Prefecture, Date of amendment order May 11, 1980 5, Subject of amendment
drawing

Claims (1)

【特許請求の範囲】[Claims] (1)非線形の磁気特性を有する磁性体からなる電気機
器鉄心の磁路中に、前記磁性体と磁気特性の異なる挿入
物質を設け、その際その挿入物質の寸法を、鉄心の各部
の磁束密度がそれぞれ時間的に略正弦波になるように数
値解析によって定めたことを特徴とした鉄心構造。
(1) An inserted material having different magnetic properties from the magnetic material is provided in the magnetic path of an electrical equipment core made of a magnetic material having nonlinear magnetic properties, and the dimensions of the inserted material are determined by the magnetic flux density of each part of the core. An iron core structure characterized by having been determined by numerical analysis so that each time becomes a substantially sinusoidal wave.
JP58016704A 1983-02-02 1983-02-02 Structure of core for electric apparatus Pending JPS59141208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58016704A JPS59141208A (en) 1983-02-02 1983-02-02 Structure of core for electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58016704A JPS59141208A (en) 1983-02-02 1983-02-02 Structure of core for electric apparatus

Publications (1)

Publication Number Publication Date
JPS59141208A true JPS59141208A (en) 1984-08-13

Family

ID=11923662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58016704A Pending JPS59141208A (en) 1983-02-02 1983-02-02 Structure of core for electric apparatus

Country Status (1)

Country Link
JP (1) JPS59141208A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108981A (en) * 2009-11-20 2011-06-02 Denso Corp Reactor
JP2011210964A (en) * 2010-03-30 2011-10-20 Toyota Motor Corp Reactor
JP2022072541A (en) * 2020-10-30 2022-05-17 Jfeスチール株式会社 Method for analyzing electromagnetic field of iron core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54728A (en) * 1977-05-21 1979-01-06 Blum Eisen & Metallind Laminated core for transformer and choke coil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54728A (en) * 1977-05-21 1979-01-06 Blum Eisen & Metallind Laminated core for transformer and choke coil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108981A (en) * 2009-11-20 2011-06-02 Denso Corp Reactor
JP2011210964A (en) * 2010-03-30 2011-10-20 Toyota Motor Corp Reactor
JP2022072541A (en) * 2020-10-30 2022-05-17 Jfeスチール株式会社 Method for analyzing electromagnetic field of iron core

Similar Documents

Publication Publication Date Title
Soda et al. Improvement of T-joint part constructions in three-phase transformer cores by using direct loss analysis with E&S model
Fiorillo et al. Power losses under sinusoidal, trapezoidal and distorted induction waveform
Furlani Computing the field in permanent-magnet axial-field motors
Najafi et al. Comparison of core loss and magnetic flux distribution in amorphous and silicon steel core transformers
Alatawneh et al. Accuracy of time domain extension formulae of core losses in non‐oriented electrical steel laminations under non‐sinusoidal excitation
JPS59141208A (en) Structure of core for electric apparatus
Palmer et al. Pipe-type cable ampacities in the presence of harmonics
Boglietti et al. Loss separation analysis in ferromagnetic sheets under PWM inverter supply
Davoudi et al. Reduced-order modeling of high-fidelity magnetic equivalent circuits
Ilo et al. Influence of geometric parameters on the magnetic properties of model transformer cores
Chen et al. Analysis and experiment of transformer vibration and noise considering electrical steel sheet magnetostriction
Hamzehbahmani et al. Application of an advanced eddy‐current loss modelling to magnetic properties of electrical steel laminations in a wide range of measurements
Qin et al. Compatibility analysis among vector magnetic circuit theory, electrical circuit theory and electromagnetic field theory
Biringer et al. Recent advances in the design of large magnetic frequency changers
Hein et al. Comparative core loss calculation methods for magnetic materials under harmonics effect
Emanuel The effect of nonsinusoidal excitation on eddy current losses in saturated iron
Rao Losses in ferromagnetic laminations due to saturation
Bowden et al. Analytic separation of the factors contributing to the eddy-current loss in magnetically nonlinear steel
Takeuchi et al. 3-D nonlinear transient electromagnetic analysis of short circuit electromagnetic forces in a three-phase enclosure-type gas insulated bus
Wang et al. Fourier‐based effective permeability for transformer iron losses computation under saturation
VanderHeiden et al. Nonlinear transient finite element modeling of a capacitor-discharge magnetizing fixture
Young Pulse shielding by nonferrous and ferromagnetic materials
Kaihara et al. Effect of Carrier Frequency and Circuit Resistance on Iron Loss of Non‐Oriented Electrical Steel Sheet under Single‐Phase Full‐Bridge PWM Inverter Excitation
Nakahata et al. 3-D finite element analysis of electromagnets with permanent magnet taking into account magnetizing process
Birouche et al. Accurate asymmetrical minor loops modeling with the modified arctangent hysteresis model