JPS591399Y2 - Abnormality detection device for rotor connection conductors - Google Patents

Abnormality detection device for rotor connection conductors

Info

Publication number
JPS591399Y2
JPS591399Y2 JP6000282U JP6000282U JPS591399Y2 JP S591399 Y2 JPS591399 Y2 JP S591399Y2 JP 6000282 U JP6000282 U JP 6000282U JP 6000282 U JP6000282 U JP 6000282U JP S591399 Y2 JPS591399 Y2 JP S591399Y2
Authority
JP
Japan
Prior art keywords
detection
signal
conductor
rotor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6000282U
Other languages
Japanese (ja)
Other versions
JPS586566U (en
Inventor
信正 天笠
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP6000282U priority Critical patent/JPS591399Y2/en
Publication of JPS586566U publication Critical patent/JPS586566U/en
Application granted granted Critical
Publication of JPS591399Y2 publication Critical patent/JPS591399Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、回転電機の回転子の接続導体、例えば回転
電機子と回転整流器とを接続するため、回転体上に配設
された複数の接続導体の異常を検出する装置に関するも
のである。
[Detailed description of the invention] This invention detects abnormalities in a plurality of connecting conductors arranged on a rotor of a rotor of a rotating electric machine, for example, connecting a rotating armature and a rotating rectifier. It is related to the device.

回転整流器を有する回転子では、各アームに設けられた
多数の並列保護ヒユーズのうち1個が溶断した場合の溶
断検知をし、あるいは、ヒユーズを装着してない場合は
、1個のダイオードの破損による過電流を検出しようと
するものである。
For rotors with rotating rectifiers, detection is performed when one of the many parallel protective fuses installed in each arm blows out, or if no fuse is installed, detection is performed when one diode is damaged. The purpose is to detect overcurrent due to

回転励磁機の回転整流器のヒユーズ溶断検出方法として
は、従来より特許出願公告昭45−23449号などが
知られている。
As a method for detecting a fuse blowout in a rotary rectifier of a rotary exciter, there has been known a method as disclosed in Patent Application Publication No. 45-23449.

この方法は、ダイオードに流れる電流を検出素子で検出
するが、検出素子の信号を選択して警報装置に導通させ
ている。
In this method, the current flowing through the diode is detected by a detection element, and a signal from the detection element is selected and made conductive to the alarm device.

この信号選択のため同期パルス制御装置が必要であった
A synchronous pulse controller was required for this signal selection.

なぜなら、検出素子に誘起される電圧は複数の接続導体
に流れる電流の影響を受け、各導体が正常時においても
複雑な波形となり、ヒユーズ溶断時には溶断の条件によ
って様相が異なり、一層判別が困難となるため、なんら
かの方法により信号選択を必要としていた。
This is because the voltage induced in the detection element is affected by the current flowing through multiple connected conductors, resulting in a complex waveform even when each conductor is normal, and when a fuse blows, its appearance varies depending on the blowing conditions, making it even more difficult to distinguish. Therefore, some method of signal selection was required.

しかし、この方法では同期パルスの選択した時間に対し
、回転電機の出力変化による内部位相角の変動などによ
り影響をうけ、電流流通時点がずれるため、装置が複雑
となり、かつ、実用化がはなはだ困難で゛あった。
However, in this method, the selected time of the synchronous pulse is affected by changes in the internal phase angle due to changes in the output of the rotating electrical machine, and the current flow time shifts, making the device complex and making it extremely difficult to put it into practical use. It was.

この考案は、上記のような従来のものの欠点を除き、簡
便な方法で、且つ、種々の構成の接続導体でも、異常を
検出できる装置を提供するものである。
This invention eliminates the above-mentioned drawbacks of the conventional device and provides a device that can detect abnormalities in a simple manner and even in connection conductors with various configurations.

この考案を適用する回転子の例として、回転整流装置の
ヒユーズ溶断検出装置の場合について説明する。
As an example of a rotor to which this invention is applied, a fuse blowout detection device for a rotary rectifier will be described.

回転整流装置を有するブラシレス励磁装置の原理図を第
1図に示す。
FIG. 1 shows a principle diagram of a brushless excitation device having a rotary rectifier.

1は同期機、2は同期機の固定子の電機子、3は同期機
の回転界磁、4は同期機及びブラシレス励磁機の直結し
た回転子を示す。
Reference numeral 1 indicates a synchronous machine, 2 indicates an armature of a stator of the synchronous machine, 3 indicates a rotating field of the synchronous machine, and 4 indicates a rotor directly connected to the synchronous machine and the brushless exciter machine.

5は回転整流装置、6は交流励磁機で、固定子の界磁7
及び回転電機子8よりなる。
5 is a rotating rectifier, 6 is an AC exciter, and the stator field 7 is
and a rotating armature 8.

9は副励磁機で、永久磁石よりなる回転界磁10及び固
定子の電機子11よりなる。
Reference numeral 9 denotes a sub-exciter, which includes a rotating field 10 made of a permanent magnet and an armature 11 of a stator.

12は交流励磁機6への直流界磁電流を調整する自動電
圧調整装置、13は交流励磁機6の電機子8と回転整流
装置5とを接続する複数の接続導体である。
12 is an automatic voltage regulator that adjusts the DC field current to the AC exciter 6, and 13 is a plurality of connecting conductors that connect the armature 8 of the AC exciter 6 and the rotary rectifier 5.

第2図は第1図の交流励磁機6の回転子部分の概要を示
す説明図である。
FIG. 2 is an explanatory diagram showing an outline of the rotor portion of the AC exciter 6 shown in FIG.

電機子8は人結線で各相とも2並列回路を有し、位相リ
ング14により、各相ごとにまとめられている。
The armature 8 is human-wired and has two parallel circuits for each phase, which are grouped together for each phase by a phase ring 14.

回転整流装置5は3相全波結線であす、I S −3P
−6A(各相ごとダイオード5aのl直列が3並列回
路にされ、+。
The rotary rectifier 5 is a three-phase full-wave connection, IS-3P.
-6A (1 series of diodes 5a for each phase are made into 3 parallel circuits, +.

側とで合計6アーム)の構成である。It has a total of 6 arms).

接続導体13は各相ごとの位相リング14と、ダイオー
ド5a2回路(+側及び一側)とに接続され、各相3本
宛で構成されている。
The connecting conductor 13 is connected to the phase ring 14 for each phase and the diode 5a2 circuit (+ side and one side), and is configured with three conductors for each phase.

第2図では整流装置の詳細は省略しているが保護のため
のヒユーズが各ダイオード5aに直列に接続されている
ものである。
Although details of the rectifier are omitted in FIG. 2, a fuse for protection is connected in series to each diode 5a.

このように構成された装置において、回転子4を回転し
、界磁7に励磁電流を流すと、電機子8に3相交流が発
生する。
In the device configured as described above, when the rotor 4 is rotated and an excitation current is passed through the field 7, a three-phase alternating current is generated in the armature 8.

この交流を回転整流装置5により整流し、同期機の回転
界磁3に供給する。
This alternating current is rectified by a rotating rectifier 5 and supplied to a rotating field 3 of a synchronous machine.

接続導体13には交流が流れるが、整流装置5により交
流電流の周波数でみて、電気角120°通電(半波18
0°において)の交流となるので、接続導体13に対し
固定側でこの通電電流による誘起電圧を検出する検出素
子の位置は、当然この回転子周囲での通電領域になけれ
ばならない。
Although alternating current flows through the connecting conductor 13, the rectifier 5 conducts current at an electrical angle of 120 degrees (half-wave 18
Therefore, the position of the detection element that detects the induced voltage due to this current flowing on the fixed side of the connecting conductor 13 must naturally be in the current flowing region around the rotor.

また、検出素子の設定には、この通電領域を知らねばな
らない。
Furthermore, in order to set the detection element, it is necessary to know this energized region.

しかし、通電領域は交流励磁機6や接続導体13の設計
内容により変り、かつ非常に多くのパラメータにより入
りくんだものとなり、複雑なものとなる。
However, the energization range changes depending on the design details of the AC exciter 6 and the connecting conductor 13, and is complicated due to a large number of parameters.

第3図に交流励磁機の電機子と接続導体の関係を示す。Figure 3 shows the relationship between the armature of the AC exciter and the connecting conductors.

界磁7は複数の磁極15を有し、回転電機子8ではある
相帯を有する電機子コイル16が一端を位相リング14
に接続され、他端を中性リング17に接続されている。
The field 7 has a plurality of magnetic poles 15, and in the rotating armature 8, an armature coil 16 having a certain phase band has one end connected to the phase ring 14.
The other end is connected to the neutral ring 17.

接続導体13の本数は一般に整流回路の構成などにより
決められ、かつ、規則正しく回転子軸上に分布されてい
る。
The number of connection conductors 13 is generally determined by the configuration of the rectifier circuit, and is regularly distributed on the rotor axis.

第4図に接続導体部の配置の例を断面図を示す。FIG. 4 shows a cross-sectional view of an example of the arrangement of the connecting conductor portions.

回転子軸18に非磁性リング19を焼ばめしている。A non-magnetic ring 19 is shrink-fitted to the rotor shaft 18.

絶縁部材20を介して接続導体13が、例えば図示のよ
うな本数が等間隔に配列され、エポキシガラスバンドの
ような固定バンド21で゛固定された構成となっている
The connecting conductors 13 are arranged at equal intervals as shown in the figure, for example, through an insulating member 20, and are fixed with a fixing band 21 such as an epoxy glass band.

電機子コイル16の通電は、極と相帝との関係により決
められる。
The energization of the armature coil 16 is determined by the relationship between the pole and the phase resistor.

相帯中心と接続導体13との角度A(第3図参照)は、
極数、電機子コイル巻線方法、相順、回転方向、相数、
位相リング14の有無、接続導体13数と配置方法など
により決められる。
The angle A between the phase belt center and the connecting conductor 13 (see Figure 3) is:
Number of poles, armature coil winding method, phase sequence, rotation direction, number of phases,
It is determined by the presence or absence of the phase ring 14, the number of connecting conductors 13, the arrangement method, etc.

角度Aにより、接続導体13に対向する固定側の通電基
準点が求められる。
An energization reference point on the fixed side facing the connection conductor 13 is determined by the angle A.

次に、接続導体13部の通電領域、通電領域内の任意の
位置に設置される検出素子、複数の接続導体13の配置
の関係を求めることにより、検出素子に誘起される信号
が判明する。
Next, the signal induced in the detection element is determined by determining the relationship between the current-carrying area of the connection conductor 13, the detection element installed at an arbitrary position within the current-carrying area, and the arrangement of the plurality of connection conductors 13.

しかし、一般に接続導体13の数は6〜120本程度で
あり、しかも、この構成はブラシレス励磁機の設計ごと
に変る。
However, the number of connecting conductors 13 is generally about 6 to 120, and this configuration changes depending on the design of the brushless exciter.

これに対し通電ダイヤグラムを作成することにより上記
接続導体13の配置と検出素子の関係を求めることがで
きる。
On the other hand, by creating an energization diagram, the relationship between the arrangement of the connection conductor 13 and the detection element can be determined.

第5図に通電ダイヤグラムの一例を示す。FIG. 5 shows an example of a current flow diagram.

図の縦軸は各導体13の配列角を表示し、横軸は回転角
を示す。
The vertical axis of the figure represents the arrangement angle of each conductor 13, and the horizontal axis represents the rotation angle.

横軸の任意の1点は1つの時間を表わし、その瞬間にお
ける回転子の状況を縦軸が示している。
Any one point on the horizontal axis represents one time, and the vertical axis represents the state of the rotor at that moment.

各相導体13の口で示した部分が交流の+側での、目で
示した部分が交流の一側での通電領域を表わしている。
The part indicated by the opening of each phase conductor 13 represents the current-carrying region on the + side of the AC, and the part indicated by the eye represents the current-carrying area on the one side of the AC.

言いかえると、各導体13の空間的、時間的な関係を示
している。
In other words, it shows the spatial and temporal relationships of each conductor 13.

なお、接続導体13の配列角の基準点0°は構造上定ま
ったものであり、又、回転角については、交流励磁機の
力率は整流回路方式によりほぼ一定値となるので、電機
子コイル通電状態の界磁極と電機子コイル位置が定まる
Note that the reference point 0° for the arrangement angle of the connecting conductors 13 is fixed structurally, and as for the rotation angle, the power factor of the AC exciter is a nearly constant value due to the rectifier circuit system, so the armature coil The energized field pole and armature coil positions are determined.

第5図は交流周波数300ルで、整流回路1S10P−
6Aという構成で、接続導体数、U、V、W各相10本
であり、かつU、U、V、V、W、W、U、U・・・・
・・という相順帯の順の場合の通電ダイヤグラムの部分
拡大図である。
Figure 5 shows an AC frequency of 300 l, rectifier circuit 1S10P-
The configuration is 6A, the number of connected conductors is 10 for each phase of U, V, W, and U, U, V, V, W, W, U, U...
. . . is a partially enlarged view of an energization diagram in the case of a phase-sequential belt order.

図に示した■、■■の横線が、この発明の実施例として
の固定部に配設された少なくとも一対の検出素子のうち
の、対をなす検出素子の位置を示す。
Horizontal lines ``■'' and ``■■'' shown in the figure indicate the positions of a pair of detection elements among at least one pair of detection elements disposed on the fixed part as an embodiment of the present invention.

検出素子は、例えばI形検出コイルのように、あるエア
ギャップをもって対向した回転部導体の電流による磁束
を検出し、電圧を誘起するものである。
The detection element, such as an I-type detection coil, detects the magnetic flux caused by the current of the rotating part conductors facing each other with a certain air gap, and induces a voltage.

対をなす検出素子はどの位置に置かれてもよいが、相互
の関係を第5図では72°離している。
The pair of detection elements may be placed at any position, but in FIG. 5 they are separated by 72 degrees.

第5図において、検出素子位置線■、I■と、各相導体
13の通電領域線との交点で検出コイルは導体重流を検
出できる。
In FIG. 5, the detection coil can detect conductor drift at the intersections of the detection element position lines (1) and (1) and the energized area lines of each phase conductor 13.

しかし、実際は電流による磁束を検出するようにしてい
るので、検出素子位置線近傍の各導体電流の影響を受け
るため、1個の検出素子により個々の導体による誘起電
圧を求め異常を検出することは非常に困難である。
However, since the magnetic flux caused by the current is actually detected, it is affected by the current in each conductor near the detection element position line, so it is impossible to detect an abnormality by calculating the induced voltage due to each conductor using a single detection element. Very difficult.

しかし、この考案のように、第5図の例の場合は72°
の間隔で別の検出素子を設置することにより、非常に簡
単に通電電流の異常を検出できる。
However, as in this invention, in the case of the example shown in Figure 5, 72°
By installing separate detection elements at intervals of

■とIIの検出素子位置線を調査すれば、時間経過に対
して導体の表示番号が変るだけで、全く同一の通電現象
をたどっていることが判明されるよつ。
If you examine the detection element position lines of (1) and (2), you will find that they follow exactly the same energization phenomenon, only the display number of the conductor changes over time.

すなわち、位置■と導体■、とが交差している同時刻で
は、位置線IIと導体■3とが交差し、また、位置線■
と導体■3が交差している同時刻では、位置線IIと導
体■5とが交差している。
That is, at the same time that position ■ and conductor ■ intersect, position line II and conductor ■3 intersect, and position line
At the same time when the conductor (2) and the conductor (2) intersect, the position line II and the conductor (2) intersect.

すなわち、導体番号が変るだけで、通電現象、すなわち
、検出素子の誘起電圧は全く同一の波形を連続的に検出
していることになる。
That is, just by changing the conductor number, the energization phenomenon, that is, the induced voltage of the detection element continuously detects the same waveform.

この対の検出素子の信号を逆接続で合威し、打ち消して
やれば理論上信号がないのと同一となる。
If the signals of this pair of detection elements are combined in reverse connection and canceled, it will theoretically be the same as there being no signal.

しかし、万一導体■1に異常があり電流が流れていない
とすれば、■位置の検出素子の誘起電圧波形はこのとき
正常とは著しく異なってくる。
However, if there is an abnormality in the conductor (1) and no current flows, then the induced voltage waveform of the detection element at the (2) position will be significantly different from the normal one.

同時刻に計測したII色位置検出素子の誘起電圧波形は
正常のままであり、この■、■■の対の検出素子の差信
号は、正常時の状況と当然著しく異なってくる。
The induced voltage waveform of the II color position detection element measured at the same time remains normal, and the difference signal of the pair of detection elements (■, ■■) naturally differs significantly from the normal situation.

なお、72°の間隔が若干ずれていても、磁束により検
出する関係上、微少信号がノイズとして表われるだけで
、異常時の過大な信号に比し問題はなく容易に検出でき
る。
It should be noted that even if the 72° interval is slightly off, since detection is performed using magnetic flux, only a minute signal will appear as noise, but there is no problem compared to an excessive signal in the event of an abnormality, and it can be easily detected.

対の検出素子の間隔は導体構成により変ってくるので、
全ての導体が前述のように比較できるように検出素子の
必要個数を選択配設すればよい。
The spacing between a pair of detection elements varies depending on the conductor configuration, so
The necessary number of detection elements may be selected and arranged so that all conductors can be compared as described above.

結局、接続導体がいかに変化しようと、等ピッチ配置で
なくても、規則正しく分布配列している限り、通電現象
の解明により合成信号を利用することにより異常信号の
検出を可能とするものである。
After all, no matter how the connecting conductors change, even if they are not arranged at equal pitches, as long as they are regularly distributed and arranged, abnormal signals can be detected by using a composite signal by elucidating the energization phenomenon.

なお、第5図では対の検出素子の間隔は72°の整数倍
であればどこでも同一である。
In FIG. 5, the distance between the pair of detection elements is the same wherever the distance is an integral multiple of 72°.

しかし接続導体数や配列によってこの間隔は異なってく
る。
However, this interval varies depending on the number and arrangement of connected conductors.

第6図はこの考案の回路構成原理図を示す。FIG. 6 shows a diagram of the circuit configuration principle of this invention.

回転子軸18には接続導体13が配設固定され回転され
る。
The connecting conductor 13 is fixed to the rotor shaft 18 and rotated.

固定側に設置された対をなす検出素子22が接続導体1
3の通電により信号を発生し、この対の検出素子22が
互いの信号を打ち消す方向に結線されており、電圧の判
別回路である異常信号検出回路23に接続されている。
A pair of detection elements 22 installed on the fixed side are connected to the connection conductor 1.
3 generates a signal when energized, and this pair of detection elements 22 are connected in a direction to cancel each other's signals, and are connected to an abnormal signal detection circuit 23 which is a voltage discrimination circuit.

検出回路23は簡単は回路でよく、例えば、一定値以上
の信号電圧により警報回路24を動作させるものであれ
ばよい。
The detection circuit 23 may be a simple circuit, for example, one that operates the alarm circuit 24 by a signal voltage of a certain value or more.

この考案の一実施例による回路図を第7図に示す。A circuit diagram according to an embodiment of this invention is shown in FIG.

検出素子22の信号は、先ず、信号検出回路25により
信号の存在の有無が確認され、上記雨検出素子22の信
号のピーク値を合成した合成信号が不感帯回路26に入
れられる。
The presence or absence of the signal from the rain detection element 22 is first checked by the signal detection circuit 25, and a composite signal obtained by synthesizing the peak values of the signals from the rain detection element 22 is input to the dead band circuit 26.

この回路26でライズ信号が交流励磁機の界磁電流信号
回路29よりの界磁電流に比例した信号によりその量だ
け除去され、異常時に発生する過電圧信号のみが検出回
路23と警報回路24に送られる。
In this circuit 26, the rise signal is removed by a signal proportional to the field current from the field current signal circuit 29 of the AC exciter, and only the overvoltage signal that occurs during an abnormality is sent to the detection circuit 23 and alarm circuit 24. It will be done.

なお、第2図のように、整流回路よりの出力がインダク
タンスをもった負荷に接続されている。
Note that, as shown in FIG. 2, the output from the rectifier circuit is connected to a load with inductance.

場合は、固定界磁7の電流の変化に対し、接続導体13
を流れる電流の変化が遅れてくる。
In this case, the connection conductor 13
The change in the current flowing through the circuit is delayed.

これを補償するために、上記界磁電流信号回路29より
の信号にタイマなどよりなる遅延回路を入れることによ
り、上記不感帯回路26の動作がより確実に行なえる。
In order to compensate for this, by inserting a delay circuit such as a timer into the signal from the field current signal circuit 29, the dead zone circuit 26 can operate more reliably.

なお、上記実施例ではブラシレス励磁機と回転整流装置
間の交流を通電する接続導体の異常検出の場合を説明し
たが、これに限らず、例えば第1図のダイオード回路接
続導体28での異常検出にも適用でき、同様の効果を得
ることができる。
In addition, although the above embodiment describes the case of detecting an abnormality in the connecting conductor that carries alternating current between the brushless exciter and the rotary rectifier, the present invention is not limited to this, and for example, detecting an abnormality in the diode circuit connecting conductor 28 in FIG. It can also be applied to obtain the same effect.

以上のように、この考案によれば、対をなす検出素子を
組合せ配置し、この検出素子の信号電圧を判別する検出
回路によっており、極めて簡単な装置で安価にでき、し
かも、正常状態では回転数の変化や負荷の変化によって
信号特性が変化しても合成された信号は変化がなく、異
常状態では顕著に変化し、精度よく信頼性が高い異常検
出装置が得られる。
As described above, this invention uses a detection circuit that arranges paired detection elements in combination and discriminates the signal voltage of the detection elements, and can be made with an extremely simple device at low cost. Even if the signal characteristics change due to a change in the number or a change in load, the synthesized signal does not change, but changes significantly in an abnormal state, so that a highly accurate and reliable abnormality detection device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は同期機のブラシレス励磁装置の原理図、第2図
は第1図の交流励磁機の電機子と回転整流装置との接続
導体部を示す回転子の概略説明図、第3図は第2図の電
機子コイルとこれにより出された接続導体の関係を示す
図、第4図は第2図の回転子の接続導体部分の断面正面
図、第5図はこの考案の一実施例による装置を適用する
第4図の接続導体の通電ダイヤグラムの図、第6図はこ
の考案による回路構成原理図、第7図はこの考案の一実
施例を示す装置の回路図である。 4・・・・・・回転子、7・・・・・・固定子の界磁、
3・・・・・・回転電機子、13・・・・・・接続導体
、18・・・・・・回転子軸、22・・・・・・検出素
子、23・・・・・・異常信号検出回路、24・・・・
・・警報回路、26・・・・・・不感帯回路、29・・
・・・・界磁電流信号回路。 なお、図中、同一符号は同−又は相当部分を示す。
Figure 1 is a principle diagram of a brushless exciter for a synchronous machine, Figure 2 is a schematic explanatory diagram of a rotor showing the connection conductor between the armature and rotary rectifier of the AC exciter in Figure 1, and Figure 3 is a diagram of the rotor. Fig. 2 is a diagram showing the relationship between the armature coil and the connecting conductor brought out by the armature coil, Fig. 4 is a cross-sectional front view of the connecting conductor portion of the rotor shown in Fig. 2, and Fig. 5 is an embodiment of this invention. FIG. 4 is an energization diagram of a connecting conductor to which a device according to the invention is applied, FIG. 6 is a diagram showing the principle of a circuit configuration according to this invention, and FIG. 7 is a circuit diagram of a device showing an embodiment of this invention. 4... Rotor, 7... Stator field,
3...Rotating armature, 13...Connection conductor, 18...Rotor shaft, 22...Detection element, 23...Abnormality Signal detection circuit, 24...
...Alarm circuit, 26...Dead band circuit, 29...
...Field current signal circuit. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 回転子の回転体上に分布配列され、上記回転子の回転電
機と回転整流装置とを接続して通電する並列接続を有す
る複数の接続導体、少なくとも一対の検出素子であって
対をなす検出素子の双方が所定の間隔を離して固定側に
配設され、上記接続導体にエアギャップを隔てて対向し
、上記各接続導体が正常通電状態では検出により同一信
号を発生する個所に取付けられる上記検出素子、上記対
をなす検出素子の検出信号を相互に打消す接続にして入
力し、双方の検出信号に差異のある時信号を出す異常信
号検出回路、およびこの検出回路よりの信号により異常
を表わす表示回路を備え、上記個所を通電ダイヤグラム
で求めるようにした回転子の接続導体の異常検出装置。
a plurality of connecting conductors distributed on the rotating body of the rotor and having parallel connections for connecting the rotating electric machine of the rotor and the rotary rectifier to supply current; at least one pair of detection elements forming a pair of detection elements; The above-mentioned detection device is installed at a location where both of the above-mentioned connection conductors are arranged on the fixed side with a predetermined distance apart from each other, are opposed to the above-mentioned connection conductor with an air gap in between, and generate the same signal upon detection when each of the above-mentioned connection conductors is normally energized. an abnormality signal detection circuit which inputs the detection signals of the pair of detection elements in a mutually canceling connection and outputs a signal when there is a difference between the two detection signals, and a signal from this detection circuit that indicates an abnormality. An abnormality detection device for a rotor connecting conductor, which is equipped with a display circuit and is configured to find the above-mentioned points using a current flow diagram.
JP6000282U 1982-04-22 1982-04-22 Abnormality detection device for rotor connection conductors Expired JPS591399Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6000282U JPS591399Y2 (en) 1982-04-22 1982-04-22 Abnormality detection device for rotor connection conductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6000282U JPS591399Y2 (en) 1982-04-22 1982-04-22 Abnormality detection device for rotor connection conductors

Publications (2)

Publication Number Publication Date
JPS586566U JPS586566U (en) 1983-01-17
JPS591399Y2 true JPS591399Y2 (en) 1984-01-14

Family

ID=29856320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6000282U Expired JPS591399Y2 (en) 1982-04-22 1982-04-22 Abnormality detection device for rotor connection conductors

Country Status (1)

Country Link
JP (1) JPS591399Y2 (en)

Also Published As

Publication number Publication date
JPS586566U (en) 1983-01-17

Similar Documents

Publication Publication Date Title
US4136312A (en) Method and apparatus for detection of rotor faults in dynamoelectric machines
US6320731B1 (en) Fault tolerant motor drive arrangement with independent phase connections and monitoring system
KR101530731B1 (en) Method and apparatus for determining a field current in brushless electrical machines
US5023537A (en) Low frequency feeder fault protection
CA2308043A1 (en) Method and apparatus for detection, classification and reduction of internal electrical faults in alternating current propulsion machinery using synchronous detection scheme
US7518332B2 (en) Brushless synchronous motor and driving control apparatus therefor
US11936193B1 (en) Method and device for recovering electrical energy from a single-phase or multiphase power cable
US4635045A (en) Failed fuse detector and detecting method for rotating electrical equipment
JPS591399Y2 (en) Abnormality detection device for rotor connection conductors
EP2337216B1 (en) Dual purpose permanent magnets for a speed sensor and a generator
KR20130016973A (en) Apparatus and method for detecting winding fault of permanent magnet motor
US20020047356A1 (en) Brushless alternating-current generating apparatus and method for measuring field winding temperature therefor
US6762593B2 (en) Rotary electric machine
JPS6363974A (en) Apparatus for detecting current in electric wire
JPS5821347Y2 (en) Brushless synchronous machine field monitoring device
JPH0634564B2 (en) Ground fault detector for generator
US20040189131A1 (en) Method and device for compensating the armature reaction of a rotating exciter
JPH0213556B2 (en)
EP1198717B1 (en) Apparatus and method for fault detection on conductors
JPH01274652A (en) Fault detector for rotating rectifier
JPS55164378A (en) Detecting unit for ground-fault trouble of brushless rotary generator
JPH1032962A (en) Method and device for detecting abnormality in field coil winding of rotary field type rotary electric machine
JPS6110461Y2 (en)
JPS6248300A (en) Detector for exciting current of brushless synchronous machine
JPH01190234A (en) Non-contact type field ground fault detection device