JPS59140400A - Reverse coating method by electrodeposition - Google Patents
Reverse coating method by electrodepositionInfo
- Publication number
- JPS59140400A JPS59140400A JP1498983A JP1498983A JPS59140400A JP S59140400 A JPS59140400 A JP S59140400A JP 1498983 A JP1498983 A JP 1498983A JP 1498983 A JP1498983 A JP 1498983A JP S59140400 A JPS59140400 A JP S59140400A
- Authority
- JP
- Japan
- Prior art keywords
- coating
- paint
- electrodeposition
- cationic electrodeposition
- paint film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
【発明の詳細な説明】 本発明はリバース塗装方法に関する。[Detailed description of the invention] The present invention relates to a reverse coating method.
従来から、導電性表面を有する基体1こ粉体塗料等の種
々の塗料を静電塗装等の種々の塗装方法で塗装し、必要
に応じて加熱し塗膜を形成した後、未塗装部分をカチオ
ン電着塗料(こより電着塗装するリバース塗装方法が知
られている。このリバース塗装は塗装された物品]こ防
錆性とつきまわり性を付与するため(こカチオン電着塗
装を施すものである。Conventionally, a substrate with a conductive surface is coated with various paints such as powder paint using various coating methods such as electrostatic coating, heated as necessary to form a coating film, and then the unpainted areas are removed. A reverse painting method is known in which cationic electrodeposition paint is applied. be.
しかしながら、この場合塗膜とカチオン電着塗膜の境界
部分の塗1漢の形成が十分でなく、この部分の塗膜性能
、特に防食性が著しく劣るという欠点を有していた。こ
れは塗膜端部のダスト、および線状の薄膜部分1こ、そ
の絶縁性のために電着塗膜が形成されず、薄膜部分がそ
のまま残るからである。However, in this case, the coating film was not sufficiently formed at the boundary between the coating film and the cationic electrodeposition coating film, and the coating film performance in this area, particularly corrosion resistance, was extremely poor. This is because the electrodeposition coating is not formed due to the dust at the end of the coating film and the insulating properties of the linear thin film portion 1, and the thin film portion remains as it is.
上記欠点を改善するため種々の試みが成された。Various attempts have been made to improve the above drawbacks.
特公昭57−37337号および特公昭55−4131
7号各公報Icは塗料(こ導電性粉体を含有せしめる方
法が開示されている。また薄膜部分lこワツクス塗料を
塗布することも知られている。しかしながら、これらは
経済性1色相、仕上り外観等の点で調定すべきものでは
ない。Special Publication No. 57-37337 and Special Publication No. 55-4131
Publication No. 7 Ic discloses a method of containing paint (conductive powder).It is also known to apply a wax paint to a thin film part.However, these are economical, have only one hue and finish It is not something that should be determined based on appearance, etc.
本発明者等は上記欠点を解消するため1こ研究を屯ねた
結果、カチオン電着塗膜の膜厚を30μ以上の厚さに塗
装すると(従来の実動ラインではせいぜい20μであっ
た)、上記薄膜部分(こも電着塗膜が形成され、上記欠
点が解消されることを見出した。The inventors of the present invention have carried out research in order to solve the above drawbacks, and have found that if the cationic electrodeposition coating is applied to a thickness of 30μ or more (conventional production lines were at most 20μ). It has been found that an electrodeposited coating film is formed on the thin film portion, and the above drawbacks are eliminated.
即ち、本発明は導電性基体の上に各種方法で塗装を施し
た後、カチオン電着塗装を電着塗装膜厚が30μ以上と
なるよう1こ行なうことを特徴とするリバース塗装方法
を要旨とする。That is, the gist of the present invention is a reverse coating method, which is characterized in that after coating a conductive substrate by various methods, one cationic electrodeposition coating is performed so that the electrodeposition coating film thickness is 30μ or more. do.
本発明の塗装に用いられる塗料はいかなるものを用いて
もよいが、一般に粉体塗料、溶剤型塗料または水性塗料
が用いられる。塗装方法は静電塗装、スプレー塗装また
は電着塗装等であってよい。Although any paint may be used for the coating of the present invention, powder paints, solvent-based paints, or water-based paints are generally used. The coating method may be electrostatic coating, spray coating, electrodeposition coating, or the like.
上記塗料と塗装方法との組合せは可能ならばいかなる組
合せでもよいが、外観膜厚の厚付け、低公害(無溶剤)
、省エネルギーという理由から粉体静電塗装が好ましい
。Any combination of the above paints and painting methods may be used as long as it is possible.
, powder electrostatic coating is preferred for energy saving reasons.
塗装で粉体塗料等は30μ以上の膜厚に塗装されること
が、カチオン電着塗膜と均一な膜厚にするため、好まし
い。It is preferable to apply the powder coating to a film thickness of 30 μm or more in order to achieve a uniform film thickness with the cationic electrodeposition coating film.
塗装物品は硬化された後1こカチオン電着塗装されても
よいが、外観上、省エネルギー等の点から半硬化または
未硬化のままカチオン電着塗装されるのが好ましい。The coated article may be cured and then subjected to cationic electrodeposition coating, but from the viewpoint of appearance, energy saving, etc., it is preferable to apply cationic electrodeposition coating while it is semi-cured or uncured.
本発明に用いられるカチオン電着塗料としてはポリアミ
ノ樹脂系、アクリル樹脂系、ポリブタジェン樹脂系など
の通常のカチオン電着塗料を用いることができる。就中
、膜厚を30μ以上にし、しかも電着塗装の最大の特徴
である高いつきまわり性を保持する必要があることと高
耐蝕性を維持することから、アミン変性エポキシ樹脂、
ウレタン架橋系のカチオン電着塗料等の塗料が好ましい
。As the cationic electrodeposition paint used in the present invention, common cationic electrodeposition paints such as those based on polyamino resins, acrylic resins, and polybutadiene resins can be used. In particular, amine-modified epoxy resin, amine-modified epoxy resin,
Paints such as urethane crosslinked cationic electrodeposition paints are preferred.
本発明によるカチオン電着方法は、上記樹脂を有機酸(
例えば酢酸、乳酸)または無機酸で中和し、溶剤、顔料
および添加剤を混入した電着浴を形成し、該浴中蚤こカ
ソードとアノードを浸漬し、カソードとして上述の粉体
塗装等を施した導電性糸体を使用して、電圧をかけ導電
性表面にカチオン電着樹脂を析出させることから成る。In the cationic electrodeposition method according to the present invention, the resin is coated with an organic acid (
For example, acetic acid, lactic acid) or an inorganic acid is used to form an electrodeposition bath mixed with a solvent, pigment, and additives, and the cathode and anode are immersed in the bath. The method consists of applying a voltage to the conductive thread to deposit a cationic electrodeposition resin on the conductive surface.
電着浴中の溶剤の含有量は、つきまわり性の確保と低公
害および省資源の観点から浴の総重量に対し6重量%以
下であることが好ましい。The content of the solvent in the electrodeposition bath is preferably 6% by weight or less based on the total weight of the bath from the viewpoints of ensuring good throwing power, low pollution, and saving resources.
電着時間は通常1〜5分、好ましくは2〜3分である。The electrodeposition time is usually 1 to 5 minutes, preferably 2 to 3 minutes.
印加電圧は100〜400ボルト、好ましくは200〜
300ボルトである。The applied voltage is 100-400 volts, preferably 200-400 volts
It is 300 volts.
上述のように電着塗装された物品を、水洗した後(こ1
50〜200°C1好ましくは160〜180°Cの温
度で10〜30分間焼付硬化すると、塗膜とカチオン電
着塗膜の境界部分における塗膜の形成は十分であった。After washing the electrodeposition-coated article as described above with water (this step
When baked and cured at a temperature of 50 to 200° C., preferably 160 to 180° C., for 10 to 30 minutes, the formation of a coating film at the boundary between the coating film and the cationic electrodeposited coating film was sufficient.
本発明の特徴はカチオン電着塗膜の膜厚を30μ以上に
することであるが、リバース塗装方法では従来カチオン
電着塗膜の膜厚を厚くしても5局部的に、即ち塗膜が形
成されていない部分にのみ電着塗装が形成され、境界部
で塗膜が形成されるとは考えられていなかった。従って
、本発明は従来の常識を打ち破り優れた効果を奏するも
のである。The feature of the present invention is that the film thickness of the cationic electrodeposition coating film is made to be 30μ or more, but in the conventional reverse coating method, even if the film thickness of the cationic electrodeposition coating film is increased, the coating film is It was not thought that electrodeposition coating would be formed only on the unformed areas, and that a coating film would be formed at the boundary areas. Therefore, the present invention breaks the conventional common sense and achieves excellent effects.
このように境界部分にも十分な塗膜が形成される理由は
明らかではないが、本発明の電着塗装工程では一般に膜
厚が厚くなる段階におけるジュール熱と焼付工程での高
温Iこより塗膜の溶融が起こり、この溶融は付着する塗
料の膜厚が約30μを越える点で急(こ大きくなること
によるものであると考えられる。It is not clear why a sufficient coating film is formed even at the boundary areas in this way, but in the electrodeposition coating process of the present invention, the coating film is generally affected by the Joule heat at the stage where the film becomes thick and the high temperature I in the baking process. Melting occurs, and this melting is thought to be due to the fact that the film thickness of the adhered paint becomes larger at a point where it exceeds about 30 μm.
以下、実施例1こより本発明を説明する。The present invention will be explained below from Example 1.
実施例1
第1表の工程2で作成した表面処理板の半分にエポキシ
樹脂系粉体塗料を第−表工程3および4の条件で塗装・
焼付けして硬化せしめ、さら番こ、エポキシ糸ポリアミ
ン樹脂を展色剤とするカチオン型電着塗料を、プラスチ
ック容器に建浴し、第1表工程5の条件で試験片を陰極
とし、炭素板を陽極として電着塗装した後、水洗および
焼付を行い(第1表工程6)、粉体塗料の塗膜と境界を
接した電着塗膜を有する試験片を得た。この試験片Iこ
ついての電着膜厚と境界部のカバーリング状態を35μ
の膜厚にリバース塗装したときの塗装断面の顕微鏡写真
(これを参考写真1として提出する)および45μの膜
厚にリバース塗装したときの表面状態の写真(参考写真
2として提出する)で示す。また塗装断面を第1図に模
式的(こ示す。Example 1 Half of the surface-treated board prepared in Step 2 of Table 1 was coated with epoxy resin powder paint under the conditions of Steps 3 and 4 of Table 1.
A cationic electrodeposition paint using baking powder and epoxy thread polyamine resin as a coloring agent was prepared in a plastic container, and the test piece was used as a cathode under the conditions of Step 5 in Table 1. After electrodeposition coating was performed using the material as an anode, washing with water and baking were performed (Step 6 in Table 1) to obtain a test piece having an electrodeposition film bordering the powder coating film. The thickness of the electrodeposited film on this test piece I and the covering condition at the boundary were measured at 35 μm.
A photomicrograph of the cross section of the coating when reverse coating was applied to a film thickness of 45μ (this is submitted as Reference Photo 1) and a photo of the surface condition when reverse coating was applied to a film thickness of 45μ (submitted as Reference Photo 2) are shown. A painted cross section is schematically shown in Figure 1.
図中、(1)は被電着基材5(2)は粉体塗料のダスト
、(3)は電着塗膜および(4)は上塗塗料を示す。試
験結果を第2表(こ示す。In the figure, (1) shows the electrodeposited substrate 5, (2) shows powder paint dust, (3) shows the electrodeposition coating film, and (4) shows the top coat. The test results are shown in Table 2.
比較例1
第1表の塗装工程において、標準膜厚20μを有する従
来のエポキシ系ポリアミノ樹脂系カチオン電着塗料を使
用し、実施例1と同様な塗装方法を用いて試験片を作成
した。Comparative Example 1 In the coating process shown in Table 1, a test piece was prepared using the same coating method as in Example 1, using a conventional epoxy polyamino resin cationic electrodeposition paint having a standard film thickness of 20 μm.
この試験片(こついての試験結果を第2表(こ示す。The test results for this test piece are shown in Table 2.
さらに実施例1と同様、20μ膜厚のリバース塗装の顕
微鏡写真(参考写真3)および同表面状態の写真(参考
写真4)で電着膜厚と境界部のカバーリング状態を示す
。また塗装断面を第2図(こ模式的に示す。Furthermore, as in Example 1, the electrodeposited film thickness and the covering state at the boundary are shown in a microscopic photograph (reference photograph 3) of reverse coating with a film thickness of 20 μm and a photograph of the same surface condition (reference photograph 4). The painted cross section is shown schematically in Figure 2.
実施例2
溶剤型塗料として、メラミンアルキッド樹脂系と実施例
1と同じカチオン型電着塗料とを用い第3表に示す塗装
工程を行う。溶剤型塗料を表面処理板の半分にスプレー
塗装して、焼付硬化せしめた後残りの半分に電着塗装し
、これを吹付は水洗し、ざら(こ焼付を行って実施例1
の試験板と近似する溶剤型塗料の塗膜と境界を接した電
着塗膜を有する試験片を得た。Example 2 The coating process shown in Table 3 was carried out using a melamine alkyd resin system and the same cationic electrodeposition paint as in Example 1 as a solvent-based paint. Solvent-based paint was spray-painted on half of the surface-treated board, cured by baking, and electrodeposited on the remaining half.
A test specimen was obtained having an electrodeposited coating bordered by a coating of solvent-based paint similar to that of the test panel.
この試験片についての試験結果を第4表に示す。The test results for this test piece are shown in Table 4.
比較例2
第3表の塗装工程(こおいて比較例1と同じ従来のエポ
キシ系ポリアミノ樹脂系カチオン電着塗料を使用し工程
5に準じて電着塗装した以外は実施例2と同体な塗装方
法を用いて試験片を作成した。Comparative Example 2 Coating process shown in Table 3 (same coating as Example 2 except that the same conventional epoxy polyamino resin cationic electrodeposition paint as Comparative Example 1 was used and electrodeposition was performed according to Step 5) A test piece was prepared using the method.
この試験片(こついての試験結果を第4表(こ示す。The test results for this test piece are shown in Table 4.
実施例3
第5表の工程4で得られた粉体塗料塗装板に、比較例1
の従来型カチオン電着塗料(こ史にセロソルブ系溶剤を
添加し、工程5の条件で試験板を陰極とし、炭素板を陽
極として電着塗装した後水洗及び焼付を台い(第5表工
程6)、粉体塗料の塗膜と境界を接した電着塗膜を有す
る試験板を得た。Example 3 Comparative Example 1 was applied to the powder paint coated board obtained in Step 4 of Table 5.
Conventional cationic electrodeposition paint (cellosolve solvent was added to this material, and the test plate was used as a cathode and the carbon plate was used as an anode in step 5. After electrodeposition coating was carried out, washing and baking were carried out (see Table 5) 6) A test panel was obtained having an electrodeposition coating bordering the powder coating coating.
防食性を第6表に示す。Corrosion resistance is shown in Table 6.
比較例3
第7表の工程4で得られた粉体塗料塗装板に、ポリエス
テル樹脂系アニオン電着塗料を工程5の条件で試験板を
@極として、炭素板を陰極として、電着塗装した後、水
洗及び焼付を行い(第7表工程6)、粉体塗料の塗膜と
境界を接した電着塗膜を有する試験板を得た。結果を第
8表に示す。Comparative Example 3 A polyester resin-based anionic electrodeposition paint was electrodeposited on the powder coated board obtained in Step 4 of Table 7 under the conditions of Step 5, with the test board serving as the @ electrode and the carbon plate serving as the cathode. Thereafter, the sample was washed with water and baked (Step 6 in Table 7) to obtain a test plate having an electrodeposited film bordering the powder coating film. The results are shown in Table 8.
第 7 表 第8表 (アニオン型電着塗料の膜厚が35μでの比較例)Table 7 Table 8 (Comparative example where the film thickness of anionic electrodeposition paint is 35μ)
第1図は膜厚35μにリバース塗装したときの塗装断面
の模式図、第2図は膜厚20μにリバース塗装したとき
の塗装断面の模式図である。
図中、(1)は被電着基材、(2)は粉体塗料のダスト
、(3)は電着塗膜および(4)は上塗塗料を示す。FIG. 1 is a schematic diagram of a painted cross section when reverse coating is applied to a film thickness of 35 μm, and FIG. 2 is a schematic diagram of a painted cross section when reverse painting is performed to a film thickness of 20 μm. In the figure, (1) shows the electrodeposited base material, (2) shows powder paint dust, (3) shows the electrodeposition coating film, and (4) shows the top coat.
Claims (1)
着塗装するリバース塗装方法において、カチオン電着塗
装を電着塗装膜厚が30μ以上となるよう(こ行なうこ
とを特徴とするリバース塗装方法。 2、塗装が粉体塗装またはスプレー塗装で行なわれる第
1項記載の方法。 3、粉体塗装が粉体静電塗装であり、かつ30μ以上の
膜厚を有するよう(こなされる第2項記載の方法。 4、塗装物品を未硬化のままカチオン電着塗装する第1
項記載の方法。 5、 カチオン電着塗装が溶剤含有量6%以下の電着浴
を用いて行なわれる第1〜3項いずれか]こ記載の方法
。[Scope of Claims] 1. In a reverse coating method in which a conductive substrate is coated and then cationic electrodeposition is applied, the cationic electrodeposition is applied so that the thickness of the electrodeposition coating is 30μ or more (this is carried out). 2. The method according to item 1, wherein the coating is performed by powder coating or spray coating. 3. The powder coating is electrostatic powder coating, and the coating has a film thickness of 30μ or more. 4. The first step of applying cationic electrodeposition to the coated article while it remains uncured.
The method described in section. 5. The method according to any one of Items 1 to 3, wherein the cationic electrodeposition coating is performed using an electrodeposition bath having a solvent content of 6% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1498983A JPS59140400A (en) | 1983-01-31 | 1983-01-31 | Reverse coating method by electrodeposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1498983A JPS59140400A (en) | 1983-01-31 | 1983-01-31 | Reverse coating method by electrodeposition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59140400A true JPS59140400A (en) | 1984-08-11 |
Family
ID=11876351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1498983A Pending JPS59140400A (en) | 1983-01-31 | 1983-01-31 | Reverse coating method by electrodeposition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59140400A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000030559A (en) * | 2000-03-07 | 2000-06-05 | 정형동 | An electropainting method using a powder melting type |
-
1983
- 1983-01-31 JP JP1498983A patent/JPS59140400A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000030559A (en) * | 2000-03-07 | 2000-06-05 | 정형동 | An electropainting method using a powder melting type |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4139672A (en) | Process for forming a coating having a metallic finish | |
JPH11505886A (en) | Multilayer lacquering method | |
JPH11505767A (en) | Multilayer lacquering method | |
US3674671A (en) | Electrodeposition method and product | |
US3408278A (en) | Painting process wherein a conductive undercoat is electrophoretically deposited | |
DE3038382A1 (en) | REVERSE COATING PROCESS | |
EP1778796B1 (en) | Electro-coat adhesion layer with a siloxane top coat | |
JP2001513418A (en) | Construction methods for protective and decorative laminated structures | |
JP2811335B2 (en) | Coating composition and method for producing coated metal product | |
JP2764460B2 (en) | One-piece painting method | |
JPS59140400A (en) | Reverse coating method by electrodeposition | |
US3898145A (en) | Process for applying contrasting coatings to a workpiece | |
US6508922B2 (en) | Process for multi-layer coating | |
US3939110A (en) | Aqueous polyelectrolytic electrocoating materials of organic resins | |
JPS5934799B2 (en) | Method for producing rough surface electrodeposition coating film and electrodeposition coating composition thereof | |
JP2001149857A (en) | Method for forming metallic coating film | |
DE2236191A1 (en) | METAL WORKING PROCESS | |
US3809634A (en) | Interrupted current electrodeposition of paints | |
US3498897A (en) | Method for manufacturing multilayered product | |
DE2059587C3 (en) | Process for the electrophoretic coating of a conductive article with a resinous coating | |
JPH0255463B2 (en) | ||
JP2001046952A (en) | Formation of coating film | |
EP0643996A1 (en) | Coating process | |
JP4082354B2 (en) | Painting method | |
JPS60215796A (en) | Formation of coated film of electrodeposition paint |