JPS59139739A - Cross polarization interference deleting circuit - Google Patents

Cross polarization interference deleting circuit

Info

Publication number
JPS59139739A
JPS59139739A JP1314183A JP1314183A JPS59139739A JP S59139739 A JPS59139739 A JP S59139739A JP 1314183 A JP1314183 A JP 1314183A JP 1314183 A JP1314183 A JP 1314183A JP S59139739 A JPS59139739 A JP S59139739A
Authority
JP
Japan
Prior art keywords
signal
phase
circuits
signals
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1314183A
Other languages
Japanese (ja)
Other versions
JPH0440902B2 (en
Inventor
Toshihiko Ryu
龍 敏彦
Masato Tawara
田原 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP1314183A priority Critical patent/JPS59139739A/en
Priority to CA000443601A priority patent/CA1215430A/en
Priority to US06/563,364 priority patent/US4575862A/en
Priority to DE8383112848T priority patent/DE3381339D1/en
Priority to EP83112848A priority patent/EP0111931B1/en
Publication of JPS59139739A publication Critical patent/JPS59139739A/en
Publication of JPH0440902B2 publication Critical patent/JPH0440902B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To stabilize the control regardless of the relation between the input frequency and the modulating speed by controlling the relation in phase between the taps of a transversal filter so as to obtain the same phase. CONSTITUTION:An input signal S0 is reduced to a delay signal S1 by a delay circuit 1, further to a delay signal S2 by a delay circuit 2. The signal S0 is branched and passes through phase compensating delay circuits 12 and 12' to be multiplied by a control signal by variable weighting circuits 3 and 6 respectively. In the same way, signals S1 and S2 are branched and pass through phase compensating delay circuits 13 13' as well as 14 and 14' to be multiplied by the control signals by variable weighting circuits 4 and 7, and 5 and 8 respectively. The output signals of circuits 3-5 and 6-8 are synthesized by signal synthesizing circuits 9-10 to be reduced to signals RS and IS, and outputted after synthesizing through a 90 deg. directional coupler 11 so as to obtain the 90 deg. phase relation between both signals. In such a way, the circuits 12-14' are provided at the tap input side to select the signals S0 and S2 in phase within a -90 deg.- +90 deg. range to the signal S1. In such a way, the correct control regardless of the relation between the input carrier frequency and the modulating speed is obtained.

Description

【発明の詳細な説明】 本発明は、無線伝送の直交偏波共用にともなって生ずる
交差偏波の干渉補償技術に関し、特に、厘交偏波通信力
式において交差偏波干渉を除去するための中間周波数帯
に備えられた交差偏波干渉除去回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an interference compensation technique for cross-polarized waves that occurs due to the shared use of orthogonally polarized waves in wireless transmission, and in particular, to a technique for eliminating cross-polarized waves interference in a cross-polarized communication power system. The present invention relates to a cross-polarization interference removal circuit provided in an intermediate frequency band.

マイクロ波帯の無線通信は地上通信並びに衛星通信を中
心に急速に発展している。無線通信の需要は今後移動通
信サービスの拡大等の理由で更に増大していくことが予
想され、準ミlj波以上の周波数帯開拓と共に、実用的
価値の高い現用の周波数帯のいわゆる周波数再利用の考
えが高まっている。すてにCCI几(国際無線通信諮問
委員会)の4〜5 GHzのFM無線周波数配置に関す
る勧告には、直交偏波を使用することが明記されている
。また、衛星通信においてもIN置SAT (国ミ際電
気通信衛星機構)は、V時系衛星で単一偏波で用いられ
てきた4〜6GHz帯での直交偏波共用技術を実用化す
る模様である。
Microwave band wireless communications are rapidly developing, centering on terrestrial communications and satellite communications. The demand for wireless communication is expected to further increase in the future due to the expansion of mobile communication services, etc., and along with the development of frequency bands above quasi-miljon waves, so-called frequency reuse of current frequency bands with high practical value is required. There is a growing belief that The CCI (International Radiocommunication Consultative Commission) recommendations regarding FM radio frequency allocation between 4 and 5 GHz clearly specify the use of orthogonal polarization. In addition, in satellite communications, IN-based SAT (International Telecommunication Satellite Organization) is likely to put into practical use technology for sharing orthogonal polarization in the 4-6 GHz band, which has been used with single polarization on V time series satellites. It is.

これら直交偏波共用化の達成には、アンテナや給電装置
などの偏波特性の改善と共に降雨などによる電波伝搬上
の偏波特性の劣化を補償する交差偏波補償回路の開発も
重要な課題上なっている。
In order to achieve this shared use of orthogonal polarization, it is important to improve the polarization characteristics of antennas and power supply equipment, as well as develop cross-polarization compensation circuits that compensate for deterioration of polarization characteristics during radio wave propagation due to rain, etc. It's on the agenda.

本来、自由空間は直交する2偏波に対して独立で、両側
波を同時に伝送できる伝送線路であるが、実際の伝搬路
には降雨などの媒質の異方性が存在し、直交偏波共用方
式を採用すると、交差偏波の発生による偏波間の結合が
異偏波チャンネル干渉を起すことになる。
Originally, free space is a transmission line that is independent of two orthogonal polarized waves and can transmit both waves simultaneously, but in actual propagation paths, there is anisotropy in the medium such as rain, and it is difficult to use orthogonal polarized waves. If this method is adopted, the coupling between polarized waves due to the generation of cross-polarized waves will cause interference between channels of different polarizations.

交差偏波補償技術は、かかる偏波間の結合をアンテナ給
電装置や無線機器内に補償回路を設けて自動的な補償を
行なうものである。
Cross polarization compensation technology automatically compensates for such coupling between polarized waves by providing a compensation circuit within an antenna feeder or wireless device.

従来、マイクロ波帯通信はFMを中心とするアナログ伝
送が中心であったことから、前述の交差偏波補償力式も
アンテナ給電装置周辺に可変移相器と減衰器とを設は直
交度復元を行う方式や中間周波帯に干渉波補償回路を設
は異偏波間の干渉を各々消去する方式等がよく研究され
実用化されてきている。
Conventionally, microwave band communication has centered on analog transmission centered on FM, so the cross-polarization compensating force method described above also uses a variable phase shifter and an attenuator around the antenna feeder to restore orthogonality. Methods that perform this, and methods that eliminate interference between different polarized waves by installing an interference wave compensation circuit in the intermediate frequency band, have been well studied and put into practical use.

近年、マイクロ波帯においても、ディジタル伝送が使用
される様になシ交差偏波補償力式についてもディジタル
伝送の特徴を生かしたよシ効率の良い方式の提案が要請
されている。
In recent years, as digital transmission has come into use in the microwave band, there is a need to propose a more efficient cross-polarization compensation system that takes advantage of the characteristics of digital transmission.

上記要請に従ってディジタル伝送における交差偏波補償
力式を復調ベースバンド信号情報をもとにベースバンド
帯で行う交差偏波補償回路が提案され、単−偏波用の現
用のアンテナ系及び中間周波数機器を通し、同一搬送周
波数での直交偏波共用のディジタル伝送を行うことがで
きるようになった。このような交差偏波補償回路につい
ては、本出願と同一出願人の出願に係る特願昭54−2
4764号明細書に詳細に記載されている。
In response to the above requirements, a cross-polarization compensation circuit that performs the cross-polarization compensation power formula in the baseband band based on demodulated baseband signal information in digital transmission was proposed, and it Through this, it has become possible to perform digital transmission that uses orthogonal polarization at the same carrier frequency. Regarding such a cross-polarization compensation circuit, there is a patent application filed in 1983-2 filed by the same applicant as the present application.
It is described in detail in the specification of No. 4764.

さて、この種の交差偏波補償回路を中間周波数帯に設け
た力がベースバンド帯に設けた場合よシも回路構成が極
めて容易になることが知られている。
Now, it is known that if this type of cross-polarization compensation circuit is provided in the intermediate frequency band, the circuit configuration will be much easier than if it is provided in the baseband band.

しかしながら、匝交偏波通信力式の中間周波数帯におい
て、干渉波除去の為の可変結合回路としてトランスバー
サルフィルタを用いた場合、入力搬送波周波数が変調速
度の正の整数倍に等しく選ばれた信号遅延回路における
搬送波に対する位相回転が2πの整数倍となって、各タ
ッグ間に対する位相差が等しくなシ、問題な(ZF法に
よるアルゴリズムが成立するが、一般に入力搬送波周波
数が変調速度の正の整数倍に等しくない条件のもとでは
、各タップ間の位相差が生じ、そのままではZF法は用
いることが出来ないという欠点を有していた。
However, when using a transversal filter as a variable coupling circuit for interference wave removal in the intermediate frequency band of the crisscross polarization communication power type, the input carrier frequency is selected to be equal to a positive integer multiple of the modulation rate. If the phase rotation with respect to the carrier wave in the delay circuit is an integer multiple of 2π, and the phase difference between each tag is not equal, this is a problem. Under conditions that are not equal to double, a phase difference occurs between each tap, and the ZF method has the drawback that it cannot be used as it is.

本発明は先行技術に内在する前記欠点を除去する為にな
されたものであり、従って本発明の目的は、入力搬送波
周波数が変調速度の正の整数倍に等しくない条件のもと
においても、安定に制御を行うことができる新規な交差
偏波干渉除去回路を提供することにある。
The present invention has been made to eliminate the above-mentioned drawbacks inherent in the prior art, and it is therefore an object of the present invention to provide a stable and stable signal even under conditions where the input carrier frequency is not equal to a positive integer multiple of the modulation rate. An object of the present invention is to provide a novel cross-polarization interference cancellation circuit that can perform control.

上記目的を達成する為に、本発明は、交差偏波干渉によ
って主偏波信号にもれ込んだ異偏波成分を取シ除くため
に中間周波数帯にてトランス、・(−サルフィルタ型可
変結合回路を偏えた交差偏波干渉除去回路において、前
記トランスノ(−サルフィルタの信号遅延回路の遅延時
間を入力信号であるディジタル直交振幅変調波の変調速
度の逆数に選ぶ既知の方法でなく、搬送波周波数に周波
数オフセットが生じても、タップ間の位相関係がある特
定の位相関係になるような条件のもので、変調速度の逆
数にもつとも近い値に選ぶように工夫することにより、
即ち、前記トランスバーサルフィルタのタッグ間の位相
関係が互いにほぼ同位相となるように調整する位相補正
用遅延回路を設けて構成され、しかして、入力搬送波周
波数が変調速度の正の整数倍に等しくない条件のもとに
おいてもZF法による制御を可能ならしめている。
In order to achieve the above object, the present invention provides a transformer, (-Sal filter type variable In the cross-polarization interference canceling circuit in which the coupling circuit is biased, instead of using the known method of selecting the delay time of the signal delay circuit of the transnosal filter to be the reciprocal of the modulation speed of the digital orthogonal amplitude modulated wave that is the input signal, Even if a frequency offset occurs in the carrier frequency, the phase relationship between the taps is a specific phase relationship, and by choosing a value that is close to the reciprocal of the modulation rate,
That is, the structure includes a phase correction delay circuit that adjusts the phase relationship between the tags of the transversal filter so that they are substantially in phase with each other, and the input carrier frequency is equal to a positive integer multiple of the modulation speed. This makes control using the ZF method possible even under conditions where there is no such condition.

以下、本発明をその好ましい一実施例について図面を参
照しながら詳細に説明する。
Hereinafter, a preferred embodiment of the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例を示すブロック構成図である
。本実施例は入力直交振幅変調波を16値直交振幅変調
波とし、可変結合回路を中細周波数帯に設けた3タツプ
のトランスバーサルフィルタとした場合である。
FIG. 1 is a block diagram showing one embodiment of the present invention. In this embodiment, the input quadrature amplitude modulated wave is a 16-value quadrature amplitude modulated wave, and the variable coupling circuit is a 3-tap transversal filter provided in a medium frequency band.

図において、参照番号1.2は入力変調信号の変調速度
の逆数に選ばれたトランスバーサルフィルタを構成する
遅延回路、3.4.5.6.7.8は可変重み付は回路
、9.10は信号合成回路、11は90°力向性結合器
、12.12′、13.13’、14.14’はトラン
スバーサルフィルタのタップ間における搬送波の位相関
係が互いにほぼ同位相となるよりに調整(補正〕する位
相補正用遅延回路をそれぞれ示す。
In the figure, reference number 1.2 is a delay circuit constituting a transversal filter selected to be the reciprocal of the modulation rate of the input modulation signal, 3.4.5.6.7.8 is a variable weighting circuit, and 9. 10 is a signal synthesis circuit, 11 is a 90° force-directed coupler, and 12.12', 13.13', and 14.14' are carrier waves between taps of transversal filters so that the phase relationship is almost in phase with each other. The phase correction delay circuits that adjust (correct) are shown respectively.

以下の説明は、一般のL値(L=l”、lは2以上の整
数)であシ、Nタップ(Nは正の整数)の中間周波数帯
のトランスバーサルフィルタについても同様に行えるた
め以下の説明は一般性を失なわない。
The following explanation applies to a general L value (L=l'', l is an integer of 2 or more), and can be similarly applied to an N-tap (N is a positive integer) intermediate frequency band transversal filter. The explanation does not lose its generality.

入力信号Soは、遅延回路1により遅延された信号Sl
となり、更に遅延回路2によシ遅延されて信号S2とな
る。信号Soは、分岐されて位相補正用遅延回路12.
12’を通夛、それぞれ可変重み討は回路3及び6にお
いて制御信号と掛は合わされる。又、信号8zは分岐さ
れて位相補正用遅延回路13.13’を過多それぞれ可
変重み付は回路4及び7において制御信号と掛は合わさ
れる。同様に、信号S2も、又、分岐されて位相補正用
遅延回路14を通υ、それぞれ可変重み付は回路5.8
において制御信号と掛は合わされる。可変重み付は回路
3〜5の出力信号は信号合成回路9で信号合成さnて信
号R8となる。−力、可変重み付は回路6〜8の出力信
号は信号合成回路10で信号合成されて信号Isとなる
。信号R8とIsは、90°力向性結合器11において
互いにその位相が90°の関係となるように合成され、
出力信号が得られる。
The input signal So is a signal Sl delayed by the delay circuit 1.
The signal is further delayed by the delay circuit 2 and becomes the signal S2. The signal So is branched and sent to the phase correction delay circuit 12.
12', each variable weight signal is combined with a control signal in circuits 3 and 6. Further, the signal 8z is branched and multiplied by the phase correction delay circuits 13 and 13', respectively, and the variable weighting circuits 4 and 7 combine the signals with the control signals. Similarly, the signal S2 is also branched and passed through the phase correction delay circuit 14, and variable weighting is performed by circuits 5 and 8.
At , the control signal and the multiplication are combined. In the case of variable weighting, the output signals of the circuits 3 to 5 are combined in a signal combining circuit 9 to become a signal R8. - For power and variable weighting, the output signals of circuits 6 to 8 are synthesized by a signal synthesis circuit 10 to become a signal Is. The signals R8 and Is are combined in a 90° force-directional coupler 11 so that their phases are in a 90° relationship with each other,
An output signal is obtained.

従来、中間周波数帯トランスバーツルフィルタを用いた
交差偏波干渉除去回路においては、復調されたベースバ
ンド信号と、それよ多発生させた誤差信号に対しては、
ZFアルゴリズムが一般には適用できなかった。適用で
きるのは入力変調信号の搬送波周波数(fC)が、入力
変調信号の変調速度(fS)の正の整数倍に等しい場合
に限られていた。
Conventionally, in a cross-polarization interference removal circuit using an intermediate frequency band transverse filter, for the demodulated baseband signal and the error signal generated more frequently,
The ZF algorithm was not generally applicable. It is applicable only when the carrier frequency (fC) of the input modulation signal is equal to a positive integer multiple of the modulation rate (fS) of the input modulation signal.

この場合、第1図に示した遅延回路工、2における遅延
時間τl、τ2による搬送波の位相回転が2πの整数倍
となシ、各タップでの変調信号(So、 Sl。
In this case, the phase rotation of the carrier wave due to the delay times τl and τ2 in the delay circuit shown in FIG.

Sりは同位相となるので、第1図において位相補正用遅
延回路12.12’、13.13’及び14.14’が
ない場合(即ち遅延回路12.12’、13.13’、
14.14’の遅延時間はすべて0秒)の方式が適用で
きる。
S has the same phase, so if there are no phase correction delay circuits 12.12', 13.13' and 14.14' in FIG.
14.14' delay time is all 0 seconds) method can be applied.

しかしながら、fc=Nfm (Nは正の整数〕の場合
には、信号So 、8z 、 8gが必ずしも同位相に
ならない為に、制御系が正しく動作しない、換言すれば
、正しく動作する為の条件は、信号81を基準位相(σ
)とした時に、ベクトル平面上で他タップの信号(So
、 8りが一90°〜+90°の位相範囲内にあればよ
い。
However, when fc=Nfm (N is a positive integer), the signals So, 8z, and 8g do not necessarily have the same phase, so the control system does not operate correctly. In other words, the conditions for correct operation are , the signal 81 is set to the reference phase (σ
), the signal of another tap (So
, 8 may be within the phase range of 190° to +90°.

従って、第1図に示す如く、タップの入力側に位相補正
用遅延回路12〜14′を用意し、各々の遅延時間を上
述の如く、各タップを通過後の信号SOとSsの位相が
、信号8zを基準位相(θ°)としたときに−90°〜
+900の範囲内にくるように選ぶことによシ入力変調
信号の搬送波周波数(fc)が入力変調信号の変調速度
(f8)の正の整数倍に等しくない場合でも正しく制御
を行わしめることが可能である。
Therefore, as shown in FIG. 1, phase correction delay circuits 12 to 14' are prepared on the input side of the taps, and the phases of the signals SO and Ss after passing through each tap are as follows. -90° when signal 8z is the reference phase (θ°)
By selecting it within the range of +900, it is possible to perform correct control even when the carrier frequency (fc) of the input modulation signal is not equal to a positive integer multiple of the modulation speed (f8) of the input modulation signal. It is.

しかも、遅延量に関しては、位相補正用遅延回路12.
12’、13.13’、14.14’の分は、遅延回路
1.2に比して通常無視出来る量であシ、可変結合器の
干渉除去能力を損うものではない。
Moreover, regarding the amount of delay, the phase correction delay circuit 12.
12', 13.13', and 14.14' are generally negligible amounts compared to the delay circuit 1.2, and do not impair the interference removal ability of the variable coupler.

上記実施例においては、入力直交振幅変調波を16値直
交振幅変調波とし、中間周波数帯に設けたトランスバー
サルフィルタを3タツプとした場合について説明したが
、本発明はこの実施例に限定されるものではなく、その
範囲内における種々の変形、変更を含むことは勿論であ
る。
In the above embodiment, a case has been described in which the input quadrature amplitude modulated wave is a 16-level quadrature amplitude modulated wave and the transversal filter provided in the intermediate frequency band is 3 taps, but the present invention is limited to this embodiment. It goes without saying that the scope of the present invention is not limited to this, and includes various modifications and changes within its scope.

以上、述べたように、本発明に依れば、中間周波数帯可
変結合器を簡単なZF形アルゴリズムを適用して、入力
搬送波周波数が変調速度の正の整数倍に等しくない条件
のもとにおいても安定に制御することが出来るから、回
路規模が小型化されるし、ディジタル回路化も容易であ
る等の利点を有する。
As described above, according to the present invention, a simple ZF type algorithm is applied to the intermediate frequency band variable coupler under the condition that the input carrier frequency is not equal to a positive integer multiple of the modulation rate. Since the circuit can also be controlled stably, the circuit scale can be reduced and digitalization is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例を示すブロック構成図で
ある。 1.2・Φ・遅延回路、3〜8・・・可変重み付は回路
、9.10・・・信号合成回路、11・・や90°力向
性結合器、12.12’、13.13′、14.14’
・・・位相補正用遅延回路 特許出願人   日本電気株式会社 代 理 人   弁理士 熊谷雄太部
FIG. 1 is a block diagram showing an embodiment according to the present invention. 1.2・Φ・Delay circuit, 3 to 8...Variable weighting circuit, 9.10...Signal synthesis circuit, 11...and 90° force directional coupler, 12.12', 13. 13', 14.14'
...Delay circuit for phase correction patent applicant NEC Corporation Representative Patent attorney Yutabe Kumagai

Claims (1)

【特許請求の範囲】[Claims] 互いに直交する2つの偏波を使用する直交偏波通信方式
においてもれ込んだ異偏波を除去するために、中間周波
帯で異偏波の信号を主偏波に結合し、その結合量を制御
信号によって制御できるトランスバーサルフィルタ型可
変結合器を備えた交差偏波干渉除去回路において、前記
トランスバーサルフィルタのタップ間における搬送波の
位相関係が互いにほぼ同位相となるように調整する位相
補正用遅延回路を具備し、入力変調信号の搬送波周波数
と前記入力変調信号の変調速度が如何なる藺係にあって
も正しく制御を行うことを特徴とした交差偏波干渉除去
回路。
In order to remove the mixed polarization that has leaked into an orthogonal polarization communication system that uses two polarized waves that are orthogonal to each other, the signals of different polarization are combined into the main polarized wave in the intermediate frequency band, and the amount of coupling is calculated. In a cross-polarization interference removal circuit equipped with a transversal filter type variable coupler that can be controlled by a control signal, a phase correction delay is adjusted so that the phase relationship of carrier waves between taps of the transversal filter is almost in phase with each other. 1. A cross-polarization interference removal circuit, comprising: a circuit for correctly controlling the carrier wave frequency of an input modulation signal and the modulation speed of the input modulation signal, regardless of the relationship between the carrier wave frequency of the input modulation signal and the modulation speed of the input modulation signal.
JP1314183A 1982-12-20 1983-01-29 Cross polarization interference deleting circuit Granted JPS59139739A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1314183A JPS59139739A (en) 1983-01-29 1983-01-29 Cross polarization interference deleting circuit
CA000443601A CA1215430A (en) 1982-12-20 1983-12-19 Cross-polarization distortion canceller for use in digital radio communication receiver
US06/563,364 US4575862A (en) 1982-12-20 1983-12-20 Cross-polarization distortion canceller for use in digital radio communication receiver
DE8383112848T DE3381339D1 (en) 1982-12-20 1983-12-20 CROSS-POLARIZATION EQUALIZER FOR USE IN A DIGITAL RADIO CONNECTION RECEIVER.
EP83112848A EP0111931B1 (en) 1982-12-20 1983-12-20 Cross-polarization distortion canceller for use in digital radio communication receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1314183A JPS59139739A (en) 1983-01-29 1983-01-29 Cross polarization interference deleting circuit

Publications (2)

Publication Number Publication Date
JPS59139739A true JPS59139739A (en) 1984-08-10
JPH0440902B2 JPH0440902B2 (en) 1992-07-06

Family

ID=11824878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1314183A Granted JPS59139739A (en) 1982-12-20 1983-01-29 Cross polarization interference deleting circuit

Country Status (1)

Country Link
JP (1) JPS59139739A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318334A (en) * 1988-06-20 1989-12-22 Nec Corp Double polarized wave transmission system
JPH03174829A (en) * 1989-05-17 1991-07-30 Nec Corp Double polarized wave transmission system
US6731704B1 (en) 1999-08-20 2004-05-04 Fujitsu Limited Apparatus and bit-shift method for eliminating interference of cross polarization

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170644A (en) * 1981-04-15 1982-10-20 Nec Corp Eliminating circuit for cross polarization interference

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170644A (en) * 1981-04-15 1982-10-20 Nec Corp Eliminating circuit for cross polarization interference

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318334A (en) * 1988-06-20 1989-12-22 Nec Corp Double polarized wave transmission system
JPH03174829A (en) * 1989-05-17 1991-07-30 Nec Corp Double polarized wave transmission system
US6731704B1 (en) 1999-08-20 2004-05-04 Fujitsu Limited Apparatus and bit-shift method for eliminating interference of cross polarization

Also Published As

Publication number Publication date
JPH0440902B2 (en) 1992-07-06

Similar Documents

Publication Publication Date Title
US10432290B2 (en) Analog beamforming devices
JP3565160B2 (en) Cross polarization interference compensation circuit
US3735266A (en) Method and apparatus for reducing crosstalk on cross-polarized communication links
US4628517A (en) Digital radio system
US4438530A (en) Adaptive cross-polarization interference cancellation system
JP3099027B2 (en) Cross polarization canceller and polarization state correction system
US10693687B1 (en) Intermediate frequency on chip (IFoC) system
US4321705A (en) Digital equalizer for a cross-polarization receiver
US9998171B2 (en) IBFD transceiver with non-reciprocal frequency transposition module
JPH06169273A (en) Radio receiver, transmitter and repeater for execution of diversity
RU2439826C2 (en) Radio transmission system and method for compensating for cross-talk
EP3739763B1 (en) Communication apparatus
US4146838A (en) System for detecting by a first pilot and a group of second pilots correlated to the first a frequency and/or phase difference between relayed carriers
JPH0211032A (en) Up-link cross polarization compensator
JPS59139739A (en) Cross polarization interference deleting circuit
US10715261B2 (en) Method and apparatus for antenna array calibration using on-board receiver
JPS6255338B2 (en)
JP2800774B2 (en) Cross polarization interference compensation method
JP5064477B2 (en) Wireless communication system and wireless communication apparatus
JPS6343934B2 (en)
JPS6343936B2 (en)
CN117713892A (en) Signal processing method, device, equipment and readable storage medium
JPS6336691B2 (en)
JPS6343935B2 (en)
JPS6255337B2 (en)