JPS59140697A - Semiconductor detecting circuit - Google Patents

Semiconductor detecting circuit

Info

Publication number
JPS59140697A
JPS59140697A JP58014880A JP1488083A JPS59140697A JP S59140697 A JPS59140697 A JP S59140697A JP 58014880 A JP58014880 A JP 58014880A JP 1488083 A JP1488083 A JP 1488083A JP S59140697 A JPS59140697 A JP S59140697A
Authority
JP
Japan
Prior art keywords
potential
vdd
vtp
circuit
mos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58014880A
Other languages
Japanese (ja)
Inventor
Hiroshi Kadota
廉田 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58014880A priority Critical patent/JPS59140697A/en
Publication of JPS59140697A publication Critical patent/JPS59140697A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards

Landscapes

  • Read Only Memory (AREA)

Abstract

PURPOSE:To obtain a semiconductor detecting circuit which has a high-speed operation and low power consumption with a simple constitution by using a diode structure connecting the gate and the drain of an MOS transistor(TR) as a constant voltage source connected with the source of the MOS transistor for initialization. CONSTITUTION:The reset pulse is impressed to a terminal 6 to reset the potential of a bit line 1. Here the potential is set at VDD-VTP for the line 1 to be reset if the mutual conductance of TRp7 is set at sufficiently large value. While the gate-source voltage difference is kept off by the threshold voltage of the TRp7 in a reset mode as long as the threshold voltage of a TRp2 is set equal to the TRp7. If the mutual conductance ratio of a CMOS reverse amplifying circuit is set large with p channel and small with n channel respectively, the identification potential VR of the reverse amplifying circuit approximates to VDD-VTP. Here if VR=(VDD-VTP)-DELTAV(DELTAV: microvoltage) is satisfied, the read-out time is set as tauRD=C1 or V/Inl. Thus the read-out time tauRD is reduced compared with the conventional value. Here VTP is the threshold voltage of the TRp7 and Inl is the ON current of n1.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体構出回路(以下LSIという)。[Detailed description of the invention] Industrial applications The present invention is a semiconductor structured circuit (hereinafter referred to as LSI).

特に高密度のメモリの検出増幅器に関するものである。It particularly relates to high density memory sense amplifiers.

従来例の構成とその問題点 LSIメモリでは所謂アクセス時間(入力アドレス信号
が印加されてからメモリの内容が読み出されるまでの時
間)を短かくするために従来から各種の工夫がなされて
きた。特にアクセスされたメモリセル内に記憶されてい
る内容によって変化するビット線の電位変化を検出回路
で識別するまでの時間所謂読み出し時間τRDt”短か
くすることが重要である。
Conventional Structures and Problems Various efforts have been made to shorten the so-called access time (the time from when an input address signal is applied until the contents of the memory are read) in LSI memories. In particular, it is important to shorten the so-called read time τRDt'', which is the time required for the detection circuit to identify a change in the potential of the bit line, which changes depending on the contents stored in the accessed memory cell.

第1図は検出回路としてもっとも単純なcmosの反転
回路を使ったものの例を示している。図中n、+ n2
+ n51n4はNチャネルm08)ランジスタ・pl
・p2UPチャネルMO8)ランジスタを各々示してい
る。n + * n 2 I n sは各々メモリセル
内のトランジスタを表わしている。n4. p、、で反
転増幅器を栴成し、入力端、即ちビット線1の電位変化
を検出し反転して出力端5に出力する。
FIG. 1 shows an example of a detection circuit using the simplest CMOS inversion circuit. n in the figure, + n2
+ n51n4 is N channel m08) transistor pl
- p2UP channel MO8) transistors are shown. Each n + * n 2 I n s represents a transistor within a memory cell. n4. An inverting amplifier is formed at the terminals p, .

p、はビット線1の初期電位設定用の回路素子である。p is a circuit element for setting the initial potential of the bit line 1.

一般に、ビット線1は長くしかも多くの素子が接続され
ているので等測的に大きな浮遊容量C1がアースに対し
て設置されていると考えられる。この回路の動作を次に
説明する。まずアクセス動作が開始される直前にビット
線1の電位(i71Jセツトする。この例では電源電易
(端子7の電位)まであげるために端子6に第2図のよ
うなパルスを印加しトランジスタp、ionとする。瞬
間的に電源から直流が流れ込み、等価容量c1が充電さ
れる。
In general, since the bit line 1 is long and has many elements connected to it, it is considered that an isometrically large stray capacitance C1 is connected to the ground. The operation of this circuit will be explained next. First, immediately before the access operation starts, the potential of bit line 1 (i71J is set). In this example, in order to raise the power supply voltage to the level (potential of terminal 7), a pulse as shown in Fig. 2 is applied to terminal 6, and transistor p , ion.Direct current flows momentarily from the power supply, and the equivalent capacitance c1 is charged.

次に充電終了後トランジスタp+ k再びOFFにし、
ワード線2〜4のいずれかを高電位にしてアクセスを開
始する。この例では第2図のようにワード線2をアクセ
スする。これによってnlがONになりC1の放電が始
ってビット線1の電位が下がる。尚、ワード線2〜4を
アクセスしてもトランジスタがないときはビット線1の
電位は低下しない。t・ランジスjtn、の大きさは集
積#全向上させるために、一般に極めて小さいのでnl
のON抵抗も大きく、ビット線1の電位はゆっくりとし
か低下しない。一方、検出回路はP2 、 n4の相互
コンダクタンスの比できまる識別電位vRを持っており
、入力電位がVR未満のとき出力電位は高電位(即ち「
1」)、vRより高い場合出力電位は低電位(即ち「0
」)と認識する。今の場合n4の相互コンタクタンスを
相対的に小さくし、p2の相互コンダクタンス全人きく
するトvRは高くなる。但し原理的にvRは次式できす
る上限値をもつ。
Next, after charging is completed, transistor p+k is turned off again.
Access is started by setting one of word lines 2 to 4 to a high potential. In this example, word line 2 is accessed as shown in FIG. As a result, nl is turned on, C1 starts discharging, and the potential of bit line 1 decreases. Note that even if the word lines 2 to 4 are accessed, the potential of the bit line 1 does not drop if there is no transistor. In order to improve the total integration, the size of t Rungis jtn is generally extremely small, so nl
The ON resistance of bit line 1 is also large, and the potential of bit line 1 decreases only slowly. On the other hand, the detection circuit has a discrimination potential vR determined by the ratio of the mutual conductances of P2 and n4, and when the input potential is less than VR, the output potential is a high potential (i.e. "
1”), the output potential is a low potential (i.e. “0
”). In this case, by making the mutual conductance of n4 relatively small and increasing the mutual conductance of p2, vR becomes high. However, in principle, vR has an upper limit that can be expressed by the following formula.

vR<vDD  ’TQ2)  ”HHH’−++++
++   (1)但しvDDは電源の電位、vT P(
2)はトランジスタp2 の閾値電圧である。
vR<vDD 'TQ2) "HHH'-++++
++ (1) However, vDD is the potential of the power supply, vT P (
2) is the threshold voltage of transistor p2.

ビット線1の電位変化と出力端6の電位変化を第2図に
示す。同図において、B、はビット線1の電位、B2は
トラン7スタn1のゲート電圧。
FIG. 2 shows changes in the potential of the bit line 1 and changes in the potential of the output terminal 6. In the figure, B is the potential of bit line 1, and B2 is the gate voltage of transistor n1.

B5は出力端5の電位、86はトランジスタp、のゲー
ト電圧である。この場合の読み出し時間τ肋はビット線
の電位変化が直線近似されるので5次式で表視される。
B5 is the potential of the output terminal 5, and 86 is the gate voltage of the transistor p. In this case, the read time τ is expressed by a quintic equation because the bit line potential change is approximated by a straight line.

”RD = C+  (vDD−vR) / I、、 
 −−(2)但し、■。、Fi)コンタクタn、のON
電流である。
”RD = C+ (vDD-vR) / I,,
--(2) However, ■. , Fi) ON of contactor n,
It is an electric current.

この検出回路は、非常に簡単な構成でかつ識別動作が完
了した時点(ピッよ線1の電位がアース電位付近になっ
た時点)では直流電流路がないので低消費電力のメモI
J i作るのに有効であるが、前述のアクセス時間のう
ちで大きい部分を占める時間τRDが次式(3)のよう
に小さくならないために。
This detection circuit has a very simple configuration and has low power consumption because there is no direct current path when the identification operation is completed (when the potential of the pick wire 1 becomes near the ground potential).
This is effective for creating J i, but the time τRD, which occupies a large portion of the above-mentioned access time, does not become small as shown in the following equation (3).

高速のLSIメモリではほとんど使用されない。It is rarely used in high-speed LSI memories.

τRD>C1(vDD−vRmax)/In1−C7v
、P/In1・・・・・・・・・・・・  幅) 高速のLSIメモリの検出回路は回路の単純さや消費電
力、を慢性にして第3図のような回路を採用している。
τRD>C1(vDD-vRmax)/In1-C7v
, P/In1 (width)) The detection circuit of a high-speed LSI memory employs a circuit as shown in Fig. 3, taking into consideration the simplicity and power consumption of the circuit.

この回路の動作を簡単に説明するとトランジスタn5・
”6* p5* P4+ p5で差動増幅益金構成して
おり、入力端となるビット線1と基準入力端9の各々の
電位v、NとvREFの関係からVl、>VRE、ノト
キVout低電位v1N<vREFノとき v。ut高
電位となる。
To briefly explain the operation of this circuit, transistor n5.
6*p5*P4+ p5 constitutes a differential amplification gain, and from the relationship between the potentials v and N of the bit line 1 and reference input terminal 9, which are input terminals, and vREF, Vl,>VRE, and Vout low potential. When v1N<vREF, v.ut becomes high potential.

但し、Voutは出力端8の電位である。However, Vout is the potential of the output terminal 8.

次に、トランジスタ”6 ” 6は信号の直流電位ノシ
フト回路テアリ1通常voutFi、V3vDD−vD
Dの範囲であるのでこれを全体的に低電位側ヘシフトし
て次段のトランジスタ”4 ’ ”2で構成される反転
増幅回路の識別電位vRに対して適切な電位範囲で変化
するように整合させる。例えば%VDDl vOut 
l Vl)p VR; 17% VDD の場合、端子10の電位v(、。)は ’/’a VDD Z V6o) Z % VDnのよ
うにとる。
Next, the transistor "6" 6 is a signal DC potential shift circuit 1 normal voutFi, V3vDD-vD
Since it is in the range of D, this is shifted to the lower potential side as a whole and matched so that it changes in an appropriate potential range with respect to the identification potential vR of the inverting amplifier circuit composed of the next stage transistor "4" 2. let For example, %VDDl vOut
l Vl)p VR; In the case of 17% VDD, the potential v(,.) of the terminal 10 is taken as '/'a VDD Z V6o) Z % VDn.

この回路構成では、vREFfI:vDDより少し低電
位にとっておくと出力端6の最終検出出力v5は速く応
答するので、前述の読み出し時間τRDが大幅に短縮で
きる。しかし1回路構成はトランジスタ数で約4倍と複
雑なものになり、識別動作完了後も直流電流路があるた
めに電流が流れ、消費電力が増大する。
In this circuit configuration, the final detection output v5 of the output terminal 6 responds quickly when the potential is set slightly lower than vREFfI:vDD, so that the above-mentioned readout time τRD can be significantly shortened. However, one circuit configuration is complicated with about four times the number of transistors, and since there is a DC current path even after the identification operation is completed, current flows, increasing power consumption.

発明の目的 本発明は前述のような従来の問題を解決し、簡単な回路
構成でかつ高速、低消費電力の半導体検出回路を提供す
るものである。
OBJECTS OF THE INVENTION The present invention solves the conventional problems as described above, and provides a semiconductor detection circuit with a simple circuit configuration, high speed, and low power consumption.

発明の構成 本発明では、初期設定用のMOS)ランジスタのソース
を直接電源に接続せず、反転増巾回路の識別電位に近い
電位を発生する定電圧源に接続し、定電圧源としては反
転増幅器の構成要素と同一の閾値電圧をもつMOS)ラ
ンジスタのゲートとドレインを接続したダイオード構造
を使うようにし、簡単な構成で高速の半導体検出回路を
実現しているO 実施例の説明 第4図の本発明の基本構成金示す。第1図に示した従来
の検出回路と比べMOS)ランジスタp7が追加されて
いるにすぎない。p7のゲートはドレインと共通になっ
てリセット用のMOS )ランジスタp、のソースに接
続されている。
Structure of the Invention In the present invention, the source of the MOS transistor for initial setting is not directly connected to the power supply, but is connected to a constant voltage source that generates a potential close to the discrimination potential of the inverting amplification circuit. By using a diode structure in which the gate and drain of a MOS transistor (MOS transistor) having the same threshold voltage as the amplifier components is used, a high-speed semiconductor detection circuit is realized with a simple configuration. The basic components of the present invention are shown below. Compared to the conventional detection circuit shown in FIG. 1, only a MOS transistor p7 is added. The gate and drain of p7 are connected in common to the source of a reset MOS transistor p.

この回路の動作を説明すると、第1図′の従来例と同じ
く端子6にリセットパルスが印加されてビット+1ij
+1の電位がリセットされるが1本実施例の回路ではビ
ット線1はvDDまでリセットされない。
To explain the operation of this circuit, a reset pulse is applied to the terminal 6 as in the conventional example shown in FIG.
Although the potential of +1 is reset, the bit line 1 is not reset to vDD in the circuit of this embodiment.

一般にドレインとゲートを共通にしたMOS)ランジス
タの電流、電圧特性は第5図のようになる。トランジス
タp7の相互コンダクタンスを充分大きくしておけばこ
の回路は出力電圧(vDD−vTP)の定電圧源と等価
である。但し−vTPはp3の閾値電圧である。従って
、リセットされるビット線1の電位は(vDD−TTP
)となる。−万反転増幅回路を構成する。0M08回路
のうちPチャネルのp2の閾値kp、と同一とすると、
リセット状態ではゲート・ソース間の電位差がp7の閾
値電圧のためOFF状態である。第1図の従来例と同様
にCMOS反転増幅回路の相互コンダクタンスの比をP
チャネルを大きく、Nチャネルを小さくとると反転増巾
回路の識別電位vRは(vDD  ’TP)に近くなる
。今 vR””(vDD  V7p)  IV  CIV二微
小’fl圧)−(4)とすると、読み出し時間τRDは rRD ””’  C1(vRE8ET −vR)/ 
 工n+−01((vDD−vTP)−(vDD−vT
Pl十Δvし〕。。
Generally, the current and voltage characteristics of a MOS transistor with a common drain and gate are as shown in FIG. If the mutual conductance of transistor p7 is made sufficiently large, this circuit is equivalent to a constant voltage source of the output voltage (vDD-vTP). However, -vTP is the threshold voltage of p3. Therefore, the potential of bit line 1 to be reset is (vDD-TTP
). -Construct a million-inverting amplifier circuit. Assuming that it is the same as the threshold value kp of p2 of the P channel in the 0M08 circuit,
In the reset state, the potential difference between the gate and the source is a threshold voltage of p7, so it is in the OFF state. Similar to the conventional example shown in Figure 1, the mutual conductance ratio of the CMOS inverting amplifier circuit is P
If the channel is made large and the N channel is made small, the discrimination potential vR of the inverting amplification circuit becomes close to (vDD'TP). Now, if vR"" (vDD V7p) IV CIV two minute 'fl pressure) - (4), then the readout time τRD is rRD ""' C1 (vRE8ET - vR)/
Engineering n+-01((vDD-vTP)-(vDD-vT
Pl+Δv]. .

−Q、ΔV/I。、   ・・・・・・・・・・・・ 
 ([5)但し、vRE8ET  はビット線1のリセ
ット電位でコノml 路−11’は(vDD−VTP)
である。従って、 TRnは第6図に示すように第2図
の場合と比較して短くなる。
-Q, ΔV/I. , ・・・・・・・・・・・・
([5) However, vRE8ET is the reset potential of bit line 1, and line-11' is (vDD-VTP)
It is. Therefore, TRn becomes shorter as shown in FIG. 6 compared to the case of FIG.

今1での説明は全てメモリセルのMOSトランジスタが
Nチャネル形のものを仮定したが逆に、Pチャネル形の
場合はビット線1は(v88+ vTN)の電位にリセ
ットせねばならない。従って、PチャネルとNチャネル
とを逆にした第7図のごとき検出回路で同様に高速低消
費電力の検出回路が実現できる。
All the explanations in Section 1 assume that the MOS transistor of the memory cell is of N-channel type, but conversely, if it is of P-channel type, bit line 1 must be reset to the potential of (v88+vTN). Therefore, a detection circuit as shown in FIG. 7 in which the P channel and N channel are reversed can similarly realize a high speed detection circuit with low power consumption.

一刀、多数の検出回路p20 ’ ”40 ’ pH1
”41 ’ p22 ’”42が並列になっている場合
、第8図のように全部まとめて一箇のMOSトランジス
タp3テ(vDD−vTP)の電位供給をすればよい。
One sword, many detection circuits p20'"40" pH1
When ``41''p22'' 42 are connected in parallel, it is sufficient to supply the potential to one MOS transistor p3te (vDD-vTP) all together as shown in FIG.

なお、トランジスタp、。’ pN ’ Pi2はトラ
ンジスタp、に相当するものである。
Note that the transistor p. 'pN' Pi2 corresponds to the transistor p.

発明の詳細 な説明でほぼ明らかなとおり、本発明の半導体検出回路
は、簡単な回路構成であるにもかかわらず、&めて高速
に信号検出が可能であり、非常に重要である。
As is almost clear from the detailed description of the invention, the semiconductor detection circuit of the present invention is extremely important because it is capable of detecting signals at extremely high speed despite its simple circuit configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の検出回路の等価回路図、第2図は第1図
の検出回路の動作を示す各部の電圧波形図、第3図は別
の従来の検出回路の等価1ρ1路図。 第4図は本発明の検出回路の等価回路図、第5図はゲー
トとドレイン全共通にしたMOSトランジスタの電流電
圧特性図、第6図は第4図の検出回路の動作を示す各部
の電圧波形図、第7図は本発明の検出(ロ)路の別の実
施例の等価回路図、第8図は本発明の検出回路の更に別
の実施例の等価回路図である。 1・・・・・・ビット線、2 、3 、4−・−・−コ
ード線、p、〜p7・・・・・・Pチャネルトランジス
タ、n、〜n4・・・・・・Hチャネルトランジスタ。 第1図 第2図 413図 ? 34 HA55!!+ 第6図 第7図 第8図
FIG. 1 is an equivalent circuit diagram of a conventional detection circuit, FIG. 2 is a voltage waveform diagram of various parts showing the operation of the detection circuit of FIG. 1, and FIG. 3 is an equivalent 1ρ1 circuit diagram of another conventional detection circuit. Fig. 4 is an equivalent circuit diagram of the detection circuit of the present invention, Fig. 5 is a current-voltage characteristic diagram of a MOS transistor whose gate and drain are all common, and Fig. 6 is a voltage at each part showing the operation of the detection circuit of Fig. 4. FIG. 7 is an equivalent circuit diagram of another embodiment of the detection circuit of the present invention, and FIG. 8 is an equivalent circuit diagram of still another embodiment of the detection circuit of the present invention. 1...Bit line, 2, 3, 4--Code line, p, ~p7...P channel transistor, n, ~n4...H channel transistor . Figure 1 Figure 2 Figure 413? 34 HA55! ! + Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] PチャネルおよびNチャネルのエンハンスメント形3(
O5)ランジスタによる0MO8の反転増幅回路と、該
反転増幅回路の入力端と電源との間K 同一チャネル形
でエンハンスメント形の第1゜第2のMOS)ランジス
タを直列に接続した電位設定回路とを有し、前記第1の
MOS )ランジスタのドレインを前記反転増幅器の入
力端に、ソー−1rfLie第2のMOS)ランジスタ
のドレインおよびゲートに接続し、前記第2のMOSト
ランジスタのソースを電源に接続し、前記第1のMOS
トランジスタのゲーtfパルス入力端子とするとともに
、前記第2のMOS)ランジスタの閾値電圧を前記反転
増幅回路中の同一チャネル形のMOSトランジスタの閾
値電圧と略N−にすることを特徴とする半導体検出回路
P-channel and N-channel enhancement type 3 (
O5) Between the input terminal of the inverting amplifier circuit and the power supply, an inverting amplifier circuit of 0MO8 using transistors and a potential setting circuit in which the first and second MOS transistors of the same channel type and enhancement type are connected in series. and the drain of the first MOS transistor is connected to the input terminal of the inverting amplifier, the drain and gate of the second MOS transistor are connected to the power supply, and the source of the second MOS transistor is connected to the power supply. and the first MOS
A semiconductor detection device characterized in that the gate of the transistor is used as a tf pulse input terminal, and the threshold voltage of the second MOS transistor is set to approximately N- with the threshold voltage of the same channel type MOS transistor in the inverting amplifier circuit. circuit.
JP58014880A 1983-01-31 1983-01-31 Semiconductor detecting circuit Pending JPS59140697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58014880A JPS59140697A (en) 1983-01-31 1983-01-31 Semiconductor detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58014880A JPS59140697A (en) 1983-01-31 1983-01-31 Semiconductor detecting circuit

Publications (1)

Publication Number Publication Date
JPS59140697A true JPS59140697A (en) 1984-08-13

Family

ID=11873324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58014880A Pending JPS59140697A (en) 1983-01-31 1983-01-31 Semiconductor detecting circuit

Country Status (1)

Country Link
JP (1) JPS59140697A (en)

Similar Documents

Publication Publication Date Title
US4973864A (en) Sense circuit for use in semiconductor memory
US4616148A (en) Sense amplifier
US4697112A (en) Current-mirror type sense amplifier
US5243573A (en) Sense amplifier for nonvolatile semiconductor storage devices
JPH0583998B2 (en)
US4733112A (en) Sense amplifier for a semiconductor memory device
JPH0750556A (en) Flip-flop type amplifier circuit
US4825110A (en) Differential amplifier circuit
US6865129B2 (en) Differential amplifier circuit with high amplification factor and semiconductor memory device using the differential amplifier circuit
US4253163A (en) Sense amplifier-detector circuit
US4939691A (en) Static random access memory
JP2760634B2 (en) Integrated memory
US4860257A (en) Level shifter for an input/output bus in a CMOS dynamic ram
JP2756797B2 (en) FET sense amplifier
US5321659A (en) Signal amplifier circuit and semiconductor memory device using the same
US6292418B1 (en) Semiconductor memory device
US4858193A (en) Preamplification method and apparatus for dram sense amplifiers
US5412607A (en) Semiconductor memory device
JP3483634B2 (en) Semiconductor integrated circuit
US6356148B1 (en) Systems and methods for enhancing charge transfer amplifier gain
JPH0366097A (en) Current sense amplifier
JP2680939B2 (en) Semiconductor memory device
JPS59140697A (en) Semiconductor detecting circuit
JP2666677B2 (en) Data amplifier for built-in semiconductor IC chip
JPS5925311B2 (en) sense amplifier